

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	6MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018006vsc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MANUAL OBJECTIVES

This user manual describes the features of the Z8018x MPUs. This manual provides basic programming information for the Z80180/Z8S180/Z8L180. These cores and base peripheral sets are used in a large family of ZiLOG products. Below is a list of ZiLOG products that use this class of processor, along with the associated processor family. This document is also the core user manual for the following products:

Part	Family
Z80180	Z80180
Z8S180	Z8S180
Z8L180	Z8L180
Z80181	Z80180
Z80182	Z80180, Z8S180*
Z80S183	Z8S180
Z80185/195	Z8S180
Z80189	Z8S180
* Part number-dependa	nt

Intended Audience

This manual is written for those who program the Z8018x.

Manual Organization

The Z8018x User Manual is divided into five sections, seven appendices, and an index.

30

inserted depending on the programmed value in IWI1 and IWI0. Refer to Table 4.

Table 4.Wait State Insertion

		The Number of Wait States									
IWI1	IWIO	For external I/O registers accesses	For internal I/O registers accesses	For INTO interrupt acknowledge cycles when M1 is Low	For INT1, INT2 and internal interrupts acknowledge cycles (Note 2)	For NMI interrupt acknowledge cycles when M1 is Low (Note 2)					
0	0	1	0	2	2	0					
0	1	2	(Note 1)	4							
1	0	3		5							
1	1	4		6							

Note:

- For Z8X180 internal I/O register access (I/O addresses 0000H-003FH), IWI1 and IWI0 do not determine wait state (TW) timing. For ASCI, CSI/O and PRT Data Register accesses, 0 to 4 Wait States (TW) are generated. The number of Wait States inserted during access to these registers is a function of internal synchronization requirements and CPU state. All other on-chip I/O register accesses (that is, MMU, DMAC, ASCI Control Registers, for instance.) have no Wait States inserted and thus require only three clock cycles.
- 2. For interrupt acknowledge cycles in which $\overline{M1}$ is High, such as interrupt vector table read and PC stacking cycle, memory access timing applies.

WAIT Input and RESET

During RESET, MWI1, MWI0 IWI1 and IWI0, are all 1, selecting the maximum number of Wait States (TW) (three for memory accesses, four for external I/O accesses).

42

To avoid address conflicts with external I/O, the Z8X180 internal I/O addresses can be relocated on 64-byte boundaries within the bottom 256 bytes of the 64KB I/O address space.

I/O Control Register (ICR)

ICR allows relocating of the internal I/O addresses. ICR also controls enabling/disabling of the IOSTOP mode.

I/O Control Register (ICR: 3FH)

Bit	7	6	5	4	3	2	1	0
Bit/Field	IOA7	IOA6	IOSTP					—
R/W	R/W	R/W	R/W					
Reset	0	0	0					
R = Read W	V = Write	X = Indete	erminate f	? = Not Ap	plicable			

Bit Position	Bit/Field	R/W	Value	Description
7–6	IOA7:6	R/W		IOA7 and IOA6 relocate internal I/O as depicted in Figure . The high-order 8 bits of 16-bit internal I/O addresses are always 0. IOA7 and IOA6 are cleared to 0 during RESET.
5	IOSTP	R/W		IOSTOP mode is enabled when IOSTP is set to 1. Normal. I/O operation resumes when IOSTP is reset to 0.

56

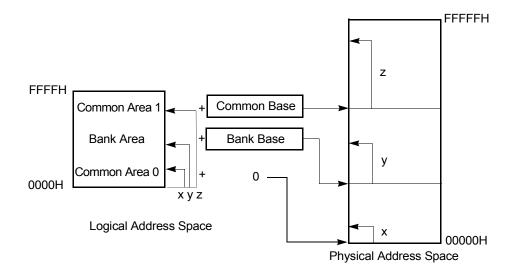


Figure 24. Physical Address Transition

MMU Block Diagram

The MMU block diagram is depicted in Figure 25. The MMU translates internal 16-bit logical addresses to external 20-bit physical addresses.

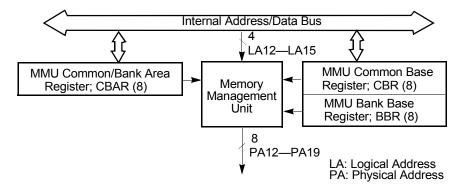


Figure 25. MMU Block Diagram

MMU and RESET

During RESET, all bits of the CA field of CBAR are set to 1 while all bits of the BA field of CBAR, CBR and BBR are reset to 0. The logical 64KB address space corresponds directly with the first 64KB 0000H to FFFFH) of the 1024KB 0000H. to FFFFFH) physical address space. Thus, after RESET, the Z8X180 begins execution at logical and physical address 0.

MMU Register Access Timing

When data is written into CBAR, CBR or BBR, the value is effective from the cycle immediately following the I/O write cycle which updates these registers.

During MMU programming insure that CPU program execution is not disrupted. The next cycle following MMU register programming is normally an Op Code fetch from the newly translated address. One technique is to localize all MMU programming routines in a Common Area that is always enabled.

Z8018x Family MPU User Manual

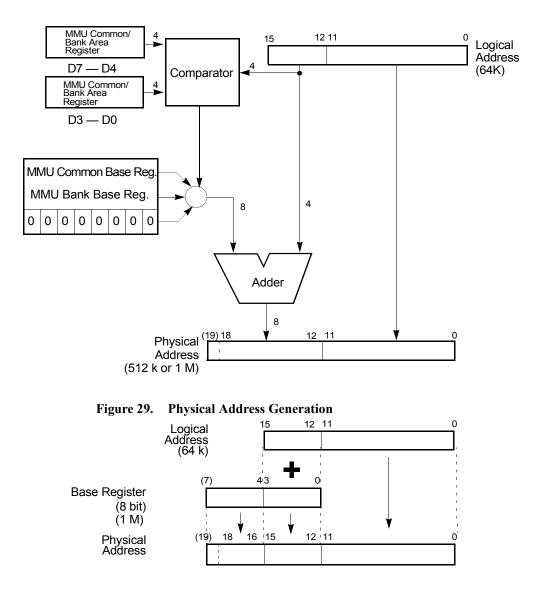


Figure 30. Physical Address Generation 2

If the falling edge of $\overline{\text{NMI}}$ occurs before the falling clock of the state prior to T3 (T2 or Tw) of the DMA write cycle, the DMAC is suspended and the CPU starts the $\overline{\text{NMI}}$ response at the end of the current cycle. By setting a channel's DE bit to 1, the channel's operation is restarted and DMA correctly resumes from its suspended point by $\overline{\text{NMI}}$. (Reference Figure 51.)

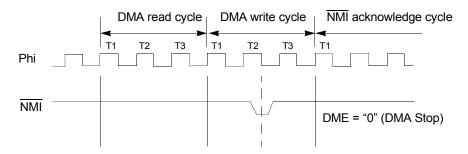


Figure 51. NMI and DMA Operation Timing Diagram

DMAC and RESET

During RESET the bits in DSTAT, DMODE, and DCNTL are initialized as stated in their individual register descriptions. Any DMA operation in progress is stopped, allowing the CPU to use the bus to perform the RESET sequence. However, the address register (SAR0, DAR0 MAR1, IAR1) and byte count register (BCR0 BCR1) contents are not changed during RESET.

Asynchronous Serial Communication Interface (ASCI)

The Z8X180 on-chip ASCI has two independent full-duplex channels. Based on full programmability of the following functions, the ASCI directly communicates with a wide variety of standard UARTs (Universal Asynchronous Receiver/Transmitter) including the Z8440 SIO and the Z85C30 SCC.

ASCI Receive Shift Register 0,1(RSR0, 1)

This register receives data shifted in on the RXA pin. When full, data is automatically transferred to the ASCI Receive Data Register (RDR) if it is empty. If RSR is not empty when the next incoming data byte is shifted in, an overrun error occurs. The RSR is not program-accessible.

ASCI Receive Data Register 0,1 (RDR0, 1: I/O Address = 08H, 09H)

When a complete incoming data byte is assembled in RSR, it is automatically transferred to the RDR if RDR is empty. The next incoming data byte can be shifted into RSR while RDR contains the previous received data byte. Thus, the ASCI receiver on Z80180 is doublebuffered.

ASCI Receive Data Register Ch. 0 (RDR0: 08H)

Bit	7	6	5	4	3	2	1	0	
Bit/Field		ASCI Receive Channel 0							
R/W					R/W				
Reset		0							
Note: $R = Read$ $W = Write$ $X = Indeterminate$? = Not Applicable									

ASCI Receive Data Register Ch. 1 (RDR1: 09H)

١

Bit	7	6	5	4	3	2	1	0	
Bit/Field		ASCI Receive Channel 1							
R/W					R/W				
Reset	0								
Note: $R = Read$ W = Write X = Indeterminate ? = Not Applicable									

On the Z8S180 and Z8L180-class processors are quadruple buffered. The ASCI Receive Data Register is a read-only register. However, if RDRF =

131

Table 17.Data Formats

MOD2	MOD1	MOD0	Data Format
0	0	0	Start + 7 bit data + 1 stop
0	0	1	Start + 7 bit date + 2 Stop
0	1	0	Start + 7 bit data + parity + 1 stop
0	1	1	Start + 7 bit data + parity + 2 stop
1	0	0	Start + 8 bit data + 1 stop
1	0	1	Start + 8 bit data + 2 stop
1	1	0	Start + 8 bit data + parity + 1 stop
1	1	1	Start + 8 bit date + parity + 2 stop

ASCI Control Register B0, 1 (CNTLB0, 1)

Each ASCI channel control register B configures multiprocessor mode, parity and baud rate selection.

Bit Position	Bit/Field	R/W	Value	Description
7–6	TIF1–0	R		TIF1: Timer Interrupt Flag — When TMDR1 decrements to 0, TIF1 is set to 1. This generates an interrupt request if enabled by TIE1 = 1. TIF1 is reset to 0 when TCR is read and the higher or lower byte of TMDR1 is read. During RESET, TIF1 is cleared to 0. When TMDR0 decrements to 0, TIF0 is set to 1. This generates an interrupt request if enabled by TIE0 = 1. TIF0 is reset to 0 when TCR is read and the higher or lower byte of TMDR0 is read. During RESET, TIF0 is cleared to 0.
5-4	TIE1–0	R/W		Timer Interrupt Enable — When TIE1 is set to 1, TIF1 = 1 generates a CPU interrupt request. When TIE1 is reset to 0, the interrupt request is inhibited. During RESET, TIE1 is cleared to 0. When TIE0 is set to 1, TIF0 = 1 generates a CPU interrupt request. When TIE0 is reset to 0, the interrupt request is inhibited. During RESET, TIE0 is cleared to 0.
3-2	TOC1-0	R/W		Timer Output Control — TOC1, and TOC0 control the output of PRT1 using the multiplexed A18/TOUT pin as shown in Table 23. During RESET, TOC1 and TOC0 are cleared to 0. This selects the address function for A18/TOUT. By programming TOC1 and TOC0 the A18/TOUT pin can be forced HIGH, LOW, or toggled when TMDR1 decrements to 0. Reference Table 23.
1-0	TDE1–0	R/W		Timer Down Count Enable — TDE1 and TDE0 enable and disable down counting for TMDR1 and TMDR0 respectively. When TDEn ($n = 0, 1$) is set to 1, down counting is executed for TMDRn. When TDEn is reset to 0, down counting is stopped and TMDRn is freely read or written. TDE1 and TDE0 are cleared to 0 during RESET and TMDRn does not decrement until TDEn is set to 1.

TST (HL) - Test Memory

The contents of memory pointed to by HL are ANDed with the accumulator (A) and the status flags are updated. The memory contents and accumulator are not changed (non-destructive AND).

INO g, (m) - Input, Immediate I/O address

The contents of immediately specified 8-bit I/O address are input into the specified register. When I/O is accessed, 00H is output in high-order bits of the address automatically.

OUTO (m), g - Output, Immediate I/O address

The contents of the specified register are output to the immediately specified 8-bit I/O address. When I/O is accessed, 00H is output in high-order bits of the address automatically.

CPU REGISTERS

The Z80180 CPU registers consist of Register Set GR, Register Set GR' and Special Registers.

The Register Set GR consists of 8-bit Accumulator (A), 8-bit Flag Register (F), and three General Purpose Registers (BC, DE, and HL) which may be treated as 16-bit registers (BC, DE, and HL) or as individual 8-bit registers (B, C, D, E, H, and L) depending on the instruction to be executed. The Register Set GR' is alternate register set of Register Set GR and also contains Accumulator (A'), Flag Register (F') and three General Purpose Registers (BC', DE', and HL'). While the alternate Register Set GR' contents are not directly accessible, the contents can be programmably exchanged at high speed with those of Register Set GR.

The Special Registers consist of 8-bit Interrupt Vector Register (I), 8-bit R Counter (R), two 16-bit Index Registers (IX and IY), 16-bit Stack Pointer (SP), and 16-bit Program Counter (PC)

189

Z8L180 DC CHARACTERISTICS

 $V_{CC} = 3.3V \pm 10\%$, $V_{SS} = OV$, Ta = 0° to +70°C, unless otherwise noted.)

Table 30. Z8L180 DC Characteristics

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
VIH1	Input High Voltage RESET, EXTAL NMI		V _{CC} -0.6	_	V _{CC} +0.3	v
VIH2	Input High Voltage except RESET, EXTAL NMI		2.0		V _{CC} +0.3	V
VIL1	Input Low Voltage RESET, EXTAL NMI		-0.3		0.8	V
VIL2	Input Low Voltage except RESET, EXTAL NMI		-0.3		0.8	V
VOH1	Output High Voltage all outputs	IOH = -200 μA	2.4			V
VOH2	Output High Voltage Output High Phi	$IOH = -200 \ \mu A$	V _{CC} -0.6			V
VOL	Output Low Voltage all outputs	IOL = 4 mA	_	_	0.4	V
VOL2	Output Low Voltage Output Low Phi	IOL = 4 mA	_	_	0.4	V
IIL	Input Leakage Current all inputs except XTAL, EXTAL	VIN = 0.5 ~ VCC -0.5	-	_	1.0	μA
ITL	Three-State Leakage Current	VIN = 0.5 ~ VCC -0.5	-	—	1.0	μΑ

194

		Operation	Z8S 1	180—20	Z8S		
			Ν	ЛНz	I		
No.	Symbol	Item	Min	Max	Min	Max	Unit
12	t _{MED2}	PHI Fall to MREQ Rise Delay		25	_	15	ns
13	t _{RDD2}	PHI Fall to RD Rise Delay		25		15	ns
14	t _{M1D2}	PHI Rise to $\overline{M1}$ Rise Delay		40		15	ns
15	t _{DRS}	Data Read Set-up Time	10		5		ns
16	t _{DRH}	Data Read Hold Time	0		0		ns
17	t _{STD1}	PHI Fall to ST Fall Delay		30		15	ns
18	t _{STD2}	PHI Fall to ST Rise Delay		30		15	ns
19	t _{WS}	WAIT Set-up Time to PHI Fall	15		10		ns
20	t _{WH}	WAIT Hold Time from PHI Fall	10		5		ns
21	t _{WDZ}	PHI Rise to Data Float Delay		35		20	ns
22	t _{WRD1}	PHI Rise to WR Fall Delay		25		15	ns
23	t _{WDD}	PHI Fall to Write Data Delay Time		25		15	ns
24	t _{WDS}	Write Data Set-up Time to WR Fall	10		10		ns
25	t _{WRD2}	PHI Fall to WR Rise Delay		25		15	ns
26	t _{WRP}	WR Pulse Width (Memory Write Cycle)	80		45		ns
26a		WR Pulse Width (I/O Write Cycle)	150		70		ns
27	t _{WDH}	Write Data Hold Time from \overline{WR} Rise	10		5		ns
28	t _{IOD1}	PHI Fall to $\overline{\text{IORQ}}$ Fall Delay $\overline{\text{IOC}}$ = 1		25		15	ns
		PHI Rise to $\overline{\text{IORQ}}$ Fall Delay $\overline{\text{IOC}} = 0$	—	25		15	-
29	t _{IOD2}	PHI Fall to IORQ Rise Delay		25		15	ns
30	t _{IOD3}	$\overline{\text{M1}}$ Fall to $\overline{\text{IORQ}}$ Fall Delay	125		80	_	ns

Table 31.Z8S180 AC Characteristics (Continued) $V_{DD} = 5V \pm 10\%$ or $V_{DD} = 3.3V \pm 10\%$; 33-MHz Characteristics Apply Only to 5VOperation

196

		Operation						
				Z8S180—20 MHz		Z8S180—33 MHz		
No.	Symbol	Item	Min	Max	Min	Max	Unit	
54	t _{Ef}	Enable Fall Time	_	10		10	ns	
55	t _{TOD}	PHI Fall to Timer Output Delay		75		50	ns	
56	t _{STDI}	CSI/O Transmit Data Delay Time (Internal Clock Operation)	_	2		2	tcyc	
57	t _{STDE}	CSI/O Transmit Data Delay Time (External Clock Operation)		7.5 t _{CY} C +75		75 t _{CYC} +60	ns	
58	t _{SRSI}	CSI/O Receive Data Set-up Time (Internal Clock Operation)	1	—	1		tcyc	
59	t _{SRHI}	CSI/O Receive Data Hold Time (Internal Clock Operation)	1		1		tcyc	
60	t _{SRSE}	CSI/O Receive Data Set-up Time (External Clock Operation)	1		1		tcyc	
61	t _{SRHE}	CSI/O Receive Data Hold Time (External Clock Operation)	1		1		tcyc	
62	t _{RES}	RESET Set-up Time to PHI Fall	40		25		ns	
63	t _{REH}	RESET Hold Time from PHI Fall	25		15		ns	
64	t _{OSC}	Oscillator Stabilization Time	—	20		20	ns	
65	t _{EXR}	External Clock Rise Time (EXTAL)		5		5	ns	
66	t _{EXF}	External Clock Fall Time (EXTAL)	_	5		5	ns	
67	t _{RR}	RESET Rise Time		50		50	ms	
68	t _{RF}	RESET Fall Time	_	50	_	50	ms	

Table 31.Z8S180 AC Characteristics (Continued) $V_{DD} = 5V \pm 10\%$ or $V_{DD} = 3.3V \pm 10\%$; 33-MHz Characteristics Apply Only to 5VOperation

207

Instruction Set

This section explains the symbols in the instruction set.

REGISTER

g, g', ww, xx, yy, and zz specify a register to be used. g and g' specify an 8-bit register. ww, xx, yy, and zz specify a pair of 8-bit registers. Table 32 describes the correspondence between symbols and registers.

Table 32.Register Values

111

А

g,g'	Reg.	ww	Reg.	xx	Reg.	уу	Reg.	zz	Reg.
000	B	00	BC	00	BC	00	BC	00	BC
001	С	01	DE	01	DE	01	DE	01	DE
010	D	10	HL	10	IX	10	IY	10	HL
011	Е	11	SP	11	SP	11	SP	11	AF
100	Н								
101	L								

Note: Suffixed H and L to ww, xx, yy, zz (ex. wwH, IXL) indicate upper and lower 8-bit of the 16-bit register respectively.

BIT

b specifies a bit to be manipulated in the bit manipulation instruction. Table 33 indicates the correspondence between **b** and bits.

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
IN g,(C)	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	BC	DATA	0	1	1	0	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
INO g,(m)**	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	1st operand Address	m	0	1	0	1	1	1	1
	MC4	T1T2T3	m to A0~A7 00H to A8~A15	DATA	0	1	1	0	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
INI IND	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	BC	DATA	0	1	1	0	1	1	1
	MC4	T1T2T3	HL	DATA	1	0	0	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
INIR	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
INDR	MC3	T1T2T3	BC	DATA	0	1	1	0	1	1	1
(If Br≠0)	MC4	T1T2T3	HL	DATA	1	0	0	1	1	1	1
	MC5~M C6	TiTi	*	Z	1	1	1	1	1	1	1

 Table 51.
 Bus and Control Signal Condition in Each Machine Cycle (Continued)

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
RLC (HL)	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
RL (HL) RRC (HL) RR (HL)	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
SLA (HL) SRA (HL)	MC3	T1T2T3	HL	DATA	0	1	0	1	1	1	1
SRA (HL) SRL (HL)	MC4	Ti	*	Z	1	1	1	1	1	1	1
	MC5	T1T2T3	HL	DATA	1	0	0	1	1	1	1
$\frac{\text{RLC (IX + d)}}{\text{RLC (IY + d)}}$	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
RL (IX + d) $RL (IY + d)$ $RRC (IX + d)$	MC2	T1T2T3	2nd Op Code Address	2ndOp Code	0	1	0	1	0	1	1
RRC (IY + d) $RR (IX + d)$ $RR (IY + d)$	MC3	T1T2T3	1st operand Address	d	0	1	0	1	1	1	1
$\frac{RR(IY + d)}{SLA(IX + d)}$ $\frac{SLA(IY + d)}{SLA(IY + d)}$	MC4	T1T2T3	3rd Op Code Address	3rd Op Code	0	1	0	1	0	1	1
$\frac{SRA (IX + d)}{SRA (IY + d)}$ $\frac{SRL (IX + d)}{SRL (IX + d)}$	MC5	T1T2T3	IX+d IY+d	DATA	0	1	0	1	1	1	1
SRL (IY + d) SRL (IY + d)	MC6	Ti	*	Z	1	1	1	1	1	1	1
	MC7	T1T2T3	IX+d IY+d	DATA	1	0	0	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
RLD	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
RRD	MC3	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC4~M C7	TiTiTiTi *		Z	1	1	1	1	1	1	1
	MC8	T1T2T3	HL	DATA	1	0	0	1	1	1	1

 Table 51.
 Bus and Control Signal Condition in Each Machine Cycle (Continued)

287

Status Signals

PIN OUTPUTS IN EACH OPERATING MODE

Table 55 describes pin outputs in each operating mode.

Mode		<u>M1</u>	MREQ	IORQ	RD	WR	RFSH	HALT	BUSACK	ST	Address BUS	Data BUS
CPU Operation	Op Code Fetch (1st Op Code)	0	0	1	0	1	1	1	1	0	А	IN
	Op Code Fetch (except 1 st Op Code)	0	0	1	0	1	1	1	1	1	А	IN
	MemRead	1	0	1	0	1	1	1	1	1	А	IN
	Memory Write	1	0	1	1	0	1	1	1	1	А	OUT
	I/O Read	1	1	0	0	1	1	1	1	1	А	IN
	I/O Write	1	1	0	1	0	1	1	1	1	А	OUT
	Internal Operation	1	1	1	1	1	1	1	1	1	А	IN
Refresh		1	0	1	1	1	0	1	1	*	А	IN
Interrupt	NMI	0	0	1	0	1	1	1	1	0	А	IN
Acknowledge Cycle	INTO	0	1	0	1	1	1	1	1	0	А	IN
(1st Machine Cycle)	INT1, INT2 & Internal Interrupts	1	1	1	1	1	1	1	1	0	А	IN
BUS RELEASE		1	Z	Z	Z	Z	1	1	0	*	Z	IN
HALT		0	0	1	0	1	1	0	1	0	А	IN
SLEEP		1	1	1	1	1	1	0	1	1	1	IN

Table 55. Pin Outputs in Each Operating Mode

		Pin Status in Each Operation Mode							
Symbol	Pin Function	RESET	SLEEP	IOSTOP	SYSTEM STOP				
MREQ	—	1	1	OUT	1				
Е		0	E Clock Output	~	←				
<u>M1</u>	—	1	1	OUT	1				
WR	—	1	1	OUT	1				
RD	—	1	1	OUT	1				
Phi		Phi Clock Output	~	←	←				

 Table 56.
 Pin Status During RESET and LOW POWER OPERATION Modes (Continued)

- 1: HIGH 0: LOW A: Programmable Z: High Impedance
- IN (A): Input (Active) IN (N): Input (Not active) OUT: Output
- H: Holds the previous state
- \leftarrow : same as the left

CSI/O control/status 147, 150, 159, 160, 161, 172 Direct bit field definitions 181 DMA mode (DMODE) 97 DMA status 95 DMA/WAIT control 100 Flag 178 I/O Control 42 I/O control (ICR) 42 Indirect addressing 181 INT/TRAP control (ITC) 67 Interrupt Vector (I) 66 MMU bank base (BBR) 62 MMU common bank area (CBAR) 60 MMU common base (CBR) 61 Operation mode control 15, 84 PRT timer control register 161 Refresh control 88 Relative addressing Addressing Relative 183 RETI control signal states 85 Instruction sequence 84 RTS0 timing diagram 140

S

Secondary bus interface 165 SLEEP mode 33 SLP execution cycle timing diagram Timing diagram SLP execution cycle 203 Status summary table 10 SYSTEM STOP mode 35

Т

Test conditions, standard 205 Timer initialization, count down and reload 163 Timer output timing diagram Timing diagram Timer output 202 Timing diagram 163 AC 197 Bus Exchange Timing During CPU Internal Operation 27 Bus Exchange Timing During Memory Read 26 CPU (I/O Read/Write cycles) 199 CSI/O external clock receive 156 CSI/O external clock transmit 154 CSI/O internal clock receive 155 CSI/O internal clock transmit 153 CSI/O receive/transmit 204 CSI/O timer output 164 DCD0 139 DMA control signals 200 DMA CYCLE STEAL mode 106 DMA edge-sense 108 DMA level-sense 107