

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Active
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	10MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	80-BQFP
Supplier Device Package	80-QFP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018010fsg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5

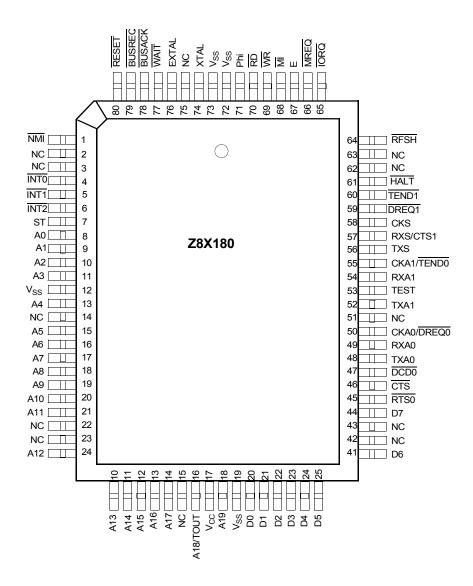


Figure 3. 80-Pin QFP

• Data Bus, 3-state

SLEEP mode is exited in one of two ways as described below.

- RESET Exit from SLEEP mode. If the RESET input is held Low for at least six clock cycles, it exits SLEEP mode and begins the normal RESET sequence with execution starting at address (logical and physical) 00000H.
- Interrupt Exit from SLEEP mode. The SLEEP mode is exited by detection of an external (NMI, INT0, INT2) or internal (ASCI, CSI/O, PRT) interrupt.

In case of $\overline{\text{NMI}}$, SLEEP mode is exited and the CPU begins the normal $\overline{\text{NMI}}$ interrupt response sequence.

In the case of all other interrupts, the interrupt response depends on the state of the global interrupt enable flag IEF1 and the individual interrupt source enable bit.

If the individual interrupt condition is disabled by the corresponding enable bit, occurrence of that interrupt is ignored and the CPU remains in the SLEEP mode.

Assuming the individual interrupt condition is enabled, the response to that interrupt depends on the global interrupt enable flag (IEF1). If interrupts are globally enabled (IEF1 is 1) and an individually enabled interrupt occurs, SLEEP mode is exited and the appropriate normal interrupt response sequence is executed.

If interrupts are globally disabled (IEF1 is 0) and an individually enabled interrupt occurs, SLEEP mode is exited and instruction execution begins with the instruction following the SLP instruction. This feature provides a technique for synchronization with high speed external events without incurring the latency imposed by an interrupt response sequence.

Figure 21 depicts SLEEP timing.

42

To avoid address conflicts with external I/O, the Z8X180 internal I/O addresses can be relocated on 64-byte boundaries within the bottom 256 bytes of the 64KB I/O address space.

I/O Control Register (ICR)

ICR allows relocating of the internal I/O addresses. ICR also controls enabling/disabling of the IOSTOP mode.

I/O Control Register (ICR: 3FH)

Bit	7	6	5	4	3	2	1	0			
Bit/Field	IOA7	IOA6	IOSTP					—			
R/W	R/W	R/W	R/W								
Reset	0	0	0								
R = Read $W = Write$ $X = Indeterminate$? = Not Applicable											

Bit Position	Bit/Field	R/W	Value	Description
7–6	IOA7:6	R/W		IOA7 and IOA6 relocate internal I/O as depicted in Figure . The high-order 8 bits of 16-bit internal I/O addresses are always 0. IOA7 and IOA6 are cleared to 0 during RESET.
5	IOSTP	R/W		IOSTOP mode is enabled when IOSTP is set to 1. Normal. I/O operation resumes when IOSTP is reset to 0.

			A	ldress	
	Register	Mnemonic	Binary	Hex	Page
Timer	Data Register Ch 0 L	TMDR0L	XX001100	0CH	159
	Data Register Ch 0 H	TMDR0H	XX001101	0DH	159
	Reload Register Ch 0 L	RLDR0L	XX001110	0EH	159
	Reload Register Ch 0 H	RLDR0H	XX001111	0FH	159
	Timer Control Register	TCR	XX010000	10H	161
	Reserved		XX010001	11H	
			\uparrow	\uparrow	
			XX010011	13H	
	Data Register Ch 1 L	TMDR1L	XX010100	14H	160
	Data Register Ch 1 H	TMDR1H	XX010101	15H	160
	Reload Register Ch 1 L	RLDR1L	XX010110	16H	159
	Reload Register Ch 1 H	RLDR1H	XX010111	17H	159
Others	Free Running Counter	FRC	XX011000	18H	172
	Reserved		XX011001	19H	
			\uparrow	\uparrow	
			XX011111	1FH	

Table 6. I/O Address Map for Z80180-Class Processors Only (Continued)

57

Whether address translation (Figure 26) takes place depends on the type of CPU cycle as follows.

Memory Cycles

Address Translation occurs for all memory access cycles including instruction and operand fetches, memory data reads and writes, hardware interrupt vector fetch, and software interrupt restarts.

• I/O Cycles

The MMU is logically bypassed for I/O cycles. The 16-bit logical I/O address space corresponds directly with the 16-bit physical I/O address space. The four high-order bits (A16–A19) of the physical address are always 0 during I/O cycles.

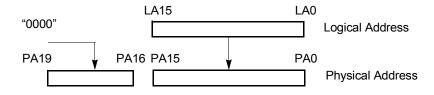


Figure 26. I/O Address Translation

• DMA Cycles

When the Z8X180 on-chip DMAC is using the external bus, the MMU is physically bypassed. The 20-bit source and destination registers in the DMAC are directly output on the physical address bus (A0–A19).

MMU Registers

Three MMU registers are used to program a specific configuration of logical and physical memory.

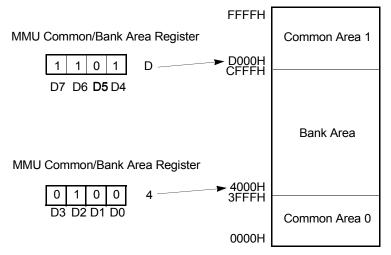


Figure 28. Logical Space Configuration (Example)

59

UM005003-0703

85

Z8X180. Figure 43 illustrates the INT1, INT2 and internal interrupts timing.

Machine							Γ	MI			
Cycle	States	Address	Data	RD	WR	MREQ	IORQ	M1E=1	M1E=0	HALT	ST
1	T1-T3	1st Op Code	EDH	0	1	0	1	0	1	1	0
2	TI-T3	2nd Op Code	4DH	0	1	0	1	0	1	1	1
3	T1	Don't Care	3-state	1	1	1	1	1	1	1	1
4	T1	Don't Care	3-state	1	1	1	1	1	1	1	1
5	T1	Don't Care	3-state	1	1	1	1	1	1	1	1
6	T1-T3	1st Op Code	EDH	0	1	0	1	0	0	1	1
7	T1	Don't Care	3-state	1	1	1	1	1	1	1	1
8	T1-T3	2nd Op Code	4DH	0	1	0	1	0	1	1	1
9	T1-T3	SP	data	0	1	0	1	1	1	1	1
10	T1-T3	SP+1	data	0	1	0	1	1	1	1	1

 Table 10.
 RETI Control Signal States

IOC affects the IORQ/RD signals. M1E affects the assertion of M1. One state also reflects a 1 while the other reflects a 0 $\,$

DREQ Input

Level- and edge-sense DREQ input detection are selectable.

TEND Output Used to indicate DMA completion to external devices.

• Transfer Rate

Each byte transfer occurs every 6 clock cycles. Wait States can be inserted in DMA cycles for slow memory or I/O devices. At the system clock (ϕ) = 6 MHz, the DMA transfer rate is as high as 1.0 megabytes/second (no Wait States).

There is an additional feature disc for DMA interrupt request by DMA END. Each channel has the following additional specific capabilities:

Channel 0

- Memory to memory
- Memory to I/O
- Memory to memory mapped I/O transfers.
- Memory address increment, decrement, no-change
- Burst or cycle steal memory to/from memory transfers
- DMA to/from both ASCI channels
- Higher priority than DMAC channel 1

Channel 1

- Memory to/from I/O transfer
- Memory address increment, decrement

DMAC Registers

Each channel of the DMAC (channel 0, 1) contains three registers specifically associated with that channel.

Bit	7	6	5	4	3	2	1	0					
Bit/Field	MPBT	MP	CTS/PS	PE0	DR	SS2	SS1	SS0					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	Х	0	0	0	0	1	1	1					
Note: R = Rea	Note: R = Read W = Write X = Indeterminate ? = Not Applicable												

ASCI Control Register B 0 (CNTLB0: 02H) ASCI Control Register B 1 (CNTLB1: 03H)

Bit Position	Bit/Field	R/W	Value	Description
7	MPBT	R/W		Multiprocessor Bit Transmit — When multiprocessor communication format is selected (MP bit is 1), MPBT is used to specify the MPB data bit for transmission. If MPBT is 1, then MPB = 1 is transmitted. If MPBT is 0, then MPBT = 0 is transmitted. MPBT state is undefined during and after RESET.
6	MP	R/W		Multiprocessor Mode — When MP is set to 1, the data format is configured for multiprocessor mode based on the MOD2 (number of data bits) and MOD0 (number of stop bits) bits in CNTLA. The format is as follows. Start bit + 7 or 8 data bits + MPB bit + 1 or 2 stop bits Multiprocessor (MP = 1) format has no provision for parity. If MP is 0, the data format is based on MOD0 MOD1, MOD2, and may include parity. The MP bit is cleared to 0 during RESET.

172

Miscellaneous

Free Running Counter (I/O Address = 18H)

If data is written into the free running counter, the interval of DRAM refresh cycle and baud rates for the ASCI and CSI/O are not guaranteed.

In IOSTOP mode, the free running counter continues counting down. It is initialized to FFH during RESET.

Free Running counter (FRC: 18H)

Bit	7	6 5		4	3	2	1	0						
Bit/Field		Counting Data												
R/W		R												
Reset	?													
Note: $R = Read$ W = Write X = Indeterminate ? = Not Applicable														

187

 Table 28.
 Z80180 DC Characteristics (Continued)

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit			
	Power Dissipation* (SYSTEM STOP mode)	f = 6 MHz f = 8 MHz f = 33 MHz	_ _ _	3.8 5 6.3	12.5 15.0 17.5	mA mA mA			
СР	Pin Capacitance	$VIN = 0V, f = 1MHz$ $TA = 25^{\circ}C$	_	_	12	pF			
$TA = 25^{\circ}C$ Notes: * VIN min = V _{CC} -1.0V. VIL max = 0.8V (All output terminals are a no load.) VCC = 5.0V									

Z8S180 DC CHARACTERISTICS

 $V_{CC} = 5V \pm 10\%$, $V_{SS} = OV$, $Ta = 0^{\circ}$ to $+70^{\circ}C$, unless otherwise noted.

Table 29. Z8S180 DC Characteristics

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
VIH1	Input High Voltage RESET, EXTAL NMI		V _{CC} –0.6	_	V _{CC} +0.3	V
VIH2	Input High Voltage except RESET, EXTAL NMI		2.0		V _{CC} +0.3	V
VIH3	Input High Voltage CKS, CKA0, CKA1		2.4		V _{DD} + 0.3	V
VIL1	Input Low Voltage RESET, EXTAL NMI		-0.3		0.6	V
VIL2	Input Low Voltage except RESET, EXTAL NMI		-0.3		0.8	V

193

AC Characteristics

This section describes the AC characteristics of the Z8X180 family and absolute maximum rating for these products.

AC CHARACTERISTICS—Z8S180

				180—20 /IHz		180—33 MHz	
No.	Symbol	Item	Min	Max	Min	Max	Unit
1	t _{CYC}	Clock Cycle Time	50	DC	30	DC	ns
2	t _{CHW}	Clock "H" Pulse Width	15		10		ns
3	t _{CLW}	Clock "L" Pulse Width	15		10		ns
4	t _{CF}	Clock Fall Time		10		5	ns
5	t _{CR}	Clock Rise Time		10		5	ns
6	t _{AD}	PHI Rise to Address Valid Delay		30		15	ns
7	t _{AS}	Address Valid to MREQ Fall or IORQ Fall)	5		5	—	ns
8	t _{MED1}	PHI Fall to MREQ Fall Delay		25		15	ns
9	t _{RDD1}	PHI Fall to \overline{RD} Fall Delay $\overline{IOC} = 1$	l —	25		15	ns
		PHI Rise to $\overline{\text{RD}}$ Rise Delay $\overline{\text{IOC}} = 0$	—	25	_	15	_
10	t _{M1D1}	PHI Rise to $\overline{M1}$ Fall Delay		35		15	ns
11	t _{AH}	Address Hold Time from MREQ, IOREQ, RD, WR High	5		5		ns

Table 31.Z8S180 AC Characteristics $V_{DD} = 5V \pm 10\%$ or $V_{DD} = 3.3V \pm 10\%$; 33-MHz Characteristics Apply Only to 5V Operation

I/O Write Cycle* I/O Read Cycle* Opcode Fetch Cycle T_2 T₃ T_1 T_2 T₃ T_1 Τ₁ Τw Tw 2 3 PHI ADDRESS М 20 20 19 19 WAIT MREQ 8 29 IORQ 11 28 13 RD 9 9 25-22 WR 26 14 M1 18 10 ST 16 15 Data IN 24 23 Data OUT 62 62-63 - 63 RESET 68 - 67 67 **⊢** 68

Timing Diagrams

Figure 81. AC Timing Diagram 1

206

218

												Γ		F	lags			
					Add	ressi	ing						7	6	4	2	1	0
Operation Name	Mnemonics	Op Code	Immed	Ext	Ind	Reg	Regi	Imp	Rel	Bytes	State s	Operation	s	z	н	P/V	N	с
		11 001 011											Γ					
		<d></d>																Í
		00 001 110																Í
	RRD	11 101 101						S/D		2	16	↓	\uparrow	↑	R	Р	R	•
		01 100 111										Ar						Í
	SLA g	11 001 011				S/D				2	7	b7 b0	\uparrow	↑	R	Р	R	\uparrow
		00 100 g																
	SLA (HL)	11 001 011					S/D			2	13	b7 b0	↑	↑	R	Р	R	↑
		00 100 110																
	SLA (IX + d)	11 011 101			S/D					4	19		↑	↑	R	Р	R	\uparrow
		11 001 011										C b7 b0						Í
		<d></d>																Í
		00 100 110																Í
	SLA (IY + d)	11 111 101			S/D					4	19		↑	↑	R	Р	R	\uparrow
		11 001 011																Í
		<d></d>																Í
		00 100 110																Í
	SRA g	11 001 011				S/D				2	7	_	\uparrow	↑	R	Р	R	\uparrow
		00 101 g																Í
	SRA (HL)	11 001 011					S/D			2	13	b7 b0 C	\uparrow	↑	R	Р	R	\uparrow
		00 101 110										b7 b0 C						
	SRA (IX + d)	11 011 101			S/D					4	19		\uparrow	↑	R	Р	R	\uparrow
		11 001 011																
		<d></d>																
		00 101 110																
	SRA (IY + d)	11 111 101			S/D					4	19		↑	↑	R	Р	R	↑
		11 001 011																
		<d></d>																
		00 101 110																
	SRL g	11 001 011				S/D				2	7		↑	↑	R	Р	R	↑
		00 111 g										b7 b0 C						

Table 39. Rotate and Shift Instructions (Continued)

263

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
LD (IX+d),m	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
LD (IY+d),m	MC3	T1T2T3	1st operand Address	d	0	1	0	1	1	1	1
	MC4	T1T2T3	2nd operand Address	m	0	1	0	1	1	1	1
	MC5	T1T2T3	IX+ d IY+d	DATA	1	0	0	1	1	1	1
LD A, (BC)	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
LD A, (DE)	MC2	T1T2T3	BC DE	DATA	0	1	0	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
LD A,(mn)	MC2	T1T2T3	1st operand Address	n	0	1	0	1	1	1	1
	MC3	T1T2T3	2nd operand Address	m	0	1	0	1	1	1	1
	MC4	T1T2T3	mn	DATA	0	1	0	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
LD (BC),A LD (DE),A	MC2	Ti	*	Z	1	1	1	1	1	1	1
X 12	MC3	T1T2T3	BC DE	А	1	0	0	1	1	1	1

 Table 51.
 Bus and Control Signal Condition in Each Machine Cycle (Continued)

265

	Machine		1		1			1	1	1	1	
Instruction	Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST	
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0	
LD HL, (mn)	MC2	T1T2T3	1st operand Address	n	0	1	0	1	1	1	1	
	MC3	T1T2T3	2nd operand Address	m	0	1	0	1	1	1	1	
	MC4	T1T2T3	mn	DATA	0	1	0	1	1	1	1	
	MC5	T1T2T3	mn+1	DATA	0	1	0	1	1	1	1	
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0	
LD ww,(mn)	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1	
	MC3	T1T2T3	1st operand Address	n	0	1	0	1	1	1	1	
	MC4	T1T2T3	2nd operand Address	m	0	1	0	1	1	1	1	
	MC5	T1T2T3	mn	DATA	0	1	0	1	1	1	1	
	MC6	T1T2T3	mn+ 1	DATA	0	1	0	1	1	1	1	
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0	
LD IX,(mn)	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1	
LD IY,(mn)	MC3	T1T2T3	1st operand Address	n	0	1	0	1	1	1	1	
	MC4	T1T2T3	2nd operand Address	m	0	1	0	1	1	1	1	
	MC5	T1T2T3	mn	DATA	0	1	0	1	1	1	1	
	MC6	T1T2T3	mn+1	DATA	0	1	0	1	1	1	1	

Table 51. Bus and Control Signal Condition in Each Machine Cycle (Continued)

275

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
RLC (HL)	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
RL (HL) RRC (HL) RR (HL)	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
SLA (HL) SRA (HL)	MC3	T1T2T3	HL	DATA	0	1	0	1	1	1	1
SRA (HL) SRL (HL)	MC4	Ti	*	Z	1	1	1	1	1	1	1
	MC5	T1T2T3	HL	DATA	1	0	0	1	1	1	1
$\frac{\text{RLC (IX + d)}}{\text{RLC (IY + d)}}$	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
RL (IX + d) $RL (IY + d)$ $RRC (IX + d)$	MC2	T1T2T3	2nd Op Code Address	2ndOp Code	0	1	0	1	0	1	1
RRC (IX + d) $RRC (IY + d)$ $RR (IX + d)$ $RR (IY + d)$	MC3	T1T2T3	1st operand Address	d	0	1	0	1	1	1	1
$\frac{RR(IY + d)}{SLA(IX + d)}$ $\frac{SLA(IY + d)}{SLA(IY + d)}$	MC4	T1T2T3	3rd Op Code Address	3rd Op Code	0	1	0	1	0	1	1
$\frac{SRA (IX + d)}{SRA (IY + d)}$ $\frac{SRL (IX + d)}{SRL (IX + d)}$	MC5	T1T2T3	IX+d IY+d	DATA	0	1	0	1	1	1	1
SRL (IY + d) SRL (IY + d)	MC6	Ti	*	Z	1	1	1	1	1	1	1
	MC7	T1T2T3	IX+d IY+d	DATA	1	0	0	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
RLD	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
RRD	MC3	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC4~M C7	TiTiTiTi *		Z	1	1	1	1	1	1	1
	MC8	T1T2T3	HL	DATA	1	0	0	1	1	1	1

 Table 51.
 Bus and Control Signal Condition in Each Machine Cycle (Continued)

300

Register	Mnemonics	Addre	Remarks								
MMU Common Base	CBR	3 8						1	T	1	
Register:			bit	CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
			during RESET	0	0	0	0	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
								Y	MMU Co	mmon Ba	ise Regis
MMU Bank Base Register	BBR	3 9		BB7	BB6	BB5	BB4	BB3	BB2	BB1	BB0
			bit during RESET	0	0	0	0	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
										I	
									MMU Ba	nk Base R	legister
MMU Common/Bank Register	CBAR	3 A	bit	CA3	CA2	CA1	CA0	BA3	BA2	BA1	BA0
			during RESET	1	1	1	1	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						ммц	J Commo	n Area Re	egister		U Bank 1 Registe
	OMCR	3 E	bit	MIE	MITE		J Commo	n Area Re	egister		U Bank 1 Registe
	OMCR	3 E	bit during RESET	MIE	MITE 1		1		-	Area	1 Registe
	OMCR	3 E				IOC	_	_	_	Area	Registe
	OMCR	3 E	during RESET	1	1 W	IOC 1 R/W	l I/O Comp	l	_	Area	Registe
	OMCR	3 E	during RESET	l R/W	1 W	IOC 1 R/W MI Temp	l I/O Comp	l	_	Area	Registe
Register			during RESET	l R/W	1 W	IOC 1 R/W MI Temp	l I/O Comp	l	_	Area	Registe
Register	OMCR ICR	3 E 3 F	during RESET R/W	l R/W	1 W MI Enable	I I R/W MI Temp	1 I/O Comp orary Ena	l	_	Area	I Registe
Register			during RESET R/W	l R/W	1 W	IOC 1 R/W MI Temp	l I/O Comp		1	Area	Registe
Operation Mode Control Register I/O Control Register:			during RESET R/W	I R/W IOA7	1 W MI Enable	IOC 1 R/W MT Temp IOSTP	I/O Comp orary Ena			Area	1 Registe

Table 57. Internal I/O Registers (Continued)

I/O Address

Register	Mnemonics	Ad	ldress				Rei	mark	s			
Interrupt Vector Low	IL	3	3									
Register				bit	IL7	IL6	IL5	—	—	—	—	—
				during RESET	0	0	0	0	0	0	0	0
				R/W	R/W	R/W	R/W					
						Inter	rupt Vecto	or Low				
INT/TRAP Control	ITC	3	4	bit	TRAP	UF0	_	—	—	ITE2	ITE1	ITE0
Register				during RESET	0	0	1	1	1	0	0	0
				R/W	R/W	R				R/W	R/W	R/W
						TRAP	Unidentifi	ied Fetch (Object	<u> </u>		INT Enable
Refresh Control Register:	RCR	3	6	bit	REFE	REFW	—	—	—	—	CYC1	CYC0
		-		during RESET	1	1	1	1	1	1	0	0
				R/W	R/W	R/W	r				R/W	R/W
						Refresh E	Refresh W nable	/ait State			Cycle	select
					Interval of		lycle					
				00001	10 states 20							
				10	40							
				11	80							

Table 57. Internal I/O Registers (Continued)