

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c554t-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C55X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C55X uses a Harvard architecture in which program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently from 8-bit wide data words. Instruction opcodes are 14-bit wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a singlecycle (200 ns @ 20 MHz) except for program branches. The table below lists the memory (EPROM and RAM).

Device	Program Memory (EPROM)	Data Memor (RAM)	
PIC16C554	512	80	
PIC16C557	2 K	128	
PIC16C558	2 K	128	

The PIC16C554 addresses 512 x 14 on-chip program memory. The PIC16C557 and PIC16C558 addresses 2 K x 14 program memory. All program memory is internal.

The PIC16C55X can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped into the data memory. The PIC16C55X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C55X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C55X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

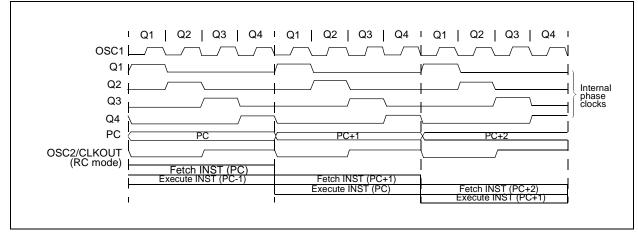
The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

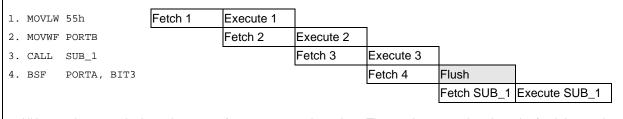
3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-2.


3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle

while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Detail on Page:
Bank 0											
00h	INDF		Addressing this location uses contents of FSR to address data memory (not a physical register)							XXXX XXXX	21
01h	TMR0	Timer0 N	/lodule's Re	egister						xxxx xxxx	47
02h	PCL	Program	Counter's	(PC) Leas	t Significa	nt Byte				0000 0000	21
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	17
04h	FSR	Indirect of	data memo	ry address	s pointer					xxxx xxxx	21
05h	PORTA	-	—	—	RA4	RA3	RA2	RA1	RA0	x xxxx	23
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	25
07h	PORTC ⁽⁴⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	27
08h	_	Unimple	mented							_	
09h	_	Unimple	mented							_	
0Ah	PCLATH	_	—		Write but	fer for upp	per 5 bits o	of progran	n counter	0 0000	21
0Bh	INTCON	GIE	(3)	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	19
0Ch	—	Unimple	mented							_	
0Dh-1Eh	—	Unimple	mented							_	—
1Fh	—	Unimple	mented							_	_
Bank 1											
80h	INDF	Addressi physical	ing this loca register)	ation uses	contents	of FSR to a	address d	ata memo	ory (not a	XXXX XXXX	21
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	18
82h	PCL	Program	Counter's	(PC) Leas	t Significa	nt Byte				0000 0000	21
83h	STATUS	_	_	RP0	TO	PD	Z	DC	С	0001 1xxx	17
84h	FSR			Indirect d	ata memo	ry address	s pointer			xxxx xxxx	21
85h	TRISA	-	—	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	23
86h	TDIOD						TDIODO	TDICD4			05
0011	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	25
87h	TRISB	TRISB7 TRISC7	TRISB6 TRISC6	TRISB5 TRISC5	TRISB4 TRISC4	TRISB3 TRISC3	TRISB2	TRISC1	TRISB0 TRISC0	1111 1111 1111 1111	25
			TRISC6								
87h		TRISC7	TRISC6 mented								
87h 88h		TRISC7 Unimple	TRISC6 mented		TRISC4		TRISC2	TRISC1	TRISC0		27 —
87h 88h 89h	TRISC ⁽⁴⁾ — —	TRISC7 Unimple	TRISC6 mented		TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — —	27 — —
87h 88h 89h 8Ah	TRISC ⁽⁴⁾ — — PCLATH	TRISC7 Unimple Unimple	TRISC6 mented mented (3)	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — — —————————————————————————	27 — — 21
87h 88h 89h 8Ah 8Bh	TRISC ⁽⁴⁾ — — PCLATH	TRISC7 Unimple Unimple GIE	TRISC6 mented mented (3) mented	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — — —————————————————————————	27 — — 21
87h 88h 89h 8Ah 8Bh 8Ch	TRISC ⁽⁴⁾ — — PCLATH	TRISC7 Unimple Unimple GIE Unimple	TRISC6 mented mented (3) mented	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — — —————————————————————————	27 — — 21
87h 88h 89h 8Ah 8Bh 8Ch 8Dh	TRISC ⁽⁴⁾ — PCLATH INTCON — —	TRISC7 Unimple Unimple GIE Unimple	TRISC6 mented — (3) mented mented	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1 of program INTF	TRISC0	1111 1111 	27 — 21 19 —

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16C55X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: IRP & RP1 bits are reserved, always maintain these bits clear.

3: Bit 6 of INTCON register is reserved for future use. Always maintain this bit as clear.

4: PIC16C557 only.

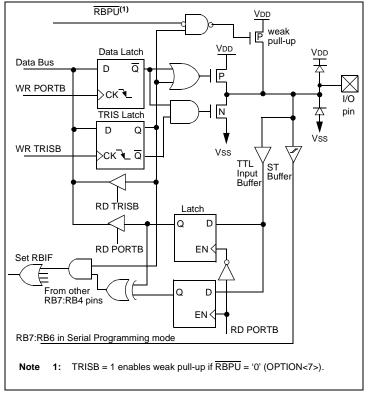
5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

Reading PORTB register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:


- Any read or write of PORTB (this will end the mismatch condition)
- Clear flag bit RBIF

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

The interrupt on mismatch feature, together with software configurable pull-ups on these four pins, allows easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552 in the Microchip *Embedded Control Handbook*.)

Note 1: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 5-3: BLOCK DIAGRAM OF RB7:RB4 PINS

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16C55X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Interrupts
- 7. Watchdog Timer (WDT)
- 8. SLEEP
- 9. Code protection
- 10. ID Locations
- 11. In-circuit serial programming[™]

The PIC16C55X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), which is intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two functions onchip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

6.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

6.2 Oscillator Configurations

6.2.1 OSCILLATOR TYPES

The PIC16C55X can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

6.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 6-1). The PIC16C55X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 6-2).

FIGURE 6-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

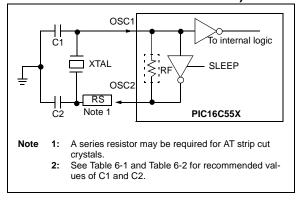
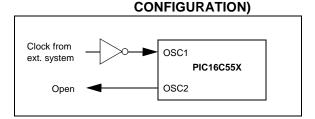



FIGURE 6-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 6-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS (PRELIMINARY)

Ranges					
Mode	Freq	OSC1(C1)	OSC2(C2)		
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	22 - 100 pF 15 - 68 pF 15 - 68 pF		
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF		
Note 1:	Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design				

of the oscillator but also increases the
start-up time. These values are for design
guidance only. Since each resonator has
its own characteristics, the user should
consult with the resonator manufacturer for
appropriate values of external compo-
nents.

TABLE 6-2:	CAPACITOR SELECTION FOR
	CRYSTAL OSCILLATOR
	(PRELIMINARY)

Mode	Freq	OSC1(C1)	OSC2(C2)		
LP	32 kHz	68 - 100 pF	68 - 100 pF		
	200 kHz	15 - 30 pF	15 - 30 pF		
XT	100 kHz	68 - 150 pF	150 - 200 pF		
	2 MHz	15 - 30 pF	15 - 30 pF		
	4 MHz	15 - 30 pF	15 - 30 pF		
HS	8 MHz	15 - 30 pF	15 - 30 pF		
	10 MHz	15 - 30 pF	15 - 30 pF		
	20 MHz	15 - 30 pF	15 - 30 pF		
Note 1:	Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid over- driving crystals with low-drive level specifi- cation. Since each crystal has its own characteristics, the user should consult with the crystal manufacturer for appropri- ate values of external components.				

6.5.1 RB0/INT INTERRUPT

An external interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 6.8 for details on SLEEP and Figure 6-14 for timing of wakeup from SLEEP through RB0/INT interrupt.

6.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 7.0.

6.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may get set.

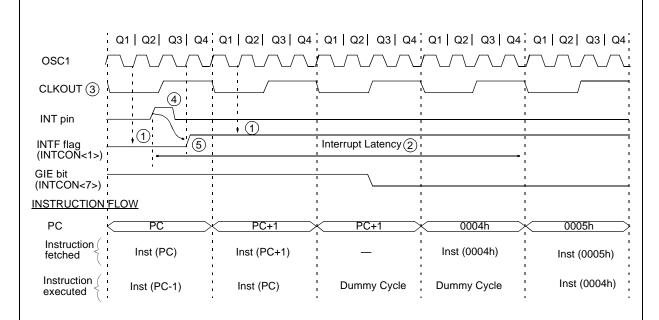
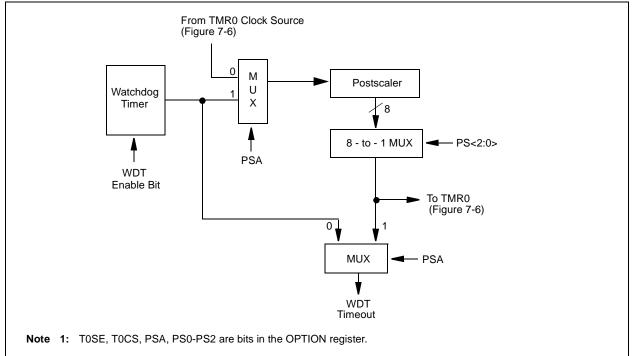



FIGURE 6-12: INT PIN INTERRUPT TIMING

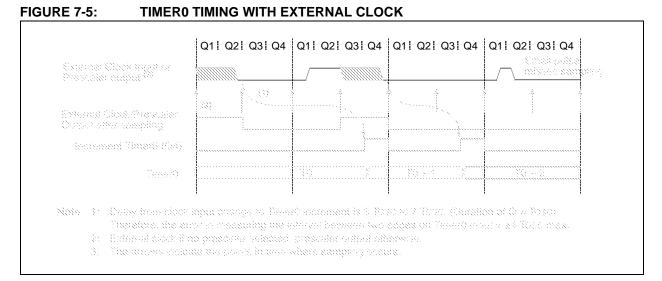
Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4 TCY where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in RC Oscillator mode.
- 4: For minimum width of INT pulse, refer to AC specs.
- 5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
2007h	Config. bits	—	Reserved	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0		
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

7.2 Using Timer0 with External Clock


When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4TOSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

7.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note: There is only one prescaler available which is mutually exclusive between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

© 1996-2013 Microchip Technology Inc.

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to WDT. Lines 5-7 are required only if the desired postscaler rate is 1:1 (PS<2:0> = 000) or 1:2 (PS<2:0> = 001).

EXAMPLE 7-1:	CHANGING PRESCALER
	(TIMER0→WDT)

BCF	STATUS, RPO	;Skip if already in
		;Bank 0 CLRWDT Clear WDT
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	'00101111 <i>'</i> b	;These 3 lines (5, 6, 7)
MOVWF	OPTION	;Are required only if
		;Desired PS<2:0> are
		;CLRWDT 000 or 001
MOVLW	'00101xxx'b	;Set Postscaler to
MOVWF	OPTION	;Desired WDT rate
BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module use the sequence shown in Example 7-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 7-2: CHANGING PRESCALER (WDT→TIMER0)

	(· / · ····=···/
CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
MOVWF	OPTION	
BCF	STATUS, RPO	

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	TMR0 Timer0 module's register								xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	Reserved	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	—		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0',

Note 1: Shaded bits are not used by TMR0 module.

NOTES:

PIC16C55X

INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f		
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$		
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)		
Status Affected:	None	Status Affected:	Z		
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff		
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.	Description: Words: Cycles:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. 1		
Words:	1	Example	IORWF RESULT, 0		
Cycles:	1(2)		Before Instruction RESULT = 0x13		
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • • •		W = 0x91 After Instruction RESULT = 0x13 W = 0x93		
	Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if $CNT = 0$, PC = address CONTINUE if $CNT \neq 0$, PC = address HERE + 1		Z = 1		

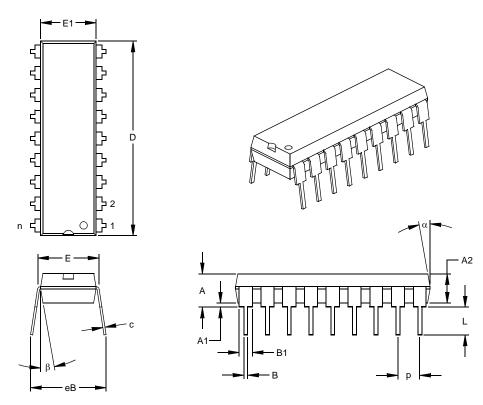
IORLW	Inclusiv	ve OR I	Literal wit	h W		
Syntax:	[label]	IORLV	/ k			
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Encoding:	11	1000	kkkk	kkkk		
Description:	OR'ed with	n the eig	e W register ht bit literal the W regist	'k'. The		
Words:	1					
Cycles:	1					
Example	IORLW	0x35				
	Before In	structio	n			
	W	=	0x9A			
	After Inst	ruction				
	W	=	0xBF			
	Z	=	1			

MOVLW	Move Literal to W						
Syntax:	[<i>label</i>] MOVLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W)$						
Status Affected:	None						
Encoding:	11	00xx	kkkk	kkkk			
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.						
Words:	1						
Cycles:	1						
Example	MOVLW	0x5A					
	After Instruction W = 0x5A						

RRF	Rotate	Right f	throu	igh (Carry	
Syntax:	[label]	RRF 1	,d			
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Encoding:	00 1100 dfff ffff					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.					
			Regist	ter f	┠┺	
Words:	1		Regist	ter f]•	
Words: Cycles:	1 1]-▶[Regist	ter f]•]	
	•]-•[ter f] •]	
Cycles:	1		REG		<u>}</u>	
Cycles:	1 RRF	struction	REG	\$1,0	.0	
Cycles:	1 RRF Before Ins	struction	REG n 1110	\$1,0	.0	
Cycles:	1 RRF Before In REG	struction 1 = 1 = (REG n 1110	\$1,0	.0	
Cycles:	1 RRF Before In REG C	struction 1 = 1 = 0 ruction	REG n 1110	\$1,0	-	
Cycles:	1 RRF Before Ins REG C After Instr	struction 1 = 2 = 0 ruction 1 = 2	REG N L110	;1,0 011 011	.0	

SLEEP

Syntax:	[<i>label</i>]	SLEEP			
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$				
Status Affected:	$\overline{\text{TO}}, \overline{\text{PD}}$				
Encoding:	00	0000	0110	0011	
Description:	The power-down status bit, <u>PD</u> is cleared. Timeout status bit, <u>TO</u> is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 6.8 for more details				
Words:	1				
Cycles:	1				
Example:	SLEEP				


SUBLW	Subtract W from Literal						
Syntax:	[label] S	UBLW	k				
Operands:	$0 \le k \le 255$	$0 \le k \le 255$					
Operation:	k - (W) → ($k - (W) \to (W)$					
Status Affected:	C, DC, Z						
Encoding:	11	110x	kkkk	kkkk			
Description:	plement met	The W register is subtracted (2's com- plement method) from the eight bit literal 'k'. The result is placed in the W register.					
Words:	1						
Cycles:	1						
Example 1:	SUBLW	0x02					
	Before Inst	ruction					
	W	= 1					
	С	= ?)				
	After Instru	ction					
	W	= 1					
	С	= 1	; result is	positive			
Example 2:	Before Inst	ruction					
	W	= 2	2				
	С	= ?)				
	After Instru	ction					
	W	= 0)				
	С	= 1	; result is	s zero			
Example 3:	Before Inst	ruction					
	W	= 3	3				
	С	= ?)				
	After Instru	ction					
	W)xFF				
	C	= 0); result i	s nega-			

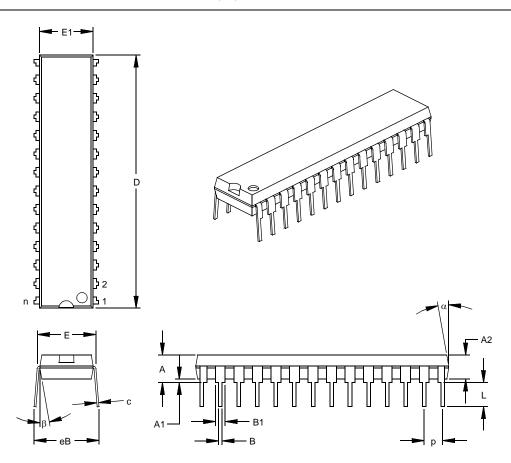
tive

 \odot 1996-2013 Microchip Technology Inc.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ision L	imits n p	MIN	NOM	MAX	MIN	NOM	MAX
							100 01
	n		28			28	
	Р		.100			2.54	
	Α	.140	.150	.160	3.56	3.81	4.06
	A2	.125	.130	.135	3.18	3.30	3.43
	A1	.015			0.38		
	Е	.300	.310	.325	7.62	7.87	8.26
	E1	.275	.285	.295	6.99	7.24	7.49
	D	1.345	1.365	1.385	34.16	34.67	35.18
	L	.125	.130	.135	3.18	3.30	3.43
	С	.008	.012	.015	0.20	0.29	0.38
	B1	.040	.053	.065	1.02	1.33	1.65
	В	.016	.019	.022	0.41	0.48	0.56
§	eB	.320	.350	.430	8.13	8.89	10.92
	α	5	10	15	5	10	15
	β	5	10	15	5	10	15
	§	A A2 A1 E D L C B1 § α	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revised. Three different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16C55X devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON status register is added with a Power-on Reset (POR) status bit.
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16C55X, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

APPENDIX C: REVISION HISTORY

Revision E (January 2013)

Added a note to each package outline drawing.

INDEX

A

ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	9
Assembler	
MPASM Assembler	67

В

BCF Instruction	
Block Diagram	
TIMER0	47
TMR0/WDT PRESCALER	50
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	57

С

CALL Instruction	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	57
CLRW Instruction	
CLRWDT Instruction	
Code Protection	
COMF Instruction	
Configuration Bits	

D

Data Memory Organization	
DECF Instruction	58
DECFSZ Instruction	59
Development Support	67

Ε

Errata3	
External Crystal Oscillator Circuit	

G

General purpose Register File13	
GOTO Instruction	

I

	~~
I/O Ports	
I/O Programming Considerations	28
ICEPIC In-Circuit Emulator	
ID Locations	46
INCF Instruction	
INCFSZ Instruction	
In-Circuit Serial Programming	46
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	55
ADDWF	55
ANDLW	55
ANDWF	55
BCF	56
BSF	56
BTFSC	56
BTFSS	67
B1F33	57
CALL	

CLRW	58
CLRWDT	58
COMF	58
DECF	58
DECFSZ	59
GOTO	59
INCF	59
INCFSZ	60
IORLW	60
IORWF	60
MOVF	61
MOVLW	60
MOVWF	61
NOP	61
OPTION	61
RETFIE	62
RETLW	62
RETURN	62
RLF	62
RRF	63
SLEEP	63
SUBLW	63
SUBWF	64
SWAPF	64
TRIS	64
XORLW	65
XORWF	65
Instruction Set Summary	53
INT Interrupt	
INTCON Register	19
Interrupts	41
IORLW Instruction	
IORWF Instruction	60

Κ

М

MOVF Instruction
MOVLW Instruction
MOVWF Instruction
MPLAB C17 and MPLAB C18 C Compilers 67
MPLAB ICD In-Circuit Debugger 69
MPLAB ICE High Performance Universal In-Circuit Emulator
with MPLAB IDE 68
MPLAB Integrated Development Environment Software 67
MPLINK Object Linker/MPLIB Object Librarian 68

Ν

NOP Instruction	61
	01

0

One-Time-Programmable (OTP) Devices	7
OPTION Instruction	61
OPTION Register	
Oscillator Configurations	33
Oscillator Start-up Timer (OST)	36

Ρ

)
)
)
)
)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1996-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769737

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.