

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	8MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018008vsg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Z80180, Z8S180, Z8L180 MPU Operation	1
Features	.1
General Description	.1
Pin Description	.7
Architecture	2
Operation Modes1 CPU Timing1	
Wait State Generator	27
(Z80180-Class Processors Only)	
(Z8S180/Z8L180 only)	
STANDBY Mode	
STANDBY Mode Exit wiht BUS REQUEST	8
STANDBY Mode EXit with External Interrupts	;9
IDLE Mode 4	
STANDBY-QUICK RECOVERY Mode	
Internal I/O Registers4	1
MMU Register Description	50
Interrupts	5
Interrupt Acknowledge Cycle Timings	32
Interrupt Sources During RESET	33
Dynamic RAM Refresh Control	36
DMA Controller (DMAC))()
Asynchronous Serial Communication Interface (ASCI)11	5

	Flag	
	Miscellaneous	
	Data Manipulation Instructions	
	Data Transfer Instructions	
	Program and Control Instructions Special Control Instructions	
Instructio	n Summary	237
Op Code N	Мар	247
Bus Contr	rol Signal Conditions	251
	Bus and Control Signal Condition in each Machine Cycle	
	Interrupts	
Operating	g Modes Summary	281
	Request Acceptances in Each Operating Mode	
	Request Priority	
	Operation Mode Transition	
	Other Operation Mode Transitions	
Status Sig	nals	287
	Pin Outputs in Each Operating Mode	
	Pin Status	
I/O Regist	ters	293
	Internal I/O Registers	
	Ordering Information	

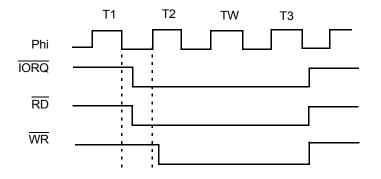
 $\overline{\text{BUSREQ}}$, and $\overline{\text{INT0}}$ signals are inactive. The CPU acknowledges these interrupt requests with an interrupt acknowledge cycle. Unlike the acknowledgment for $\overline{\text{INT0}}$, during this cycle neither the $\overline{\text{M1}}$ or $\overline{\text{IORQ}}$ signals become Active.

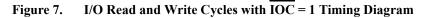
IORQ. *I/O Request (Output, Active Low, 3-state).* IORQ indicates that the address bus contains a valid I/O address for an I/O read or I/O write operation. IORQ is also generated, along with M1, during the acknowledgment of the INTO input signal to indicate that an interrupt response vector can be placed onto the data bus. This signal is analogous to the IOE signal of the Z64180.

M1. *Machine Cycle 1 (Output, Active Low).* Together with $\overline{\text{MREQ}}$, $\overline{\text{M1}}$ indicates that the current cycle is the Op Code fetch cycle of an instruction execution. Together with $\overline{\text{IORQ}}$, $\overline{\text{M1}}$ indicates that the current cycle is for an interrupt acknowledge. It is also used with the $\overline{\text{HALT}}$ and ST signal to decode status of the CPU machine cycle. This signal is analogous to the $\overline{\text{LIR}}$ signal of the Z64180.

MREQ. *Memory Request (Output, Active Low, 3-state).* MREQ indicates that the address bus holds a valid address for a memory read or memory write operation. This signal is analogous to the ME signal of the Z64180.

NMI. *Non-maskable Interrupt (Input, negative edge triggered).* **NMI** has a higher priority than **INT** and is always recognized at the end of an instruction, regardless of the state of the interrupt enable flip-flops. This signal forces CPU execution to continue at location 0066H.


RD. *Read (Output active Low, 3-state).* **RD** indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O or memory device must use this signal to gate data onto the CPU data bus.


RFSH. *Refresh (Output, Active Low).* Together with $\overline{\text{MREQ}}$, $\overline{\text{RFSH}}$ indicates that the current CPU machine cycle and the contents of the address bus must be used for refresh of dynamic memories. The low order 8 bits of the address bus (A7–A0) contain the refresh address.

This signal is analogous to the $\overline{\text{REF}}$ signal of the Z64180.

17

When \overline{IOC} is 0, the timing of the \overline{IORQ} and \overline{RD} signals match the timing required by the Z80 family of peripherals. The \overline{IORQ} and \overline{RD} signals go active as a result of the rising edge of T2. This timing allows the Z8X180 to satisfy the setup times required by the Z80 peripherals on those two signals (Figure).

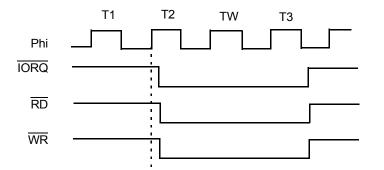


Figure 8. I/O Read and Write cycles with IOC = 0 Timing Diagram

For the remainder of this document, assume that M1E is 0 and \overline{IOC} is 0.

UM005003-0703

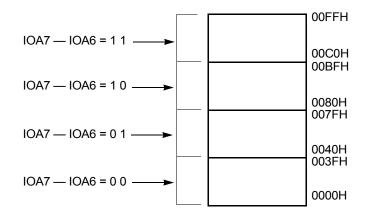


Figure 22. I/O Address Relocation

Internal I/O Registers Address Map

The internal I/O register addresses are described in Table 6 and Table 7. These addresses are relative to the 64-byte boundary base address specified in ICR.

I/O Addressing Notes

The internal I/O register addresses are located in the I/O address space from 0000H to 00FFH (16-bit I/O addresses). Thus, to access the internal I/O registers (using I/O instructions), the high-order 8 bits of the 16-bit I/O address must be 0.

The conventional I/O instructions (OUT (m), A/IN A, (m) / OUTI/INI, for example) place the contents of a CPU register on the high-order 8 bits of the address bus, and thus may be difficult to use for accessing internal I/O registers.

For efficient internal I/O register access, a number of new instructions have been added, which force the high-order 8 bits of the 16-bit I/O

50

			A	ldress	
	Register	Mnemonic	Binary	Hex	Page
DMA	DMA Source Address Register Ch 0L	SAR0L	XX100000	20H	93
	DMA Source Address Register Ch 0H	SAR0H	XX100001	21H	93
	DMA Source Address Register Ch 0B	SAR0B	XX100010	22H	93
	DMA Destination Address Register Ch 0L	DAR0L	XX100011	23H	94
	DMA Destination Address Register Ch 0H	DAR0H	XX100100	24H	94
	DMA Destination Address Register Ch 0B	DAR0B	XX100101	25H	94
	DMA Byte Count Register Ch 0L	BCR0L	XX100110	26H	94
	DMA Byte Count Register Ch 0H	BCR0H	XX100111	27H	94
	DMA Memory Address Register Ch 1L	MAR1L	XX101000	28H	94
	DMA Memory Address Register Ch 1H	MAR1H	XX101001	29H	94
	DMA Memory Address Register Ch 1B	MAR1B	XX101010	2AH	94
	DMA I/O Address Register Ch 1L	IAR1L	XX101011	2BH	102
	DMA I/O Address Register Ch 1H	IAR1H	XX101100	2CH	102
	DMA I/O Address Register Ch 1	IAR1B	XX101101	2DH	94
	DMA Byte Count Register Ch 1L	BCR1L	XX101110	2EH	94
	DMA Byte Count Register Ch 1H	BCR1H	XX101111	2FH	94
	DMA Status Register	DSTAT	XX110000	30H	95
	DMA Mode Register	DMODE	XX110001	31H	97
	DMA/WAIT Control Register	DCNTL	XX110010	32H	101

Table 7. I/O Address Map (Z8S180/Z8L180-Class Processors Only) (Continued)

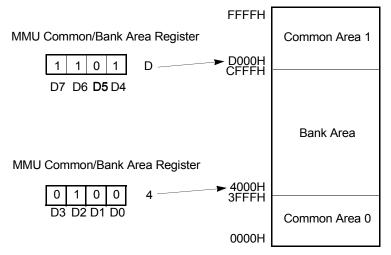


Figure 28. Logical Space Configuration (Example)

59

UM005003-0703

87

Refresh cycles may be programmed to be either two or three clock cycles in duration by programming the REFW (Refresh Wait) bit in the Refresh Control Register (RCR). The external \overline{WAIT} input and the internal Wait State generator are not effective during refresh.

Figure 44 depicts the timing of a refresh cycle with a refresh wait (TRW) cycle.

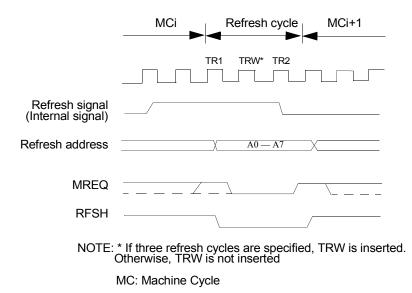


Figure 44. Refresh Cycle Timing Diagram

100

DM1	DM0	SM1	SM0	Transfer Mode	Increment/Decrement		
1	1	0	0	Memory to I/O	SAR0+1, DAR0 fixed		
1	1	0	1	Memory to I/O	SAR0-1, DAR0 fixed		
1	1	1	0	Reserved			
1	1	1	1	Reserved			
Note: *: includes memory mapped I/O.							

 Table 14.
 Transfer Mode Combinations

DMA/WAIT Control Register (DCNTL)

DCNTL controls the insertion of Wait States into DMAC (and CPU) accesses of memory or I/O Also, the DMA request mode for each DREQ $\overline{\text{DREQ0}}$ and $\overline{\text{DREQ1}}$) input is defined as level or edge sense. DCNTL also sets the DMA transfer mode for channel 1, which is limited to memory to/from I/O transfers.

133

Bit Position	Bit/Field	R/W	Value	Description
5	CTS/PS	R/W		Clear to Send/Prescale — When read, $\overline{\text{CTS}/\text{PS}}$ reflects the state of the external $\overline{\text{CTS}}$ input. If the $\overline{\text{CTS}}$ input pin is High, $\overline{\text{CTS}/\text{PS}}$ is read as 1. When the $\overline{\text{CTS}}$ input pin is High, the TDRE bit is inhibited (that is, held at 0). For channel 1, the $\overline{\text{CTS}1}$ input is multiplexed with RXS pin (Clocked Serial Receive Data). Thus, $\overline{\text{CTS}/\text{PS}}$ is only valid when read if the channel 1 CTS1E bit is 1 and the $\overline{\text{CST1}}$ input pin function is selected. The read data of $\overline{\text{CTS}/\text{PS}}$ is not affected by RESET. When written, $\overline{\text{CT}/\text{PS}}$ specifies the baud rate generator prescale factor. If $\overline{\text{CTS}/\text{PS}}$ is set to 1, the system clock is prescaled by 30 while if $\overline{\text{CTS}/\text{PS}}$ is cleared to 0, the system clock is prescaled by 10.CTS/PS is cleared to 0 during RESET.
4	PEO	R/W		Parity Even Odd — PE0 selects even or odd parity. PE0 does not affect the enabling/disabling of parity (MOD1 bit of CNTLA). If PE0 is cleared to 0, even parity is selected. If PE0 is set to 1, odd parity is selected.PE0 is cleared to 0 during RESET.
3	DR	R/W		Divide Ratio — DR specifies the divider used to obtain baud rate from the data sampling clock If DR is reset to 0, divide by 16 is used, while if DR is set to 1, divide by 64 is used. DR is cleared to 0 during RESET.
2–0	SS2-0	R/W		Source/Speed Select — Specifies the data clock source (internal or external) and baud rate prescale factor. SS2, SS1, and SS0 are all set to 1 during RESET. Table 18 describes the divide ratio corresponding to SS2, SS1 and SS0

The external ASCI channel 0 data clock pins are multiplexed with DMA control lines (CKA0/ $\overline{\text{DREQ}}$ and CKA1/ $\overline{\text{TEND0}}$). During RESET, these

ASCI to/from DMAC Operation

Operation of the ASCI with the on-chip DMAC channel 0 requires that the DMAC be correctly configured to use the ASCI flags as DMA request signals.

ASCI and RESET

During RESET, the ASCI status and control registers are initialized as defined in the individual register descriptions.

Receive and Transmit operations are stopped during RESET. However, the contents of the transmit and receive data registers (TDR and RDR) are not changed by RESET.

ASCI Clock

When in external clock input mode, the external clock is directly input to the sampling rate $(\div 16/\div 64)$ as depicted in Figure 56.

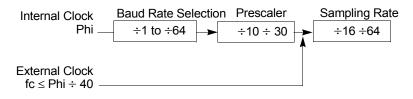


Figure 56. ASCI Clock

160

Timer Reload Register Channel 0L (RLDR0L: 0EH)

Bit	7	6	5	4	3	2	1	0		
Bit/Field		Timer Reload Data								
R/W		R/W								
Reset		0								
Note: $R = Read$ W = Write X = Indeterminate ? = Not Applicable										

Timer Reload Register Channel 0H (RLDR0L: 0FH)

Bit	7	6	5	4	3	2	1	0		
Bit/Field		Timer Reload Data								
R/W		R/W								
Reset		0								
Note: R = Read W = Write X = Indeterminate ? = Not Applicable										

Timer Data Register 1L (TMDR1L: 14H)

Bit	7	6	5	4	3	2	1	0		
Bit/Field		Timer Data								
R/W		R/W								
Reset		0								
Note: $R = Read$ W = Write X = Indeterminate ? = Not Applicable										

Timer Data Register 1H (TMDR1H: 15H)

Bit	7	6	5	4	3	2	1	0		
Bit/Field		Timer Data								
R/W		R/W								
Reset		0								
Note: $R = Read$ W = Write X = Indeterminate ? = Not Applicable										

These devices require connection with the Z8X180 synchronous E clock output. The speed (access time) required for the peripheral devices are determined by the Z8X180 clock rate. Table 24, and Figure 67 through Figure 70 define E clock output timing.

Wait States are inserted in Op Code fetch, memory read/write, and I/O read/write cycles which extend the duration of E clock output High. During I/O read/write cycles with no Wait States (only occurs during on-chip I/O register accesses), E does not go High.

Condition	ondition Duration of E Clock Output High					
Op Code Fetch Cycle Memory Read/Write Cycle	T2 rise - T3 fall	(1.5 Phi + nw x Phi)				
I/O read Cycle	1st Tw rise - T3 fall	(0.5Phi + nw x Phi)				
I/O Write Cycle	1st Tw rise - T3 rise	In _w x Phi)				
NMI Acknowledge 1st MC	T2 rise - T3 fall	(1.5 Phi)				
INT0 Acknowledge 1st MC	1st Tw rise - T3 fall	(0.50 + nw x Phi)				
BUS RELEASE mode SLEEP mode SYSTEM STOP mode	Phi fall - Phi fall	(2 Phi or 1 Phi)				
Note: nw = the number of Wait States; MC: Machine Cycle						

Table 24.	E Clock	Timing in	Each	Condition
-----------	---------	-----------	------	-----------

166

MLT- Multiply

The MLT performs unsigned multiplication on two 8-bit numbers yielding a 16-bit result. MLT may specify BC, DE, HL, or SP registers. The 8-bit operands are loaded into each half of the 16-bit register and the 16-bit result is returned in that register.

OTIM, OTIMR, OTDM, OTDMR - Block I/O

The contents of memory pointed to by HL is output to the I/O address in (C). The memory address (HL) and I/O address (C) are incremented in OTIM and OTIMR and decremented in OTDM and OTDMR, respectively. The B register is decremented. The OTIMR and OTDMR variants repeat the above sequence until register B is decremented to 0. Since the I/O address (C) is automatically incremented or decremented, these instructions are useful for block I/O (such as Z80180 on-chip I/O) initialization. When I/O is accessed, 00H is output in high-order bits of address automatically.

TSTIO m - Test I/O Port

The contents of the I/O port addressed by C are ANDed with immediately specified 8-bit data and the status flags are updated. The I/O port contents are not written (non-destructive AND). When I/O is accessed, 00H is output in higher bits of address automatically.

TST g - Test Register

Perform an AND instruction on the contents of the specified register with the accumulator (A) and the status flags are updated. The accumulator and specified register are not changed (non-destructive AND).

TST m - Test Immediate

Perform an AND instruction on the contents of the immediately specified 8-bit data with the accumulator (A) and the status flags are updated. The accumulator is not changed (non-destructive AND).

211

DATA MANIPULATION INSTRUCTIONS

Table 38. Arithmetic and Logical Instructions (8-bit)

															FI	ags		Π
					Add	ressin	g						7	6	4	2	1	0
Operation Name	Mnemonics	Op Code	Immed	Ext	Ind	Reg	Regi	Imp	Rel	Bytes	States	Operation	s	z	н	P/V	N	с
ADD	ADD A,g	10 000 g				S		D		1	4	Ar + gr→Ar	↑	↑	↑	V	R	1
	ADD A, (HL)	10 000 110					s	D		1	6	Ar + (HL) _M →Ar	↑	↑	↑	V	R	↑
	ADD A, m	11 000 110	s					D		2	6	Ar + m→Ar	↑	↑	↑	V	R	↑
		<m></m>																
	ADD A,(IX + d)	11 011 101			s			D		3	14	Ar + (IX + d) _M →Ar	↑	↑	↑	V	R	↑
		10 000 110																
		<d></d>																
	ADD A,(IY + d)	11 111 101			s			D		3	14	Ar + (IY + d)) _M →Ar	↑	↑	↑	V	R	↑
		10 000 110																
		<d></d>																
ADC	ADC A,g	10 001 g				s		D		1	4	Ar + gr + c→Ar	↑	↑	↑	V	R	↑
	ADC A,(HL)	10 001 110					S	D		1	6	Ar + (HL) _M + c→Ar	↑	↑	↑	V	R	↑
	ADC A,m	11 001 110	S					D		2	6	Ar + m + c→Ar	↑	↑	↑	V	R	↑
		<m></m>																
	ADC A,(IX + d)	11 011 101			s			D		3	14	Ar + (IX + d)) _M + c→Ar	↑	↑	↑	V	R	↑
		10 001 110																
		<d></d>																
	ADC A,(IY + d)	11 111 101			s			D		3	14	Ar + (IY + d)) _M + c→Ar	↑	1	↑	v	R	¢
		10 001 110																
		<d></d>																

UM005003-0703

235

Special Control Instructions

															F	lags		
					A	ddress	ing						7	6	4	2	1	0
Operation Name	Mnemonics	Op Code	Immed	Ext	Ind	Reg	Regi	Imp	Rel	Bytes	States	Operation	s	z	н	P/V	N	с
Special Function	DAA	00 100 111						S/D		1	4	Decimal Adjust Accumulator	1	↑	↑	Р	•	↑
Carry Control	CCF	00 111 111								1	3	C→C	•	•	R	•	R	↑
	SCF	00 110 111								1	3	1→C	•	•	R	•	R	s
CPU Control	DI	11 110 011								1	3	0→IEF1,0→IEF2 (7)	•	•	•	•	•	•
	EI	11 111 011								1	3	1→IEF1,1→IEF2 (7)	•	•	•	•	•	•
	HALT	01 110 110								1	3	CPU halted	•	•	•	•	•	•
	IMO	11 101 101								2	6	Interrupt	•	•	•	•	•	•
		01 000 110										Mode 0						
	IM1	11 101 101								2	6	Interrupt	•	•	•	•	•	•
		01 010 110										Mode 1						
	IM2	11 101 101								2	6	Interrupt	•	•	•	•	•	•
		01 011 110										Mode 2						
	NOP	00 000 000								1	3	No operation	•	•	•	•	•	•
	SLP**	11 101 101								2	8	Sleep	•	•	•	•	•	•
		01 110 110																

Table 47. Special Control Instructions

251

Bus Control Signal Conditions

BUS AND CONTROL SIGNAL CONDITION IN EACH MACHINE CYCLE

* (ADDRESS) invalid

Z (DATA) high impedance.

** added new instructions to Z80

Table 51. Bus and Control Signal Condition in Each Machine Cycle
--

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
ADD HL,ww	MC2 ~MC5	TiTiTiTi	*	Z	1	1	1	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
ADD IX,xx ADD IY,yy	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3 ~MC6	TiTiTiTi	*	Z	1	1	1	1	1	1	1
ADC HL,ww	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
SBC HL,ww	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3 ~MC6	TiTiTiTi	*	Z	1	1	1	1	1	1	1

278

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
TST g**	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	Ti	*	Z	1	1	1	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
TST m**	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	1st operand Address	m	0	1	0	1	1	1	1
TST (HL)**	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	2	0	2	0	2	0
	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	Ti	*	Z	1	1	1	1	1	1	1
	MC4	T1T23	HL	Data	0	1	0	1	1	1	1

Table 51. Bus and Control Signal Condition in Each Machine Cycle (Continued)

290

		Pi	n Status in Ea	ach Operation	Mode
Symbol	Pin Function	RESET	SLEEP	ΙΟՏΤΟΡ	SYSTEM STOP
	CKA0 (External Clock Mode)	Z	IN (A)	IN (N)	IN (N)
	DREQ0	Ζ	IN (N)	IN (A)	IN (N)
TXA1	—	1	OUT	Н	Н
RXA1	—	IN (N)	IN (A)	IN (N)	IN (N)
CKA1/TEND0	CKA1 (Internal Clock Mode)	Z	OUT	Z	Z
	CKA1 (External Clock Mode)	Z	IN (A)	IN (N)	IN (N)
	TEND0	Ζ	1	OUT	1
TXS	—	1	OUT	Н	Н
RXS/CTS ₁	RXS	IN (N)	IN (A)	IN (N)	IN (N)
	CTS1	IN (N)	IN (A)	IN (N)	IN (N)
CKS	CKS (Internal Clock Mode)	Z	OUT	1	1
	CKS (External Clock Mode)	Z	IN (A)	Z	Z
DREQ ₁	—	IN (N)	IN (N)	IN (A)	IN (N)
TEND ₁	 	1	1	OUT	1
HALT	 	1	0	OUT	0
RFSH	—	1	1	OUT	1
IORQ	—	1	1	OUT	1

Table 56. Pin Status During RESET and LOW POWER OPERATION Modes (Continued)

UM005003-0703

300

Register	Mnemonics	Addre	SS			Re	marl	KS .			
MMU Common Base	CBR	3 8						1	T	1	1
Register:			bit	CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
			during RESET	0	0	0	0	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
								Y	MMU Co	mmon Ba	ise Regis
MMU Bank Base Register	BBR	3 9		BB7	BB6	BB5	BB4	BB3	BB2	BB1	BB0
			bit during RESET	0	0	0	0	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
										I	
									MMU Ba	nk Base R	legister
MMU Common/Bank Register	CBAR	3 A	bit	CA3	CA2	CA1	CA0	BA3	BA2	BA1	BA0
			during RESET	1	1	1	1	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						ммц	J Commo	n Area Re	egister		U Bank 1 Registe
	OMCR	3 E	bit	MIE	MITE		J Commo	n Area Re	egister		U Bank 1 Registe
	OMCR	3 E	bit during RESET	MIE	MITE 1		1		-	Area	1 Registe
	OMCR	3 E				IOC	_	_	_	Area	Registe
	OMCR	3 E	during RESET	1	1 W	IOC 1 R/W	l I/O Comp	l	_	Area	Registe
	OMCR	3 E	during RESET	l R/W	1 W	IOC 1 R/W MI Temp	l I/O Comp	l	_	Area	Registe
Register			during RESET	l R/W	1 W	IOC 1 R/W MI Temp	l I/O Comp	l	_	Area	Registe
Register	OMCR ICR	3 E 3 F	during RESET R/W	l R/W	1 W MI Enable	I I R/W MI Temp	1 I/O Comp orary Ena	l	_	Area	I Registe
Register			during RESET R/W	l R/W	1 W	IOC 1 R/W MI Temp	l I/O Comp		1	Area	Registe
Operation Mode Control Register I/O Control Register:			during RESET R/W	I R/W IOA7	1 W MI Enable	IOC 1 R/W MT Temp IOSTP	I/O Comp orary Ena			Area	1 Registe

Table 57. Internal I/O Registers (Continued)

I/O Address