

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c554-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

	_
.0 General Description	. 5
.0 PIC16C55X Device Varieties	. 7
.0 General Description	. 9
.0 Memory Organization	13
0.0 Special Features of the CPU	31
.0 Timer0 Module	
0 Instruction Set Summary	53
.0 Development Support	67
0.0 Electrical Specifications	73
1.0 Packaging Information	87
vppendix A: Enhancements	97
ppendix B: Compatibility	97
ndex	99
Dn-Line Support 1	01
Systems Information and Upgrade Hot Line	01
Dn-Line Support	02
Product Identification System	03

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

TABLE 1-1: PIC16C55X FAMILY OF DEVICES

		PIC16C554	PIC16C557	PIC16C558
Clock	Maximum Frequency of Operation (MHz)	20	20	20
Memory	EPROM Program Memory (x14 words)	512	2K	2K
	Data Memory (bytes)	80	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0
	Interrupt Sources	3	3	3
	I/O Pins	13	22	13
Features	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5
catares	Brown-out Reset	—	—	—
	Packages	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC; 28-pin SSOP	18-pin DIP, SOIC, SSOP

I/O current capability. All PIC16C55X Family devices use serial programming with clock pin RB6 and data pin RB7.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C55X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C55X uses a Harvard architecture in which program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently from 8-bit wide data words. Instruction opcodes are 14-bit wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a singlecycle (200 ns @ 20 MHz) except for program branches. The table below lists the memory (EPROM and RAM).

Device	Program Memory (EPROM)	Data Memor (RAM)
PIC16C554	512	80
PIC16C557	2 K	128
PIC16C558	2 K	128

The PIC16C554 addresses 512 x 14 on-chip program memory. The PIC16C557 and PIC16C558 addresses 2 K x 14 program memory. All program memory is internal.

The PIC16C55X can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped into the data memory. The PIC16C55X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C55X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C55X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

TABLE 3-1:	PIC16C55X PINOUT DES					
Name	PDIP			Pin Type	Buffer Type	Description
00000000000		SOIC	SSOP			Description
OSC1/CLKIN	16	16	18		ST/CMOS	Oscillator crystal input/external clock source output.
OSC2/CLKOUT	15	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	4	4	4	I/P	ST	Master clear (Reset) input/programming voltage input. This pin is an active low RESET to the device.
RA0	17	17	19	I/O	ST	Bi-directional I/O port
RA1	18	18	20	I/O	ST	Bi-directional I/O port
RA2	1	1	1	I/O	ST	Bi-directional I/O port
RA3	2	2	2	I/O	ST	Bi-directional I/O port
RA4/T0CKI	3	3	3	I/O	ST	Bi-directional I/O port or external clock input for TMR0. Output is open drain type.
RB0/INT	6	6	7	I/O	TTL/ST ⁽¹⁾	Bi-directional I/O port can be software programmed for internal weak pull-up. RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	8	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.
RB2	8	8	9	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.
RB3	9	9	10	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.
RB4	10	10	11	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin.
RB5	11	11	12	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin.
RB6	12	12	13	I/O	TTL/ST ⁽²⁾	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin. Serial pro- gramming clock.
RB7	13	13	14	I/O	TTL/ST ⁽²⁾	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin. Serial pro- gramming data.
RC0 ⁽³⁾	18	18	18	I/O	TTL	Bi-directional I/O port input buffer.
RC1 ⁽³⁾	19	19	19	I/O	TTL	Bi-directional I/O port input buffer.
RC2 ⁽³⁾	20	20	20	I/O	TTL	Bi-directional I/O port input buffer.
RC3 ⁽³⁾	21	21	21	I/O	TTL	Bi-directional I/O port input buffer.
RC4 ⁽³⁾	22	22	22	I/O	TTL	Bi-directional I/O port input buffer.
RC5 ⁽³⁾	22	22	22	I/O	TTL	Bi-directional I/O port input buffer.
RC6 ⁽³⁾	24	24	24	I/O	TTL	Bi-directional I/O port input buffer.
RC7 ⁽³⁾	25	25	25	I/O	TTL	Bi-directional I/O port input buffer.
Vss	5	5	5,6	P		Ground reference for logic and I/O pins.
VDD	14	14	15,16	P		Positive supply for logic and I/O pins.
Legend:		= Output = Not used		/O = Input = Input	output	P = Power ST = Schmitt Trigger input
		L = TTL inp		– input		

TABLE 3-1: PIC16C55X PINOUT DESCRIPTION

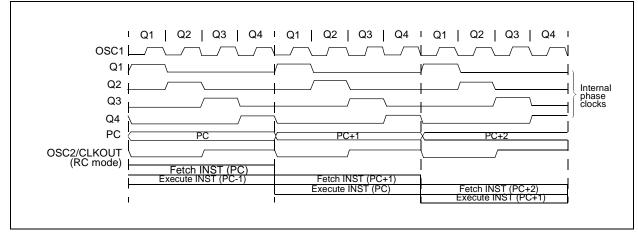
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: PIC16C557 only.

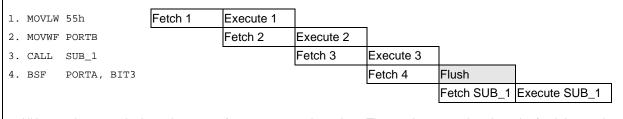
3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-2.


3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle

while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16C55X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Interrupts
- 7. Watchdog Timer (WDT)
- 8. SLEEP
- 9. Code protection
- 10. ID Locations
- 11. In-circuit serial programming[™]

The PIC16C55X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), which is intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two functions onchip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

6.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

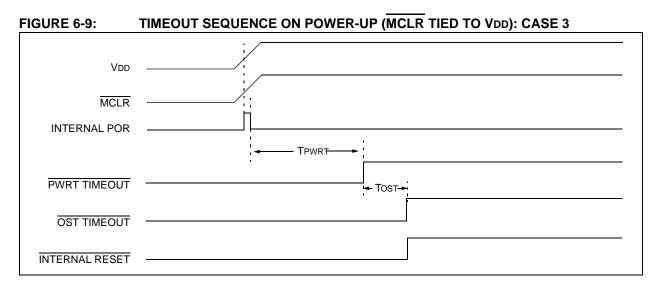
TABLE 6-5:INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0-
MCLR Reset during normal operation	000h	000u uuuu	u-
MCLR Reset during SLEEP	000h	0001 0uuu	u-
WDT Reset	000h	0000 uuuu	u-
WDT Wake-up	PC + 1	uuu0 0uuu	u-
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	u-

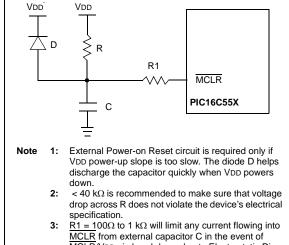
Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. **Note 1:** When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset	Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT timeout
W	—	XXXX XXXX	uuuu uuuu	uuuu uuuu
INDF	00h	_	_	_
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	03h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC ⁽⁴⁾	06h	xxxx xxxx	uuuu uuuu	սսսս սսսս
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
OPTION	81h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
TRISC ⁽⁴⁾	86h	1111 1111	1111 1111	uuuu uuuu
PCON	8Eh	0-	u-	u-

TABLE 6-6: INITIALIZATION CONDITION FOR REGISTERS


Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: One or more bits in INTCON will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 6-5 for RESET value for specific condition.

4: PIC16C557 only.

FIGURE 6-10: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

6.5.1 RB0/INT INTERRUPT

An external interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 6.8 for details on SLEEP and Figure 6-14 for timing of wakeup from SLEEP through RB0/INT interrupt.

6.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 7.0.

6.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may get set.

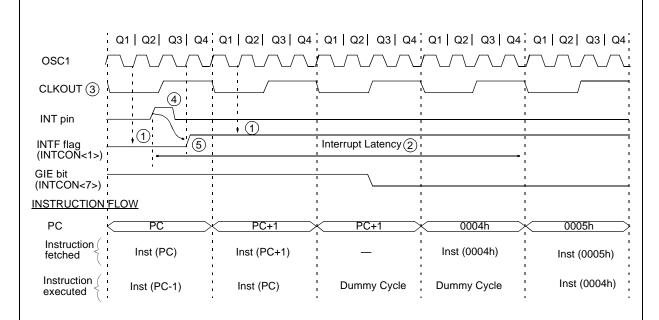


FIGURE 6-12: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4 TCY where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in RC Oscillator mode.
- 4: For minimum width of INT pulse, refer to AC specs.
- 5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

8.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Encoding:	11 111x kkkk kkkk
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.
Words:	1
Cycles:	1
Example	ADDLW 0x15
	Before Instruction
	W = 0x10
	After Instruction
	W = 0x25

ADDWF	Add W and f				
Syntax:	[label] ADDWF f,d				
Operands:	$0 \le f \le 127$				
	$d \in [0,1]$				
Operation:	$(W) + (f) \to (dest)$				
Status Affected:	C, DC, Z				
Encoding:	00 0111 dfff ffff				
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ADDWF FSR, 0				
	Before Instruction				
	W = 0x17				
	FSR = 0xC2				
	After Instruction				
	W = 0xD9				
	FSR = 0xC2				

ANDLW	AND Li	teral wit	h W		
Syntax:	[label]	ANDLW	/ k		
Operands:	$0 \le k \le 2$	255			
Operation:	(W) .AN	ID. (k) →	• (W)		
Status Affected:	Z				
Encoding:	11	1001	kkkk	kkkk	
	The conter AND'ed wi result is pl	th the eig	ht bit literal	'k'. The	
Words:	1				
Cycles:	1				
Example	ANDLW	0x5F			
	Before Instruction				
	W	=	0xA3		
	After Ins	struction			
	W	=	0x03		

ANDWF	AND W with f					
Syntax:	[label] ANDWF f,d					
Operands:	$0 \le f \le 127$					
	$d \in [0,1]$					
Operation:	(W) .AND. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 0101 dfff ffff					
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ANDWF FSR, 1					
	Before Instruction					
	W = 0x17					
	FSR = 0xC2					
	After Instruction					
	W = 0x17					
	FSR = 0x02					

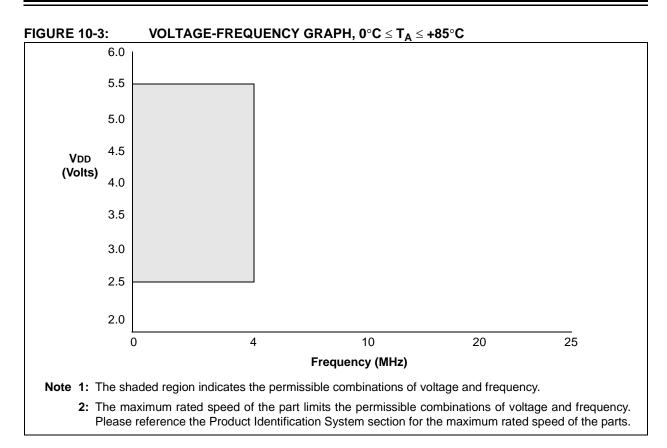
-

CLRW	Clear W	V				
Syntax:	[label] CLRW					
Operands:	None					
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)				
Status Affected:	Z					
Encoding:	00	0001	0000	0011		
Description:	W register set.	is clear	ed. Zero bit	(Z) is		
Words:	1					
Cycles:	1					
Example	CLRW					
	Before Instruction					
	W	=	0x5A			
	After Instruction					
	W	=	0x00			
	Z	=	1			

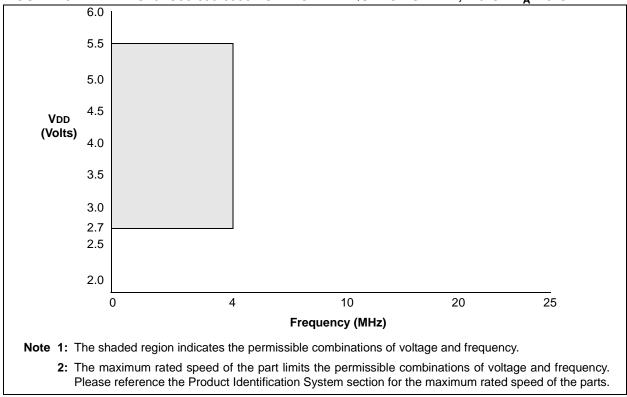
COMF	Comple	ement f						
Syntax:	[label]	[label] COMF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7						
Operation:	$(\overline{f}) \rightarrow (des$	st)						
Status Affected:	Z							
Encoding:	00	1001	dfff	ffff				
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example	COMF	REG1,0)					
	Before In	struction						
	REG1 = 0x13							
	After Instruction							
	REG	1 =	0x13					
	W	=	0xEC					

Clear Watchdog Timer						
[label] CLRWDT						
None						
$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$						
TO, PD						
00 0000 0110 0100						
CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.						
1						
1						
CLRWDT						
Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1						

.....


DECF	Decrement f						
Syntax:	[label] DECF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(f) - 1 \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00 0011 dfff ffff						
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	DECF CNT, 1						
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1						

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$
Status Affected:	None
Encoding:	00 0000 0000 1001
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	RETFIE
	After Interrupt PC = TOS GIE = 1


RETURN	Return	from Su	Ibroutine	•
Syntax:	[label]	RETUR	N	
Operands:	None			
Operation:	$TOS\toF$	ъС		
Status Affected:	None			
Encoding:	00	0000	0000	1000
Description:	POPed an is loaded i	d the top nto the pr	tine. The s of the stack ogram counstruction.	k (TOS) inter.
Words:	1			
Cycles:	2			
Example	RETURN			
	After Inte PC	rrupt = T	OS	

RETLW	Return with Literal in W	I
Syntax:	[<i>label</i>] RETLW k	S
Operands:	$0 \le k \le 255$	0
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$	0
Status Affected:	None	St
Encoding:	11 01xx kkkk kkkk	E
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	D
Words:	1	
Cycles:	2	
Example	CALL TABLE;W contains table ;offset value • ;W now has table value •	W C <u>y</u> Ex
TABLE	<pre>ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>	
	Before Instruction	
	W = 0x07	
	After Instruction	
	W = value of k8	

RLF	Rotate Left f through Carry							
yntax:	[<i>label</i>] RLF f,d							
perands:	0 ≤ f ≤ 127 d ∈ [0,1]							
peration:	See description below							
tatus Affected:	С							
ncoding:	00 1101 dfff ffff							
escription:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.							
/ords:	1							
ycles:	1							
xample	RLF REG1,0							
	Before Instruction							
	REG1 = 1110 0110							
	C = 0							
	After Instruction							
	REG1 = 1110 0110							
	W = 1100 1100							
	C = 1							

^{© 1996-2013} Microchip Technology Inc.

10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

DC Characteristics			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Vdd	Supply Voltage					
D001		16LC55X	3.0 2.5	_	5.5 5.5	V	XT and RC osc configuration LP osc configuration
D001 D001A		16C55X	3.0 4.5		5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 6.4, Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 6.4, Power-on Reset for details
	Idd	Supply Current ⁽²⁾					
D010		16LC55X	_	1.4	2.5	mA	XT and RC osc configuration Fosc = 2.0 MHz, VDD = 3.0V, WDT disabled ⁽⁴⁾
D010A			_	26	53	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D010		16C55X	_	1.8	3.3	mA	XT and RC osc configuration Fosc = 4 MHz, VDD = 5.5V, WDT disabled ⁽⁴⁾
D010A			_	35	70	μΑ	LP osc configuration, PIC16C55X-04 only Fosc = 32 kHz, VDD = 4.0V, WDT disabled
D013			—	9.0	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

<u>OSC1</u> = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

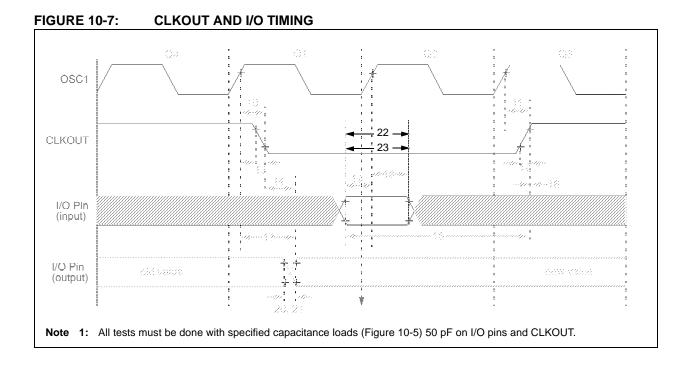
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

DC Cha	racteristi	cs					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D020	IPD	Power-Down Current ⁽³⁾					
		16LC55X	_	0.7	2	μA	VDD = 3.0V, WDT disabled
		16C55X	—	1.0	2.5 15	μΑ μΑ	VDD = 4.0V, WDT disabled (+85°C to +125°C)
	ΔI WDT	WDT Current ⁽⁵⁾					
		16LC55X	_	6.0	15	μΑ	VDD = 3.0V
		16C55X	_	6.0	20	μΑ	VDD = 4.0V (+85°C to +125°C)

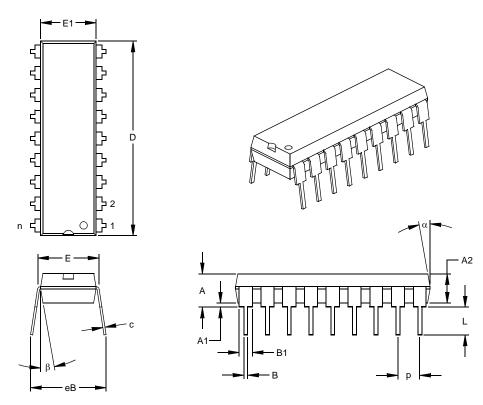
* These parameters are characterized but not tested.

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

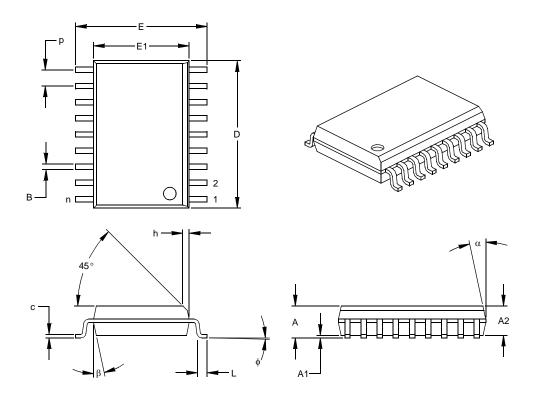

OSC1 = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD,

- $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or VSS.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32	
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26	
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60	
Overall Length	D	.890	.898	.905	22.61	22.80	22.99	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	


* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revised. Three different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16C55X devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON status register is added with a Power-on Reset (POR) status bit.
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16C55X, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

APPENDIX C: REVISION HISTORY

Revision E (January 2013)

Added a note to each package outline drawing.

INDEX

A

ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	9
Assembler	
MPASM Assembler	67

В

BCF Instruction	
Block Diagram	
TIMER0	47
TMR0/WDT PRESCALER	50
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	57

С

CALL Instruction	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	
CLRW Instruction	
CLRWDT Instruction	
Code Protection	
COMF Instruction	
Configuration Bits	

D

Data Memory Organization	
DECF Instruction	58
DECFSZ Instruction	59
Development Support	67

Ε

Errata3	
External Crystal Oscillator Circuit	

G

General purpose Register File13	
GOTO Instruction	

I

	~~
I/O Ports	
I/O Programming Considerations	28
ICEPIC In-Circuit Emulator	
ID Locations	46
INCF Instruction	
INCFSZ Instruction	
In-Circuit Serial Programming	46
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	55
ADDWF	55
ANDLW	55
ANDWF	55
BCF	56
BSF	56
BTFSC	56
BTFSS	67
B1F33	57
CALL	

CLRW	58
CLRWDT	58
COMF	58
DECF	58
DECFSZ	59
GOTO	59
INCF	59
INCFSZ	60
IORLW	60
IORWF	60
MOVF	61
MOVLW	60
MOVWF	61
NOP	61
OPTION	61
RETFIE	62
RETLW	62
RETURN	62
RLF	62
RRF	63
SLEEP	63
SUBLW	63
SUBWF	64
SWAPF	64
TRIS	64
XORLW	65
XORWF	65
Instruction Set Summary	53
INT Interrupt	
INTCON Register	19
Interrupts	41
IORLW Instruction	
IORWF Instruction	60

Κ

М

MOVF Instruction
MOVLW Instruction
MOVWF Instruction
MPLAB C17 and MPLAB C18 C Compilers 67
MPLAB ICD In-Circuit Debugger 69
MPLAB ICE High Performance Universal In-Circuit Emulator
with MPLAB IDE 68
MPLAB Integrated Development Environment Software 67
MPLINK Object Linker/MPLIB Object Librarian 68

Ν

NOP Instruction	61
	01

0

One-Time-Programmable (OTP) Devices	7
OPTION Instruction	61
OPTION Register	
Oscillator Configurations	33
Oscillator Start-up Timer (OST)	36

Ρ

)
)
)
)
)