

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

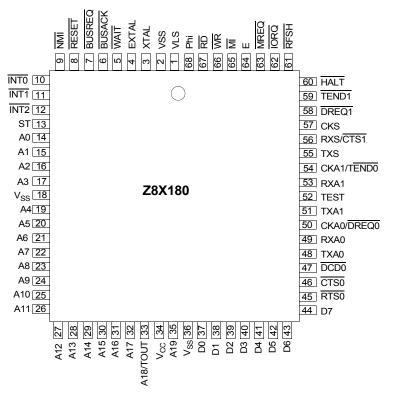
Details

Product Status	Active
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	6MHz
Co-Processors/DSP	
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	80-BQFP
Supplier Device Package	80-QFP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018006fsg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	TEND0 Output Timing Diagram108
Figure 50.	DMA Interrupt Request Generation114
Figure 51.	NMI and DMA Operation Timing Diagram115
Figure 52.	ASCI Block Diagram117
Figure 53.	DCD0 Timing Diagram139
Figure 54.	RTS0 Timing Diagram140
Figure 55.	ASCI Interrupt Request Circuit Diagram140
Figure 56.	ASCI Clock
Figure 57.	CSI/O Block Diagram147
Figure 58.	CSI/O Interrupt Request Generation151
Figure 59.	Transmit Timing Diagram–Internal Clock153
Figure 60.	Transmit Timing–External Clock154
Figure 61.	CSI/O Receive Timing–Internal Clock155
Figure 62.	CSI/O Receive Timing–External Clock156
Figure 63.	PRT Block Diagram157
Figure 64.	Timer Initialization, Count Down, and Reload
	Timing Diagram163
Figure 65.	Timer Output Timing Diagram164
Figure 66.	PRT Interrupt Request Generation164
Figure 67.	E Clock Timing Diagram (During Read/Write Cycle and Interrupt Acknowledge Cycle
Figure 68.	E Clock Timing in BUS RELEASE Mode
Figure 69.	E Clock Timing in SLEEP Mode and
i iguie oy.	SYSTEM STOP Mode
Figure 70.	External Clock Interface
Figure 71.	Clock Generator Circuit
Figure 72.	Circuit Board Design Rules
Figure 73.	Example of Board Design



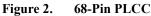

xvi

Table 43.	Block Transfer
Table 44.	Stock and Exchange
Table 45.	Program Control Instructions
Table 46.	I/O Instructions
Table 47.	Special Control Instructions
Op Code Map	
Table 48.	1st Op Code Map Instruction Format: XX
Table 49.	2nd Op Code Map Instruction Format: CB XX 249
Table 50.	2nd Op Code Map Instruction Format: ED XX 250
Bus Control Signal	Conditions
Table 51.	Bus and Control Signal Condition in Each Machine Cycle
Table 52.	Interrupts
Operating Modes St	ummary
Table 53.	Request Acceptances in Each Operating Mode
Table 54.	The Z80180 Types of Requests 282
Status Signals 287	
Table 55.	Pin Outputs in Each Operating Mode
Table 56.	Pin Status During RESET and LOW POWER OPERATION Modes
I/O Registers	
Table 57.	Internal I/O Registers

Z8018x Family MPU User Manual

PIN DESCRIPTION

A0–A19. Address Bus (Output, Active High, 3-state). A0–A19 form a 20bit address bus. The Address Bus provides the address for memory data bus exchanges, up to 1 MB, and I/O data bus exchanges, up to 64K. The address bus enters a high impedance state during RESET and external bus acknowledge cycles. Address line A18 is multiplexed with the output of PRT channel 1 (TOUT, selected as address output on RESET) and address line A19 is not available in DIP versions of the Z8X180.

BUSACK. *Bus Acknowledge (Output, Active Low).* **BUSACK** indicates that the requesting device, the MPU address and data bus, and some control signals, have entered their high impedance state.

BUSREQ. Bus Request (Input, Active Low). This input is used by external devices (such as DMA controllers) to request access to the system bus. This request has a higher priority than NMI and is always recognized at the end of the current machine cycle. This signal stops the CPU from executing further instructions and places the address and data buses, and other control signals, into the high impedance state.

CKA0, CKA1. *Asynchronous Clock 0 and 1 (Bidirectional, Active High).* These pins are the transmit and receive clocks for the ASCI channels. CKA0, is multiplexed with DREQ0 and CKA1 is multiplexed with TEND0.

CKS. *Serial Clock (Bidirectional, Active High).* This line is the clock for the CSIO channel.

CLOCK (PHI). *System Clock (Output, Active High).* The output is used as a reference clock for the MPU and the external system. The frequency of this output is equal to one-half that of the crystal or input clock frequency.

CTS0, **CTS1**. *Clear to Send 0 and 1 (Inputs, Active Low)*. These lines are modem control signals for the ASCI channels. **CTS1** is multiplexed with RXS.

36

Low Power Modes (Z8S180/Z8L180 only)

The following section is a detailed description of the enhancements to the Z8S180/L180 from the standard Z80180 in the areas of STANDBY, IDLE and STANDBY QUICK RECOVERY modes.

Add-On Features

There are five different power-down modes. SLEEP and SYSTEM STOP are inherited from the Z80180. In SLEEP mode, the CPU is in a stopped state while the on-chip I/Os are still operating. In I/O STOP mode, the on-chip I/Os are in a stopped state while leaving the CPU running. In SYSTEM STOP mode, both the CPU and the on-chip I/Os are in the stopped state to reduce current consumption. The Z8S180 features two additional power-down modes, STANDBY and IDLE, to reduce current consumption even further. The differences in these power-down modes are summarized in Table 5.

85

Z8X180. Figure 43 illustrates the INT1, INT2 and internal interrupts timing.

Machine							Γ	MI			
Cycle	States	Address	Data	RD	WR	MREQ	IORQ	M1E=1	M1E=0	HALT	ST
1	T1-T3	1st Op Code	EDH	0	1	0	1	0	1	1	0
2	TI-T3	2nd Op Code	4DH	0	1	0	1	0	1	1	1
3	T1	Don't Care	3-state	1	1	1	1	1	1	1	1
4	T1	Don't Care	3-state	1	1	1	1	1	1	1	1
5	T1	Don't Care	3-state	1	1	1	1	1	1	1	1
6	T1-T3	1st Op Code	EDH	0	1	0	1	0	0	1	1
7	T1	Don't Care	3-state	1	1	1	1	1	1	1	1
8	T1-T3	2nd Op Code	4DH	0	1	0	1	0	1	1	1
9	T1-T3	SP	data	0	1	0	1	1	1	1	1
10	T1-T3	SP+1	data	0	1	0	1	1	1	1	1

 Table 10.
 RETI Control Signal States

IOC affects the IORQ/RD signals. M1E affects the assertion of M1. One state also reflects a 1 while the other reflects a 0 $\,$

Bit Position	Bit/Field	R/W	Value	Description
2–0	MOD2-0	R/W		ASCI Data Format Mode 2, 1, 0 — These bits program the ASCI data format as follows.
				MOD2
				0: 7 bit data
				1: 8 bit data
				MOD1
				0: No parity
				1: Parity enabled
				MOD0
				0: 1 stop bit
				1: 2 stop bits
				The data formats available based on all combinations of MOD2, MOD1 and MOD0 are described in Table 17.

ASCI to/from DMAC Operation

Operation of the ASCI with the on-chip DMAC channel 0 requires that the DMAC be correctly configured to use the ASCI flags as DMA request signals.

ASCI and RESET

During RESET, the ASCI status and control registers are initialized as defined in the individual register descriptions.

Receive and Transmit operations are stopped during RESET. However, the contents of the transmit and receive data registers (TDR and RDR) are not changed by RESET.

ASCI Clock

When in external clock input mode, the external clock is directly input to the sampling rate $(\div 16/\div 64)$ as depicted in Figure 56.

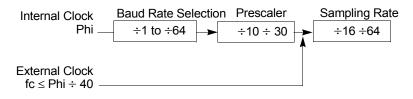


Figure 56. ASCI Clock

Pro	escaler		npling ate	g Baud Rate			e	General	Baud	Rate (Exa (BPS)	mple)		СКА
PS	Divide Ratio	DR	Rate	SS2	SS1	SS 0	Divide Ratio	Divide Ratio	φ = 6.144 MHz	φ = 4.608 MHz	φ = 3.072 MHz	I/O	Clock Frequency
				0	0	0	÷1	φ ÷ 160	38400		19200		$\phi \div 10$
				0	0	1	2	320	19200		9600		20
		0	16	0	1	0	4	640	9600		4800		40
		0	10	0	1	1	8	1280	4800		2400	0	80
				1	0	0	16	2560	2400		1200		160
				1	0	1	32	5120	1200		600		320
				1	1	0	64	10240	600		300		640
0	φ ÷ 10			1	1	1	_	fc ÷ 16	_	—	_	Ι	fc
				0	0	0	÷1	0÷640	9600		4800		φ ÷ 10
				0	0	1	2	1280	4800		2400		20
				0	1	0	4	2560	2400		1200		40
		1	64	0	1	1	8	5120	1200		600	0	80
				1	0	0	16	10240	600		300		160
				1	0	1	32	20480	300		150		320
				1 1 0 64 40960 150		75		640					
				1	1	1	—	fc ÷ 64	_	—	—	Ι	fc

 Table 19.
 ASCI Baud Rate Selection

17

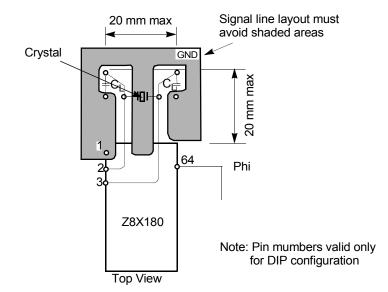


Figure 73. Example of Board Design

Circuit Board design should observe the following parameters.

- Locate the crystal and load capacitors as close to the IC as physically possible to reduce noise.
- Signal lines must not run parallel to the clock oscillator inputs. In particular, the clock input circuitry and the system clock output (pin 64) must be separated as much as possible.
- V_{CC} power lines must be separated from the clock oscillator input circuitry.
- Resistivity between XTAL or EXTAL and the other pins must be greater than 10M ohms.

Signal line layout must avoid areas marked with the shaded area of Figure 73.

. . . / .

Software Architecture

INSTRUCTION SET

The Z80180 is object code-compatible with the Z80 CPU. Refer to the Z80 CPU Technical Manual or the Z80 Assembly Language Programming Manual for further details.

Table 26.	Instruction S	Set Summary
-----------	---------------	-------------

New Instructions	Operation
SLP	Enter SLEEP mode
MLT	8-bit multiply with 16-bit result
INO g, (m)	Input contents of immediate I/O address
OUT0 (m), g	Output register contents to immediate I/O address
OTIM	Block output - increment
OTIMR	Block output - increment and repeat
OTDM	Block output - decrement
OTDMR	Block output - decrement and repeat
TSTIO m	Non-destructive AND, I/O port, and accumulator
TST g	Non-destructive AND, register, and accumulator
TST m	Non-destructive AND, immediate data, and accumulator
TST (HL)	Non-destructive AND, memory data, and accumulator

SLP - Sleep

The SLP instruction causes the Z80180 to enter the SLEEP low power consumption mode. See page 32 for a complete description of the SLEEP state.

207

Instruction Set

This section explains the symbols in the instruction set.

REGISTER

g, g', ww, xx, yy, and zz specify a register to be used. g and g' specify an 8-bit register. ww, xx, yy, and zz specify a pair of 8-bit registers. Table 32 describes the correspondence between symbols and registers.

Table 32.Register Values

111

А

g,g'	Reg.	ww	Reg.	xx	Reg.	уу	Reg.	zz	Reg.
000	B	00	BC	00	BC	00	BC	00	BC
001	С	01	DE	01	DE	01	DE	01	DE
010	D	10	HL	10	IX	10	IY	10	HL
011	Е	11	SP	11	SP	11	SP	11	AF
100	Н						•		
101	L								

Note: Suffixed H and L to ww, xx, yy, zz (ex. wwH, IXL) indicate upper and lower 8-bit of the 16-bit register respectively.

BIT

b specifies a bit to be manipulated in the bit manipulation instruction. Table 33 indicates the correspondence between **b** and bits.

															Fl	ags		
					Ad	dress	ing						7	6	4	2	1	0
Operation Name	Mnemonics	Op Code	Immed	Ext	Ind	Reg	Regl	Imp	Rel	Bytes	States	Operation	s	z	н	P/V	N	с
	CPI	11101101					S	s		2	12	Ar-(HL) _M	↑	↑	↑	↑	s	•
		10100001										BC _R -1→BC _R						
												HL _R + 1→HL _R		(3)		(2)		
	CPIR	11101101					s	s		2	14	BC _R ≠0 Ar*(HL) _M	↑	↑	↑	↑	s	•
		10110001									12	$BC_R = 0 \text{ or } Ar = (HL)_M$						
												$\begin{array}{c} & \text{Ar-(HL)}_M\\ \text{Q} & \text{BC}_{\text{R}}\text{-}1 {\rightarrow} \text{BC}_R\\ & \text{HL}_R \text{+}1 {\rightarrow} \text{HL}_R \end{array}$						
												Repeat Q until						
												$Ar = (HL)_M \text{ or } BC_R = 0$				(2)		
	LDD	11 101 101					S/D			2	12		•	•	R	↑	R	•
		10 101 000										BC _R -1→BC _R						
												DE _R -1→DE _R						
												HL _R -1→HL _R						
	LDDR	11 101 101					S/D			2	14(BC _R ≠ 0)	$(HL)_{M} \rightarrow (DE)_{M}$ BC _R -1 \rightarrow BC _R	•	•	R	R	R	•
		10 111 000									12(BC _R = 0)	$\begin{array}{c} Q \qquad DE_{R}^{K} - 1 \rightarrow DE_{R}^{K} \\ HL_{R} - 1 \rightarrow HL_{R} \end{array}$						
												Repeat Q until						
												BC _R = 0				(2)		
	LDI	11 101 101					S/D			2	12	(HL) _M →DE) _R	•	•	R	↑	R	•
		10 100 000										BC _R -1→BC _R						
												DE _R + 1→DE _R						
												HL _R + 1→HL _R						
	LDIR	11 101 101					S/D			2	14(BC _R ≠0)	$(HL)_{M} \rightarrow (DE)_{M}$ Q BC _R -1 \rightarrow BC _R	•	•	R	R	R	•
		10 110 000									12(BC _R = 0)	$DE_{R} + 1 \rightarrow DE_{R}$ $HL_{R} + 1 \rightarrow HL_{R}$						
												Repeat Q until						
												BC _R = 0						
	0: BC _R -1 = 0																	
(3) Z = 1:	⊃/V = 1: BC _R Ar = (HL) _M																	
Ž	Z = 0 :Ar ≠ (H	IL) _M																

Table 43. Block Transfer (Continued)

		Machine	
MNEMONICS	Bytes	Cycles	States
RRC (IY+d)	4	7	19
RRC g	2	3	7
RRD	2	8	16
RR (HL)	2	5	13
RR (IX+d)	4	7	19
RR (IY+d)	4	7	19
RR g	2	3	7
RST v	1	5	11
SBC A,(HL)	1	2	6
SBC A, (IX+d)	3	6	14
SBC A,(IY+d)	3	6	14
SBC A,m	2	2	6
SBC A,g	1	2	4
SBC HL,ww	2	6	10
SCF	1	1	3
SET b,(HL)	2	5	13
SET b,(IX+d)	4	7	19
SET b,(IY+d)	4	7	19
SET b,g	2	3	7
SLA (HL)	2	5	13
SLA (IX+d)	4	7	19
SLA (IY+d)	4	7	19
SLA g	2	3	7
SLP**	2	2	8
SRA (HL)	2	5	13
SRA (IX+d)	4	7	19
SRA (IY+d)	4	7	19
SRA g	2	3	7
SRL (HL)	2	5	13
SRL (IX+d)	4	7	19

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
IN g,(C)	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	BC	DATA	0	1	1	0	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
INO g,(m)**	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	1st operand Address	m	0	1	0	1	1	1	1
	MC4	T1T2T3	m to A0~A7 00H to A8~A15	DATA	0	1	1	0	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
INI IND	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	BC	DATA	0	1	1	0	1	1	1
	MC4	T1T2T3	HL	DATA	1	0	0	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
INIR	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
INDR	MC3	T1T2T3	BC	DATA	0	1	1	0	1	1	1
(If Br≠0)	MC4	T1T2T3	HL	DATA	1	0	0	1	1	1	1
	MC5~M C6	TiTi	*	Z	1	1	1	1	1	1	1

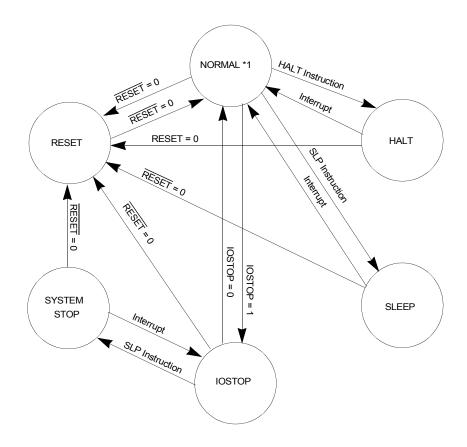
 Table 51.
 Bus and Control Signal Condition in Each Machine Cycle (Continued)

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
OTIM**	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
OTDM**	MC3	Ti	*	Z	1	1	1	1	1	1	1
	MC4	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC5	T1T2T3	C to A0~A7 00H to A8~A15	DATA	1	0	1	0	1	1	1
	MC6	Ti	*	Z	1	1	1	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
OTIMR**	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
OTDMR**	MC3	Ti	*	Z	1	1	1	1	1	1	1
(If Br≠0)	MC4	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC5	T1T2T3	C to A0~A7 00H to A8~A15	DATA	1	0	1	0	1	1	1
	MC6~M C8	TiTiTi	*	Z	1	1	1	1	1	1	1

 Table 51.
 Bus and Control Signal Condition in Each Machine Cycle (Continued)

INTERRUPTS

	Machine										
Instruction	Cycle	States	Address	Data	RD	WR	MREQ	IORQ	M1	HALT	ST
	MC1	T1T2T3	Next Op Code Address (PC)		0	1	0	1	0	1	0
NMI	MC2 ~MC3	T1T1	*	Z	1	1	1	1	1	1	1
	MC4	T1T2T3	SP-1	РСН	1	0	0	1	1	1	1
	MC5	T1T2T3	SP-2	PCL	1	0	0	1	1	1	1
INTO Mode 0	MC1	T1T2TW TWT3	Next Op Code Address	1st(PC) Op Code	1	1	1	0	0	1	0
(RST Inserted)	MC2 ~MC3	T1T1	*	Z	1	1	1	1	1	1	1
	MC4	T1T2T3	SP-1	РСН	1	0	0	1	1	1	1
	MC5	T1T2T3	SP-2	PCL	1	0	0	1	1	1	1
	MC1	T1T2Tw TWT3	Next Op Code Address (PC)	1st Op Code	1	1	1	0	0	1	0
INT0 Mode 0	MC2	T1T2T3	PC	n	0	1	0	1	1	1	1
(Call	MC3	T1T2T3	PC+1	m	0	1	0	1	1	1	1
Inserted)	MC4	Ti	*	Z	1	1	1	1	1	1	1
	MC5	T1T2T3	SP-1	PC+2(H)	1	0	0	1	1	1	1
	MC6	T1T2T3	SP-2	PC+2(L)	1	0	0	1	1	1	1
INT0 Mode 1	MC1	T1T2TW TWT3	Next Op Code Address (PC)		1	1	1	0	0	1	0
	MC2	T1T2T3	SP-1	РСН	1	0	0	1	1	1	1
	MC3	T1T2T3	SP-2	PCL	1	0	0	1	1	1	1


Table 52.Interrupts

UM005003-0703

Note: If Bus Request and Refresh Request occur simultaneously, Bus Request is accepted but Refresh Request is cleared.

OPERATION MODE TRANSITION

298

Register	Mnemonics	Address	Remarks				
Timer Data Register Channel 1L:	TMDR1L	1 4					
Timer Data Register Channel 1H:	TMDR1H	1 5					
Timer Reload Register Channel 1L	RLDR1L	1 6					
Timer Reload Register Channel 1H:	RLDR1H	1 7					
Free Running Counter:	FRC	1 8	Read only				
DMA Source Address Register Channel 0L:	SAR0L	2 0					
DMA Source Address Register Channel 0H:	SAR0H	2 1					
DMA Source Address Register Channel 0B:	SAR0B	2 2	Bits 0-2 (3) are used for SAR0B DMA Transfe A ₁₉ *, A ₁₈ , A ₁₇ , A ₁₆				
DMA Destination Address Register Channel 0L:	DAR0L	2 3	X X 0 1 RDR0	(ASCI0) (ASCI1)			
DMA Destination Address Register Channel 0H:	DAR0H	2 4	X X 1 1 Not us	ed			
DMA Destination Address Register Channel 0B:	DAR0B	2 5	Bits 0-2 (3) are used for DAR0B DMA Transf A ₁₉ *, A ₁₈ , A ₁₇ , A ₁₆				
DMA Byte Count Register Channel 0L:	BCROL	2 6	X X 0 1 TDR0 X X 1 0 TDR1	Q ₀ (external) (ASCI0) (ASCI1)			
DMA Byte Count Register Channel 0H:	BCROH	2 7	X X I I Not us	sed			
DMA Memory Address Register Channel 11.:	MAR1L	2 8					
DMA Memory Address Register Channel 1H:	MAR1H	2 9					

Table 57. Internal I/O Registers (Continued)

* In the R1 and Z mask, these DMAC registers are expanded from 4 bits to 3 bits in the package version of CP-68.