

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	6MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	64-DIP (0.750", 19.05mm)
Supplier Device Package	64-DIP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018006peg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

17

When \overline{IOC} is 0, the timing of the \overline{IORQ} and \overline{RD} signals match the timing required by the Z80 family of peripherals. The \overline{IORQ} and \overline{RD} signals go active as a result of the rising edge of T2. This timing allows the Z8X180 to satisfy the setup times required by the Z80 peripherals on those two signals (Figure).

Figure 8. I/O Read and Write cycles with IOC = 0 Timing Diagram

For the remainder of this document, assume that M1E is 0 and \overline{IOC} is 0.

UM005003-0703

address to 0. These instructions are IN0, OUT0, OTIM, OTIMR, OTDM, OTDMR and TSTIO (see Instruction Set).

When writing to an internal I/O register, the same I/O write occurs on the external bus. However, the duplicate external I/O write cycle exhibits internal I/O write cycle timing. For example, the WAIT input and programmable Wait State generator are ignored. Similarly, internal I/O read cycles also cause a duplicate external I/O read cycle. However, the external read data is ignored by the Z8X180.

Normally, external I/O addresses should be chosen to avoid overlap with internal I/O addresses and duplicate I/O accesses.

			Address				
	Register	Mnemonic	Binary	Hex	Page		
ASCI	ASCI Control Register A Ch 0	CNTLA0	XX000000	00H	125		
	ASCI Control Register A Ch 1	CNTLA1	XX000001	01H	128		
	ASCI Control Register B Ch 0	CNTLB0	XX000010	02H	132		
	ASCI Control Register B Ch 1	CNTLB1	XX000011	03H	132		
	ASCI Status Register Ch 0	STAT0	XX000100	04H	120		
	ASCI Status Register Ch 1	STAT1	XX000101	05H	123		
	ASCI Transmit Data Register Ch 0	TDR0	XX000110	06H	118		
	ASCI Transmit Data Register Ch 1	TDR1	XX000111	07H	118		
	ASCI Receive Data Register Ch 0	RDR0	XX001000	08H	119		
	ASCI Receive Data Register Ch 1	RDR1	XX001001	09H	119		
CSI/O	CSI/O Control Register	CNTR	XX001010	0AH	147		
	CSI/O Transmit/Receive Data Register	TRD	XX1011	0BH	149		

Table 6. I/O Address Map for Z80180-Class Processors Only

47

			Address					
	Register	Mnemonic	Binary	Hex	Page			
INT	IL Register (Interrupt Vector Low Register)	IL	XX110011	33H	67			
	INT/TRAP Control Register	ITC	XX110100	34H	68			
	Reserved		XX110101	Address ury Hex Page 0011 33H 67 0100 34H 68 0101 35H 0100 0110 36H 88 0111 37H 1000 1000 38H 61 1001 39H 62 1010 3AH 60 1011 3BH 1000 1011 3BH 1000 1101 3DH 1101 1110 3EH 15 1111 3FH 42				
Refresh	Refresh Control Register	RCR	XX110110	36H	88			
	Reserved		XX110111	37H				
MMU	MMU Common Base Register	CBR	XX111000	38H	61			
	MMU Bank Base Register	BBR	XX111001	39H	62			
INT IL I Reg INT Reg Refresh Ref MMU MM I/O Res I/O Res I/O	MMU Common/Bank Area Register	CBAR	XX111010	3AH	60			
I/O	Reserved		XX111011	3BH				
			\uparrow	\uparrow				
			Address ic Binary Hey XX110011 33F XX110100 34F XX110100 34F XX110101 35F XX110101 35F XX110110 36F XX110110 36F XX110111 37F XX111000 38F XX111001 39F XX111010 3AF XX111011 3BF XX111011 3DF XX111101 3DF XX111110 3EF XX111111 3FF	3DH				
	Operation Mode Control Register	OMCR	XX111110	3EH	15			
	I/O Control Register	ICR	XX111111	3FH	42			

Table 6. I/O Address Map for Z80180-Class Processors Only (Continued)

53

7 6 5 4 3 2 0 Bit 1 Bit/Field Clock LNAD/ STAND BREXT LNPHI **STAND** LNIO LNCPU Divide CTL BY/ BY/ DATA IDLE IDLE Enable Enable R/W R/W R/W R/W R/W R/W R/WR/WR/W Reset 0 0 0 0 0 0 0 0 Note: R = Read W = Write X = Indeterminate ? = Not Applicable

CPU Control Register (CCR: 1FH) (Z8S180/L180-Class Processors Only)

Bit Position	Bit/Field	R/W	Value	Description
7	Clock Divide	R/W	0 1	XTAL/2 XTAL/1
6	STANDBY /IDLE Mode	R/W	00 01 10 11	In conjunction with Bit 3 No STANDBY IDLE after SLEEP STANDBY after SLEEP STANDBY after SLEEP 64 Cycle Exit (Quick Recovery)
5	BREXT	R/W	0 1	Ignore BUSREQ in STANDBY/IDLE STANDBY/IDLE exit on BUSREQ
4	LNPHI	R/W	0 1	Standard Drive 33% Drive on EXTPHI Clock
3	STANDBY /IDLE Mode	R/W	00 01 10 11	In conjunction with Bit 6 No STANDBY IDLE after SLEEP STANDBY after SLEEP STANDBY after SLEEP 64 Cycle Exit (Quick Recovery)

67

vector table can be relocated on 32 byte boundaries. IL is initialized to 00H during RESET.

Bit	7	6	5	4	3	2	1	0
Bit/Field	IL7	IL6	IL5			?		
R/W	R/W	R/W	R/W			?		
Reset	00H	00H	00H			?		
Note: $R = Real$	M = Wr	ite X = Ind	eterminate	? = Not Ap	plicable			

Bit													
				· ·····									
Note: $R = Real$	Note: $R = Read$ W = Write X = Indeterminate ? = Not Applicable												
Keset	00H	00H	00H		?								

Interrupt Vector Low Register (IL: 33H)

1 USITION	Dittilititu	IX / V	value	Description
7–5	IL7-5	R/W		The IL register is an internal I/O register which is programmed with the OUT0 instruction and can be read using the IN0 instruction.
4-0	?	N/A		Interrupt source dependent code

INT/TRAP Control Register (ITC)

ITC is used to handle TRAP interrupts and to enable or disable the external maskable interrupt inputs INT0, INT1 and INT2.

92

Channel 0

- SAR0–Source Address Register
- DAR0–Destination Address Register
- BCR0–Byte Count Register

Channel 1

- MAR1–Memory Address Register
- IAR1–I/O Address Register
- BCR1–Byte Count Register

The two channels share the following three additional registers in common:

- DSTAT–DMA Status Register
- DMODE–DMA Mode Register
- DCNTL–DMA Control Register

DMAC Block Diagram

Figure 45 depicts the Z8X180 DMAC Block Diagram.

The key functions for ASCI on Z80180, Z8S180 and Z8L180 class processors are listed below. Each channel is independently programmable.

- Full-duplex communication
- 7- or 8-bit data length
- Program controlled 9th data bit for multiprocessor communication
- 1 or 2 stop bits
- Odd, even, no parity
- Parity, overrun, framing error detection
- Programmable baud rate generator, /16 and /64 modes
- Modem control signals Channel 0 contains DCD0, CTS0 and RTS0; Channel 1 contains CTS1
- Programmable interrupt condition enable and disable
- Operation with on-chip DMAC

ASCI Block Diagram for the Z8S180/Z8L180-Class Processors

Figure 52 illustrates the ASCI block diagram.

Addressing Modes

The Z80180 instruction set includes eight addressing modes.

- Implied Register
- Register Direct
- Register Indirect
- Indexed
- Extended
- Immediate
- Relative
- IO

Implied Register (IMP)

Certain Op Codes automatically imply register usage, such as the arithmetic operations that inherently reference the Accumulator, Index Registers, Stack Pointer, and General Purpose Registers.

Register Direct (REG)

Many Op Codes contain bit fields specifying registers used for operation. The exact bit field definitions vary depending on instruction depicted in Figure 75.

186

Z80180 DC CHARACTERISTICS

 V_{CC} = 5V ± 10%, V_{SS} = OV, Ta = 0° to +70°C, unless otherwise noted.)

 Table 28.
 Z80180 DC Characteristics

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
VIH1	Input High Voltage RESET, EXTAL NMI		V _{CC} –0.6	_	V _{CC} +0.3	V
VIH2	Input High Voltage except RESET, EXTAL NMI		2.0		V _{CC} +0.3	V
VIL1	Input Low Voltage RESET, EXTAL NMI		-0.3		0.6	V
VIL2	Input Low Voltage except RESET, EXTAL NMI		-0.3		0.8 Standard 7 TL _{VIL}	V
VOH	Output High Voltage all outputs	IOH = -200 μA IOH = -20 μA	2.4 V _{CC} -1.2	_ _	_	V V
VOL	Output Low Voltage all outputs	IOL = 2.2 mA	_	_	0.45	V
I _{IL}	Input Leakage Current all inputs except XTAL, EXTAL	$V_{IN} = 0.5 \sim V_{CC} - 0.5$	_	_	1.0	μΑ
ITL	Three-State Leakage Current		_	_	1.0	μA
ICC	Power Dissipation* (Normal Operation)	f = 6 MHz f = 8 MHz f = 33 MHz	_ _ _	15 20 25	40 50 60	mA mA mA

187

 Table 28.
 Z80180 DC Characteristics (Continued)

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
	Power Dissipation* (SYSTEM STOP mode)	f = 6 MHz f = 8 MHz f = 33 MHz	_ _ _	3.8 5 6.3	12.5 15.0 17.5	mA mA mA
СР	Pin Capacitance	$VIN = 0V, f = 1MHz$ $TA = 25^{\circ}C$	_	_	12	pF
Notes: * V	$VIN min = V_{CC} - 1.0V. V_{CC} = 5.0V$	VIL max = $0.8V$ (All output)	ut terminals	are a no	load.)	

Z8S180 DC CHARACTERISTICS

 $V_{CC} = 5V \pm 10\%$, $V_{SS} = OV$, $Ta = 0^{\circ}$ to $+70^{\circ}C$, unless otherwise noted.

Table 29. Z8S180 DC Characteristics

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
VIH1	Input High Voltage RESET, EXTAL NMI		V _{CC} –0.6	_	V _{CC} +0.3	V
VIH2	Input High Voltage except RESET, EXTAL NMI		2.0		V _{CC} +0.3	V
VIH3	Input High Voltage CKS, CKA0, CKA1		2.4		V _{DD} + 0.3	V
VIL1	Input Low Voltage RESET, EXTAL NMI		-0.3		0.6	V
VIL2	Input Low Voltage except RESET, EXTAL NMI		-0.3		0.8	V

Figure 87. E Clock Timing (Minimum Timing Example of PWEL and PWEH)

Figure 88. Timer Output Timing

Figure 91. External Clock Rise Time and Fall Time

Figure 92. Input Rise Time and Fall Time (Except EXTAL, RESET)

210

MISCELLANEOUS

Table 37 lists the operations mnemonics.

Table 37. Operations Mnemonics

- ()_M Data in the memory address
- ()_I Data in the I/O address
- m or n 8-bit data
- mn 16-bit data
- r 8-bit register
- R 16-bit register
- b.()_M A content of bit b in the memory address
- b.gr A content of bit b in the register gr
- d or j 8-bit signed displacement
- S Source
- D Destination
- AND operation
- + OR operation
- ⊕ EXCLUSIVE OR operation
- ** Added new instructions to Z80

237

Instruction Summary

		Machine	
MNEMONICS	Bytes	Cycles	States
ADC A,m	2	2	6
ADC A,g	1	2	4
ADC A, (HL)	1	2	6
ADC A, (IX+d)	3	6	14
ADC A, (IY+d)	3	6	14
ADD A,m	2	2	6
ADD A,g	1	2	4
ADD A, (HL)	1	2	6
ADD A, (IX+d)	3	6	14
ADD A, (IY+d)	3	6	14
ADC HL,ww	2	6	10
ADD HL,ww	1	5	7
ADD IX,xx	2	6	10
ADD IY,yy	2	6	10
AND m	2	2	6
AND g	1	2	4
AND (HL)	1	2	6
AND (IX+d)	3	6	14
AND (IY+d)	3	6	14
BIT b, HU	2	3	9
BIT b, (IX+d)	4	5	15
BIT b, (IY+d)	4	5	15
BIT b,g	2	2	6
CALL f,mn	3	2	6
			(If condition is false)

** : Added new instructions to Z80

247

Op Code Map

Table 48. 1st Op Code Map Instruction Format: XX

	ww (L0 = ALL)		1								L0 = 0~	7								
				BC	DE	HL	SP									BC	DE	HL	AF	ZZ
				g (LO = 0	⊷7)]				NZ	NC	P0	Р	f
				В	D	Н	(HL)	В	D	Н	(HL)					00H	10H	20H	30H	v
			н	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	
		LO	$\overline{\ }$	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F	
	В	0000	0	N0P	DJNZj	JR NZ,j	JR NC,j				note 1)					RET f				0
	С	0001	1	LD ww, n	nn			LD g, s				ADD	SUB s	AND s	OR s	POP zz				1
	D	0010	2	LD (ww),	A	LD (mn) ,HL	LD (mn), A					A,s	A,s			JP f, mn	L			2
	Е	0011	3	INC ww		1										JP mn	OUT (m),A	EX(SP), HL	DI	3
Ī	Н	0100	4	INC g			note1									CALL f, mn				4
Ī	L	0101	5	DEC g			note1	1								PUSH z	Z			5
	(HL)	0110	6	LD g,m			note1	note2	note2		HALT	note2	note2	note2	note2	ADD A,m	SUB m	AND m	OR m	6
E	A	0111	7	RLCA	RLA	DAA	SCF									RST v				7
$(\mathbf{T}\mathbf{W} = \mathbf{H}\mathbf{U}\mathbf{S})$	1000	8	EXAF,A F'	JR j	JR Z,j	JR C,j								RET f		_		8		
	1001	9	ADD HL,	, ww			IDg s			ADC	DC SBC	C XOR s	CP s	RET	EXX	JP(HL)	LD SP, HL	9		
	D	1010	A	LD A,(wv	v)	LD HL, (mn)	LD A, (mn)	0,-				A,s	A,s	A,s		JP f, mn				A
	Е	1011	в	DEC ww		1										Table2	IN A(m)	EXDE,H L	EI	В
Ī	Н	1100	С	INC g				1								CALL f	, mn			С
Ī	L	1101	D	DEC g												CALL mn	note3	Table3	note3	D
	(HL)	1110	Е	LD g,m				note2				note2	note2	note2	note2	ADC A,m	SBC A,m	XOR m	CP m	Е
	A	1111	F	RRCA	RRA	CPL	CCF									RST v				F
				0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F	
				С	Е	L	А	С	Е	L	А					Z	С	PE	М	f
				g(L0 = 8~	-F)											08H	18H	28H	3BH	v
																LO = 8	-F			

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	M1	HALT	ST
LD (mn),IX LD (mn),IY	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	1st operand Address	n	0	1	0	1	1	1	1
	MC4	T1T2T3	2nd operand Address	m	0	1	0	1	1	1	1
	MC5	Ti	*	Z	1	1	1	1	1	1	1
	MC6	T1T2T3	mn	IXL IYL	1	0	0	1	1	1	1
	MC7	T1T2T3	mn+1	IXH IYH	1	0	0	1	1	1	1
LD SP, HL	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	Ti	*	Z	1	1	1	1	1	1	1
LD SP,IX LD SP,IY	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	Ti	*	Z	1	1	1	1	1	1	1
LDI LDD	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC4	T1T2T3	DE	DATA	1	0	0	1	1	1	1

 Table 51.
 Bus and Control Signal Condition in Each Machine Cycle (Continued)

285

- DREQ0, DREQ1 = 1 memory to/from (memory mapped) I/O DMA transfer
- BCR0, BCR1 = 0000н (all DMA transfers)
- $\overline{\text{NMI}} = 0$ (all DMA transfers)

OTHER OPERATION MODE TRANSITIONS

The following operation mode transitions are also possible.

290

	Pin Status in Each Operation N						
Symbol	Pin Function	RESET	SLEEP	IOSTOP	SYSTEM STOP		
	CKA0 (External Clock Mode)	Z	IN (A)	IN (N)	IN (N)		
	DREQ0	Ζ	IN (N)	IN (A)	IN (N)		
TXA1	—	1	OUT	Н	Н		
RXA1	—	IN (N)	IN (A)	IN (N)	IN (N)		
CKA1/TEND0	CKA1 (Internal Clock Mode)	Z	OUT	Ζ	Ζ		
	CKA1 (External Clock Mode)	Z	IN (A)	IN (N)	IN (N)		
	TEND0	Ζ	1	OUT	1		
TXS	—	1	OUT	Н	Н		
RXS/CTS ₁	RXS	IN (N)	IN (A)	IN (N)	IN (N)		
	CTS1	IN (N)	IN (A)	IN (N)	IN (N)		
CKS	CKS (Internal Clock Mode)	Z	OUT	1	1		
	CKS (External Clock Mode)	Z	IN (A)	Ζ	Ζ		
DREQ ₁	—	IN (N)	IN (N)	IN (A)	IN (N)		
TEND ₁	—	1	1	OUT	1		
HALT	—	1	0	OUT	0		
RFSH	—	1	1	OUT	1		
IORQ	—	1	1	OUT	1		

Table 56. Pin Status During RESET and LOW POWER OPERATION Modes (Continued)

UM005003-0703

		Pin Status in Each Operation Mode					
Symbol	Pin Function	RESET	SLEEP	IOSTOP	SYSTEM STOP		
MREQ	—	1	1	OUT	1		
Е		0	E Clock Output	~	←		
<u>M1</u>	—	1	1	OUT	1		
WR	—	1	1	OUT	1		
RD	—	1	1	OUT	1		
Phi		Phi Clock Output	←	<i>←</i>	←		

 Table 56.
 Pin Status During RESET and LOW POWER OPERATION Modes (Continued)

- 1: HIGH 0: LOW A: Programmable Z: High Impedance
- IN (A): Input (Active) IN (N): Input (Not active) OUT: Output
- H: Holds the previous state
- \leftarrow : same as the left