

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	6MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018006vec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	TEND0 Output Timing Diagram108
Figure 50.	DMA Interrupt Request Generation114
Figure 51.	NMI and DMA Operation Timing Diagram115
Figure 52.	ASCI Block Diagram117
Figure 53.	DCD0 Timing Diagram139
Figure 54.	RTS0 Timing Diagram140
Figure 55.	ASCI Interrupt Request Circuit Diagram140
Figure 56.	ASCI Clock
Figure 57.	CSI/O Block Diagram147
Figure 58.	CSI/O Interrupt Request Generation151
Figure 59.	Transmit Timing Diagram–Internal Clock153
Figure 60.	Transmit Timing–External Clock154
Figure 61.	CSI/O Receive Timing–Internal Clock155
Figure 62.	CSI/O Receive Timing–External Clock156
Figure 63.	PRT Block Diagram157
Figure 64.	Timer Initialization, Count Down, and Reload
	Timing Diagram163
Figure 65.	Timer Output Timing Diagram164
Figure 66.	PRT Interrupt Request Generation164
Figure 67.	E Clock Timing Diagram (During Read/Write Cycle and Interrupt Acknowledge Cycle 167
Figure 68	E Clock Timing in BUS RELEASE Mode 167
Figure 69	E Clock Timing in SLEEP Mode and
i iguie oy.	SYSTEM STOP Mode
Figure 70.	External Clock Interface
Figure 71.	Clock Generator Circuit
Figure 72.	Circuit Board Design Rules
Figure 73.	Example of Board Design

xv

V _{SS} 1	\bigcirc	64 Phi	
XTAL 2	\bigcirc	63 RD	
EXTAL 3		62 WR	
WAIT 4		61 MI	
BUSACK 5		60 E	
BUSREQ 6		59 MR	EQ
RESET 7		58 IOF	<u>RQ</u>
NMI 8		57 RFS	SH
INT0 9		56 HAI	T
INT1 10		55 TEN	ND1
INT2 11		54 DR	EQ1
ST 12		53 CK	S
A0 13		52 RX	S/CTS1
A1 14		51 TX8	3
A2 15		50 CK	A1/TEND0
A3 16	78¥180	49 RX/	41
A4 17	ZUXIUU	48 TX/	A1
A5 18		47 CK/	A0/DREQ0
A6 19		46 RX/	40
A7 20		45 TX/	40
A8 21		44 DC	00
A9 22		43 CTS	50
A10 23		42 RTS	30
A11 24		41 D7	
A12 25		40 D6	
A13 26		39 D5	
A14 27		38 D4	
A15 28		37 D3	
A16 29		36 D2	
A17 30		35 D1	
A18/TOUT 31		34 D0	
V _{CC} 32		33 V _{SS}	;

Figure 1. 64-Pin DIP

OPERATION MODES

The Z8X180 can be configured to operate like the Hitachi HD64180. This functionality is accomplished by allowing user control over the $\overline{M1}$, \overline{IORQ} , \overline{WR} , and \overline{RD} signals. The Operation Mode Control Register (OMCR), illustrated in Figure 5, determines the $\overline{M1}$ options, the timing of the \overline{IORQ} , \overline{RD} , and \overline{WR} signals, and the RETI operation.

Operation Mode Control Register

Bit	7	6	5	4		0					
Bit/Field	M1E	MITE	IOC		Reserved						
R/W	R/W	W	R/W		_						
Reset	1	1	1		_						
Note: R = Read W = Write X = Indeterminate? = Not Applicable											

Figure 5. Operation Mode Control Register

M1E (M1_Enable): This bit controls the $\overline{M1}$ output and is set to a 1 during RESET.

When M1E is 1, the $\overline{M1}$ output is asserted Low during the Op Code fetch cycle, the INTO acknowledge cycle, and the first machine cycle of the NMI acknowledge. This action also causes the M1 signal to be Active during both fetches of the RETI instruction sequence, and may cause corruption of the external interrupt daisy chain. Therefore, this bit must be 0 for the Z8X180. When M1E is 0 the M1 output is normally inactive and asserted Low only during the refetch of the RETI instruction sequence and the INTO acknowledge cycle (Figure 6).

Figure 21. SLEEP Timing Diagram

IOSTOP Mode

IOSTOP mode is entered by setting the IOSTOP bit of the I/O Control Register (ICR) to 1. In this case, on-chip I/O (ASCI, CSI/O, PRT) stops operating. However, the CPU continues to operate. Recovery from IOSTOP mode is by resetting the IOSTOP bit in ICR to 0.

SYSTEM STOP Mode

SYSTEM STOP mode is the combination of SLEEP and IOSTOP modes. SYSTEM STOP mode is entered by setting the IOSTOP bit in ICR to 1 followed by execution of the SLP instruction. In this mode, on-chip I/O and CPU stop operating, reducing power consumption. Recovery from SYSTEM STOP mode is the same as recovery from SLEEP mode, noting that internal I/O sources, (disabled by IOSTOP) cannot generate a recovery interrupt.

53

7 6 5 4 3 2 0 Bit 1 Bit/Field Clock LNAD/ STAND BREXT LNPHI **STAND** LNIO LNCPU Divide CTL BY/ BY/ DATA IDLE IDLE Enable Enable R/W R/W R/W R/W R/W R/W R/WR/WR/W Reset 0 0 0 0 0 0 0 0 Note: R = Read W = Write X = Indeterminate ? = Not Applicable

CPU Control Register (CCR: 1FH) (Z8S180/L180-Class Processors Only)

Bit Position	Bit/Field	R/W	Value	Description
7	Clock Divide	R/W	0 1	XTAL/2 XTAL/1
6	STANDBY /IDLE Mode	R/W	00 01 10 11	In conjunction with Bit 3 No STANDBY IDLE after SLEEP STANDBY after SLEEP STANDBY after SLEEP 64 Cycle Exit (Quick Recovery)
5	BREXT	R/W	0 1	Ignore BUSREQ in STANDBY/IDLE STANDBY/IDLE exit on BUSREQ
4	LNPHI	R/W	0 1	Standard Drive 33% Drive on EXTPHI Clock
3	STANDBY /IDLE Mode	R/W	00 01 10 11	In conjunction with Bit 6 No STANDBY IDLE after SLEEP STANDBY after SLEEP STANDBY after SLEEP 64 Cycle Exit (Quick Recovery)

75

Figure 35. NMI Timing

INT0 - Maskable Interrupt Level 0

The next highest priority external interrupt after $\overline{\text{NMI}}$ is $\overline{\text{INT0}}$. $\overline{\text{INT0}}$ is sampled at the falling edge of the clock state prior to T3 or T1 in the last machine cycle. If $\overline{\text{INT0}}$ is asserted LOW at the falling edge of the clock state prior to T3 or T1 in the last machine cycle, $\overline{\text{INT0}}$ is accepted. The interrupt is masked if either the IEF1 flag or the ITEO (Interrupt Enable 0) bit in ITC are reset to 0. After RESET the state is as follows:

- 1. IEF1 is 0, so $\overline{INT0}$ is masked
- 2. ITE0 is 1, so INTO is enabled by execution of the El (Enable Interrupts) instruction

The $\overline{INT0}$ interrupt is unique in that 3 programmable interrupt response modes are available - Mode 0, Mode 1 and Mode 2. The specific mode is selected with the IM 0, IM 1 and IM 2 (Set Interrupt Mode) instructions. During \overline{RESET} , the Z8X180 is initialized to use Mode 0 for $\overline{INT0}$. The 3 interrupt response modes for $\overline{INT0}$ are:

- Mode 0–Instruction fetch from data bus
- Mode 1–Restart at logical address 0038H
- Mode 2–Low-byte vector table address fetch from data bus

INT0 Mode 0

During the interrupt acknowledge cycle, an instruction is fetched from the data bus (DO–D7) at the rising edge of T3. Often, this instruction is one of the eight single byte RST (RESTART) instructions which stack the PC and restart execution at a fixed logical address. However, multibyte instructions can be processed if the interrupt acknowledging device can provide a multibyte response. Unlike all other interrupts, the PC is not automatically stacked:

77

disabling all maskable interrupts. The interrupt service routine normally terminates with the EI (Enable Interrupts) instruction followed by the RETI (Return from Interrupt) instruction, to reenable the interrupts. Figure 37 depicts the use of INTO (Mode 1) and RETI for the Mode 1 interrupt sequence.

Figure 38 illustrates INTO Mode 1 Timing.

78

Figure 38. INTO Mode 1 Timing

INTO Mode 2

This method determines the restart address by reading the contents of a table residing in memory. The vector table consists of up to 128 two-byte restart addresses stored in low byte, high byte order.

DREQ0 for ASCI transmission and reception respectively. To initiate memory to/from ASCI DMA transfer, perform the following operations:

- 1. Load the source and destination addresses into SAR0 and DAR0 Specify the I/O (ASCI) address as follows:
 - a. Bits A0–A7 must contain the address of the ASCI channel transmitter or receiver (I/O addresses 6H-9H).
 - b. Bits A8–A15 must equal 0.
 - c. Bits SAR17–SAR16 must be set according to Table 16 to enable use of the appropriate ASCI status bit as an internal DMA request.

Table 16.DMA Transfer Request

SAR18	SAR17	SAR16	DMA Transfer Request							
Х	0	0	DREQ0							
Х	0	1	RDRF (ASCI channel 0)							
Х	1	0	RDRF (ASCI channel 1)							
Х	1	1	Reserved							
Note: $X = I$	Note: X = Don't care									

DAR18	DAR17	DAR16	DMA Transfer Request							
Х	0	0	DREQ0							
Х	0	1	TDRE (ASCI channel O)							
Х	1	0	TDRE (ASCI channel 1)							
Х	1	1	Reserved							
Note: X = I	Note: X = Don't care									

172

Miscellaneous

Free Running Counter (I/O Address = 18H)

If data is written into the free running counter, the interval of DRAM refresh cycle and baud rates for the ASCI and CSI/O are not guaranteed.

In IOSTOP mode, the free running counter continues counting down. It is initialized to FFH during RESET.

Free Running counter (FRC: 18H)

Bit	7	6	5	4	3	2	1	0				
Bit/Field	Counting Data											
R/W	R											
Reset	?											
Note: $R = Read$ W = Write X = Indeterminate $2 = Not Applicable$												

Table 31. Z8S180 AC Characteristics (Continued) $V_{DD} = 5V \pm 10\%$ or $V_{DD} = 3.3V \pm 10\%$; 33-MHz Characteristics Apply Only to 5V Operation

			Z8S18 M	80—20 Hz	Z8S1 M	80—33 IHz	
No.	Symbol	Item	Min	Max	Min	Max	Unit
31	t _{INTS}	INT Set-up Time to PHI Fall	20	_	15		ns
32	t _{INTH}	INT Hold Time from PHI Fall	10		10		ns
33	t _{NMIW}	NMI Pulse Width	35		25		ns
34	t _{BRS}	BUSREQ Set-up Time to PHI Fall	10		10		ns
35	t _{BRH}	BUSREQ Hold Time from PHI Fall	10	_	10		ns
36	t _{BAD1}	PHI Rise to BUSACK Fall Delay		25		15	ns
37	t _{BAD2}	PHI Fall to BUSACK Rise Delay		25		15	ns
38	t _{BZD}	PHI Rise to Bus Floating Delay Time		40		30	ns
39	t _{MEWH}	MREQ Pulse Width (High)	35		25		ns
40	t _{MEWL}	MREQ Pulse Width (Low)	35		25		ns
41	t _{RFD1}	PHI Rise to RFSH Fall Delay		20		15	ns
42	t _{RFD2}	PHI Rise to RFSH Rise Delay		20		15	ns
43	t _{HAD1}	PHI Rise to HALT Fall Delay		15		15	ns
44	t _{HAD2}	PHI Rise to HALT Rise Delay		15		15	ns
45	t _{DRQS}	DREQ1 Set-up Time to PHI Rise	20		15		ns
46	t _{DRQH}	DREQ1 Hold Time from PHI Rise	20		15		ns
47	t _{TED1}	PHI Fall to TENDi Fall Delay		25		15	ns
48	t _{TED2}	PHI Fall to TENDi Rise Delay		25		15	ns
49	t _{ED1}	PHI Rise to E Rise Delay		30		15	ns
50	t _{ED2}	PHI Fall or Rise to E Fall Delay		30		15	ns
51	P _{WEH}	E Pulse Width (High)	25		20		ns
52	P _{WEL}	E Pulse Width (Low)	50		40		ns
53	t _{Er}	Enable Rise Time		10	_	10	ns

Figure 83. CPU Timing (IOC = 0) (I/O Read Cycle, I/O Write Cycle)

														Flags					
					Add	iressi	ng						7	6	4	2	1	0	
Operation Name	Mnemonics	Op Code	Immed	Ext	Ind	Reg	Regl	Imp	Rel	Bytes	States	Operation	s	z	н	P/V	N	с	
INPUT	INIR	11 101 101 10 110 010					D		S	2	14 (Br ≠ 0) 12 (Br = 0)	(BC) _I →(HL) _M Q HL _R + 1→HL _R Br-f→Br	х	S	х	х	↑	x	
												Repeat Q until							
												Br = 0							
												Cr→A0~A7							
												Br→A8→A16							
OUTPUT	OUT (m)A	11 010 011						s	D	2	10	Ar→(Am)1	•	•	•	•	•		
		<m></m>						_			-	m→A0~A7							
												Ar→A8~A16							
	OUT (C),g	11 101 101				s			D	2	10	gr→(BC)1	•	•	•	•	•		
		01 g 001										Cr→A0~A7							
												Br→A8~A16							
	OUT0(m),g**	11 101 101				s			D	3	13	gr→(00m)1	•	•	•	•	•	•	
		00 g 001										m→A0~A7							
		<m></m>										00→A8~A16		(5)			(6)		
	OTDM**	11 101 101					s		D	2	14	(HL) _M →(00C)1	↑	↑	↑	Р	↑	\uparrow	
		10 001 011										HL _R -1→HL _R							
												Cr-1→Cr							
												Br-1→Br							
												Cr→A0~A7							
												00→A8~A16					(6)		
	OTDMR**	11 101 101 10 011 011					S		D	2	16 (Br ≠ 0) 14 (Br = 0)	$\begin{array}{c} (\text{HL})_{M} \rightarrow (00\text{C})1\\ \text{HL}_{R}\text{-}1\text{-}\text{HL}_{R}\\ \text{Q} \qquad \text{Cr} \sim 1 \rightarrow \text{Cr}\\ \text{Br}\text{-}1 \rightarrow \text{Br} \end{array}$	R	S	R	S	↑	R	
												Repeat Q until							
												Br = 0							
												Cr→A0~A7							
												00->48~416					(6)		

Table 46. I/O Instructions (Continued)

235

Special Control Instructions

											F	lags						
				Addressing							7	6	4	2	1	0		
Operation Name	Mnemonics	Op Code	Immed	Ext	Ind	Reg	Regi	Imp	Rel	Bytes	States	Operation	s	z	н	P/V	N	с
Special Function	DAA	00 100 111						S/D		1	4	Decimal Adjust Accumulator	1	1	1	Ρ	•	1
Carry Control	CCF	00 111 111								1	3	C→C	•	•	R	•	R	↑
	SCF	00 110 111								1	3	1→C	•	•	R	•	R	s
CPU Control	DI	11 110 011								1	3	0→IEF1,0→IEF2 (7)	•	•	•	•	•	•
	EI	11 111 011								1	3	1→IEF1,1→IEF2 (7)	•	•	•	•	•	•
	HALT	01 110 110								1	3	CPU halted	•	•	•	•	•	•
	IM0	11 101 101								2	6	Interrupt	•	•	•	•	•	•
		01 000 110										Mode 0						
	IM1	11 101 101								2	6	Interrupt	•	•	•	•	•	•
		01 010 110										Mode 1						
	IM2	11 101 101								2	6	Interrupt	•	•	•	•	•	•
		01 011 110										Mode 2						
	NOP	00 000 000								1	3	No operation	•	•	•	•	•	•
	SLP**	11 101 101								2	8	Sleep	•	•	•	•	•	•
		01 110 110																
7) Interrupts	are not samp	led at the end	of DI or	EI.														

Table 47. Special Control Instructions

MNEMONICS	Bytes	Machine Cycles	States
	2	3	7 (if Br = 0)
EI	1	1	3
EX AF,AF'	1	2	4
EX DE,HL	1	1	3
EX (SP),HL	1	6	16
EX (SP)I,IX	2	7	19
EX (SP),IY	2	7	19
EXX	1	1	3
HALT	1	1	3
IM 0	2	2	6
IM 1	2	2	6
IM 2	2	2	6
INC g	1	2	4
INC (HL)	1	4	10
INC (IX+d)	3	8	18
INC (IY+d)	3	8	18
INC ww	1	2	4
INC IX	2	3	7
INC IY	2	3	7
IN A,(m)	2	3	9
IN g,(C)	2	3	9
INI	2	4	12
INIR	2	6	14 (if Br \neq 0)
	2	4	12 (If Br = 0)
IND	2	4	12
INDR	2	6	14 (If Br \neq 0)
INDR	2	4	12 (If Br = 0)
IN0 g,(m)**	3	4	12
JP f,mn	3	2	6
			(If f is false)

Note 1: (HL) replaces g.

Note 2: (HL) replaces s.

Note 3: If DDH is supplemented as first Op Code for the instructions which have HL or (HL) as an operand in Table 48, the instructions are executed replacing HL with IX and (HL) with (IX+d).

ex. 22H : LD (mn), HL DDH 22H : LD (mn), IX

If FDH is supplemented as 1st Op Code for the instructions which have HL or (HL) as an operand in Table 48, the instructions are executed replacing HL with IY and (HL) with (IY+d).

```
ex. 34H : INC (HL)
FDH 34H : INC (IY+d)
```

However, JP (HL) and EX DE, HL are exceptions and note the following.

- If DDH is supplemented as 1st Op Code for JP (HL), (IX) replaces (HL) as operand and JP (IX) is executed
- If FDH is supplemented as 1st Op Code for JP (HL), (IY) replaces (HL) as operand and JP (IY) is executed
- Even if DDH or FDH is supplemented as 1st Op Code for EX DE, HL, HL is not replaced and the instruction is regarded as illegal instruction

255

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
CPI CPD	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC4 ~MC6	TiTiTi	*	Z	1	1	1	1	1	1	1
CPIR CPDR (If $BC_R \neq 0$ and $Ar = (HL)_M$)	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC4~M C8	TiTiTi TiTi	*	Z	1	1	1	1	1	1	1
CPIR CPDR (If BC _R =0 or Ar=(HL) _M)	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC4~M C6	TiTiTi	*	Z	1	1	1	1	1	1	1
CPL	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
DAA	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	Ti	*	Z	1	1	1	1	1	1	1
DI*1	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
* 1 Interrupt request is not sampled.											

Table 51. Bus and Control Signal Condition in Each Machine Cycle (Continued)

UM005003-0703

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	M1	HALT	ST
LD (IX+d),m LD (IY+d),m	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	1st operand Address	d	0	1	0	1	1	1	1
	MC4	T1T2T3	2nd operand Address	m	0	1	0	1	1	1	1
	MC5	T1T2T3	IX+ d IY+d	DATA	1	0	0	1	1	1	1
LD A, (BC) LD A, (DE)	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	T1T2T3	BC DE	DATA	0	1	0	1	1	1	1
LD A,(mn)	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	T1T2T3	1st operand Address	n	0	1	0	1	1	1	1
	MC3	T1T2T3	2nd operand Address	m	0	1	0	1	1	1	1
	MC4	T1T2T3	mn	DATA	0	1	0	1	1	1	1
LD (BC),A LD (DE),A	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
	MC2	Ti	*	Z	1	1	1	1	1	1	1
	MC3	T1T2T3	BC DE	А	1	0	0	1	1	1	1

 Table 51.
 Bus and Control Signal Condition in Each Machine Cycle (Continued)