

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

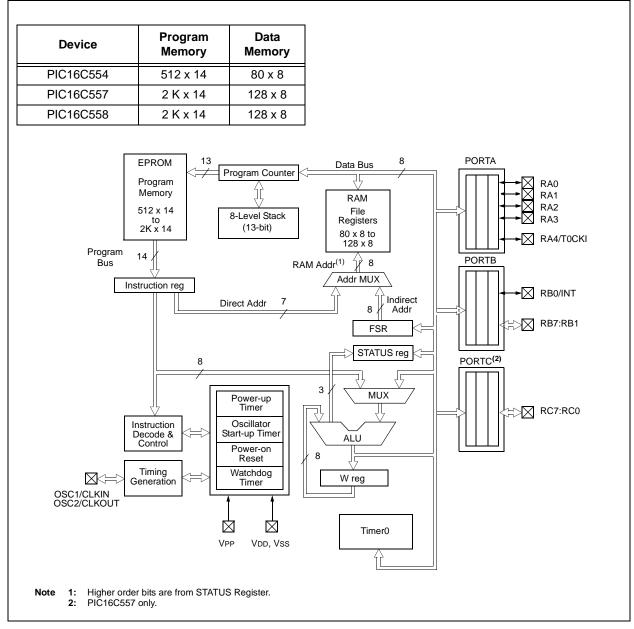
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c558-04e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


TABLE 1-1: PIC16C55X FAMILY OF DEVICES

		PIC16C554	PIC16C557	PIC16C558	
Clock	Maximum Frequency of Operation (MHz)	20	20	20	
Memory	EPROM Program Memory (x14 words)	512	2K	2K	
	Data Memory (bytes)	80	128	128	
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	
	Interrupt Sources	3	3	3	
	I/O Pins	13	22	13	
Features	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5	
catares	Brown-out Reset	—	—	—	
	Packages	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC; 28-pin SSOP	18-pin DIP, SOIC, SSOP	

I/O current capability. All PIC16C55X Family devices use serial programming with clock pin RB6 and data pin RB7.

PIC16C55X

FIGURE 3-1: BLOCK DIAGRAM

4.2.2.4 PCON Register

The PCON register contains a flag bit to differentiate between a Power-on Reset, an external MCLR Reset or WDT Reset. See Section 6.3 and Section 6.4 for detailed RESET operation.

REGISTER 4-4: PCON REGISTER (ADDRESS 8Eh) U-0 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 POR bit7 bit 7-2 Unimplemented: Read as '0' bit 1 POR: Power-on Reset status bit 1 = No Power-on Reset occurred 0 = Power-on Reset occurred bit 0 Unimplemented: Read as '0' Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit0

TABLE 5-1: PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function
RA0	Bit 0	ST	Bi-directional I/O port.
RA1	Bit 1	ST	Bi-directional I/O port.
RA2	Bit 2	ST	Bi-directional I/O port.
RA3	Bit 3	ST	Bi-directional I/O port.
RA4/T0CKI	Bit 4	ST	Bi-directional I/O port or external clock input for TMR0. Output is open drain type.

Legend: ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA	—	_		RA4	RA3	RA2	RA1	RA0	x xxxx	u uuuu
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0', x = unknown, u = unchanged

Note 1: Shaded bits are not used by PORTA.

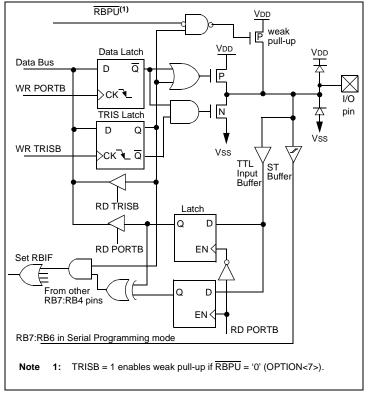
5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

Reading PORTB register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:


- Any read or write of PORTB (this will end the mismatch condition)
- Clear flag bit RBIF

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

The interrupt on mismatch feature, together with software configurable pull-ups on these four pins, allows easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552 in the Microchip *Embedded Control Handbook*.)

Note 1: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 5-3: BLOCK DIAGRAM OF RB7:RB4 PINS

5.4 I/O Programming Considerations

5.4.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit 0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-1 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}$, ${\tt BSF}$, etc.) on an I/O port.

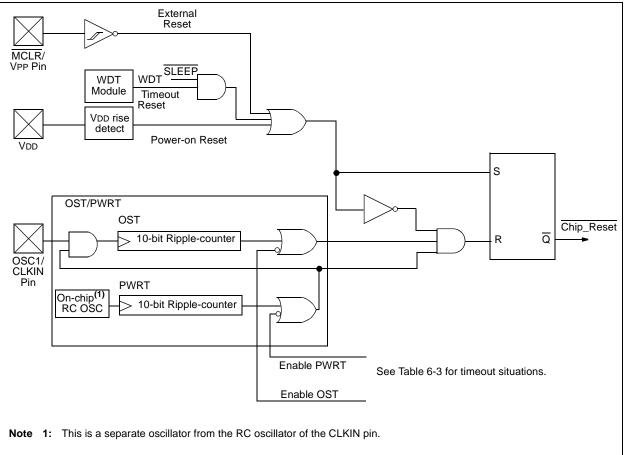
A pin actively outputting a low or high should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip. NOTES:

REGISTER 6-1: CONFIGURATION WORD

	CP1	CP0	CP1	CP0	CP1	CP0	—	Reserved	CP1	CP0	PWRTE	WDTE	F0SC1	F0SC0
	bit 13													bit 0
				(4)										
bit 13-8			protection		ion off									
bit 5-4	10 = 04 01 = 02	11 = Program Memory code protection off 10 = 0400h - 07FFh code protected 01 = 0200h - 07FFh code protected 11 = 0000h - 07FFh code protected												
bit 7	Unimpl	emented	I: Read as	s '1'										
bit 6	Reserv	ed: Do no	ot use											
bit 3	1 = PW	: Power- RT disab RT enabl	led	Enable bi	t									
bit 2	WDTE:	Watchdo	g Timer E	nable bit										
		T enable T disable	-											
bit 1-0	FOSC1	:FOSC0:	Oscillator	r Selectior	n bits									
		C oscillato												
		S oscillato F oscillato												
	00 = LF	oscillato	or											
	Note	1: All c	of the CP1	I:CP0 pair	s have to	be given	the same	value to ena	ble the o	code pro	tection sche	eme listed.		
	Legend	1:												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	s '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

6.3 RESET


The PIC16C55X differentiates between various kinds of RESET:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (normal operation)
- WDT wake-up (SLEEP)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset, on MCLR or WDT Reset and on MCLR Reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 6-4. These bits are used in software to determine the nature of the RESET. See Table 6-6 for a full description of RESET states of all registers. A simplified block diagram of the on-chip RESET circuit is shown in Figure 6-6.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 10-3 for pulse width specification.

6.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 6-1 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 6-1:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

EXAMPLE 6-1: SAVING THE STATUS AND W REGISTERS IN RAM

	117	
MOVWF	W_TEMP	;copy W to TEMP ;register, could be in
		-
		;either bank
SWAPF	STATUS,W	;swap STATUS to be
		;saved into W
BCF	STATUS, RPO	;change to bank0
		;regardless of
		;current bank
MOVWF	STATUS_TEMP	;save STATUS to bank0
		;register
:		
:		
:		
SWAPF	STATUS_TEMP, W	1;swap STATUS_TEMP
		;register into W, sets
		;bank to original state
MOVWF	STATUS	;move W into STATUS
		;register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

6.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET. If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 6.1).

6.7.1 WDT PERIOD

The WDT has a nominal timeout period of 18 ms, (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part-to-part (see DC specs). If longer timeout periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer timeout.

6.7.2 WDT PROGRAMMING CONSIDERATIONS

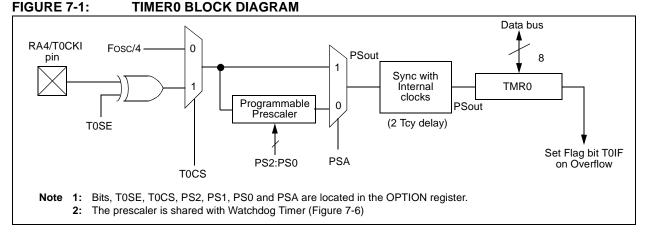
It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT timeout occurs.

7.0 TIMER0 MODULE

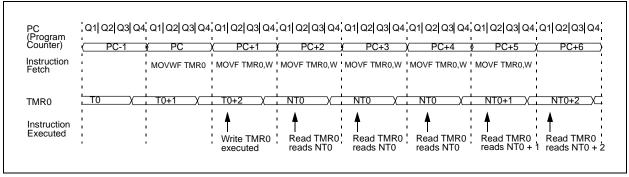
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.


Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the TOSE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.


The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 TIMER0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

FIGURE 7-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER

NOTES:

8.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Encoding:	11 111x kkkk kkkk
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.
Words:	1
Cycles:	1
Example	ADDLW 0x15
	Before Instruction
	W = 0x10
	After Instruction
	W = 0x25

ADDWF	Add W and f							
Syntax:	[label] ADDWF f,d							
Operands:	$0 \le f \le 127$							
	$d \in [0,1]$							
Operation:	$(W) + (f) \to (dest)$							
Status Affected:	C, DC, Z							
Encoding:	00 0111 dfff ffff							
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example	ADDWF FSR, 0							
	Before Instruction							
	W = 0x17							
	FSR = 0xC2							
	After Instruction							
	W = 0xD9							
	FSR = 0xC2							

ANDLW	AND Li	teral wit	h W				
Syntax:	[label]	ANDLW	/ k				
Operands:	$0 \le k \le 2$	255					
Operation:	(W) .AN	ID. (k) →	• (W)				
Status Affected:	Z						
Encoding:	11	1001	kkkk	kkkk			
	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.						
Words:	1						
Cycles:	1						
Example	ANDLW	0x5F					
	Before I	nstructio	on				
	W	=	0xA3				
	After Ins	struction					
	W	=	0x03				

ANDWF	AND W with f							
Syntax:	[label] ANDWF f,d							
Operands:	$0 \leq f \leq 127$							
	$d \in [0,1]$							
Operation:	(W) .AND. (f) \rightarrow (dest)							
Status Affected:	Z							
Encoding:	00 0101 dfff ffff							
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example	ANDWF FSR, 1							
	Before Instruction							
	W = 0x17							
	FSR = 0xC2							
	After Instruction							
	W = 0x17							
	FSR = 0x02							

-

9.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE® II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

9.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

9.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

9.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

9.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

9.5 MPLAB SIM Software Simulator

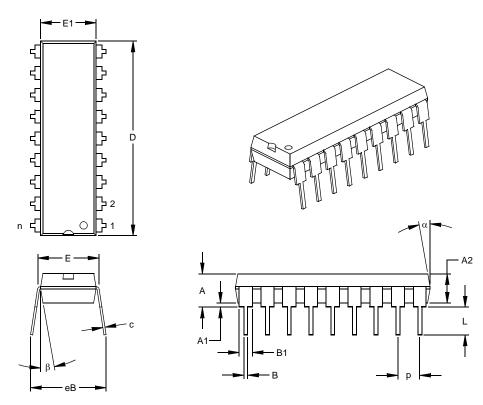
The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multi-project software development tool.

9.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily re configured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.


The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

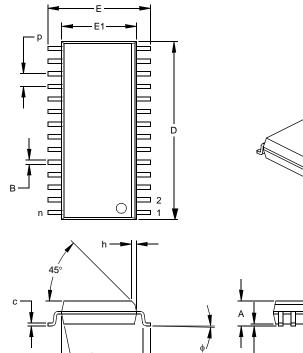
9.7 ICEPIC In-Circuit Emulator

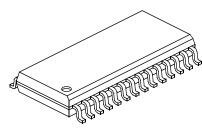
The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

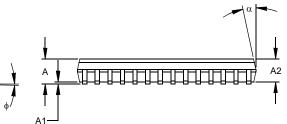
18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32	
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26	
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60	
Overall Length	D	.890	.898	.905	22.61	22.80	22.99	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	


* Controlling Parameter § Significant Characteristic


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	6
Dimens	sion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15
* O a starallia a Danama ata a							

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013

Drawing No. C04-052

INDEX

A

ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	9
Assembler	
MPASM Assembler	67

В

BCF Instruction	
Block Diagram	
TIMER0	47
TMR0/WDT PRESCALER	50
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	57

С

CALL Instruction	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	57
CLRW Instruction	
CLRWDT Instruction	
Code Protection	
COMF Instruction	
Configuration Bits	31

D

Data Memory Organization	
DECF Instruction	58
DECFSZ Instruction	59
Development Support	67

Ε

Errata3	
External Crystal Oscillator Circuit	

G

General purpose Register File13	
GOTO Instruction	

I

	~~
I/O Ports	
I/O Programming Considerations	28
ICEPIC In-Circuit Emulator	
ID Locations	46
INCF Instruction	
INCFSZ Instruction	
In-Circuit Serial Programming	46
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	55
ADDWF	55
ANDLW	55
ANDWF	55
BCF	56
BSF	56
BTFSC	56
BTFSS	57
CALL	57
CLRF	57

CLRW	58
CLRWDT	58
COMF	58
DECF	58
DECFSZ	59
GOTO	59
INCF	59
INCFSZ	60
IORLW	60
IORWF	60
MOVF	61
MOVLW	60
MOVWF	61
NOP	61
OPTION	61
RETFIE	62
RETLW	62
RETURN	62
RLF	62
RRF	63
SLEEP	63
SUBLW	63
SUBWF	64
SWAPF	64
TRIS	64
XORLW	65
XORWF	65
Instruction Set Summary	53
INT Interrupt	42
INTCON Register	19
Interrupts	41
IORLW Instruction	60
IORWF Instruction	60

Κ

М

MOVF Instruction
MOVLW Instruction
MOVWF Instruction
MPLAB C17 and MPLAB C18 C Compilers 67
MPLAB ICD In-Circuit Debugger 69
MPLAB ICE High Performance Universal In-Circuit Emulator
with MPLAB IDE
MPLAB Integrated Development Environment Software 67
MPLINK Object Linker/MPLIB Object Librarian 68

Ν

NOP Instruction	. 61
	. 01

0

One-Time-Programmable (OTP) Devices	7
OPTION Instruction	61
OPTION Register	
Oscillator Configurations	33
Oscillator Start-up Timer (OST)	36

Ρ

)
)
)
)
)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	x <u>xx</u> xxx	Examples:
Device To	emperature Package Pattern Range	a) PIC17C756–16L Commercial Temp., PLCC package, 16 MHz, normal VDD limits
Device	PIC17C756: Standard VDD range PIC17C756T: (Tape and Reel) PIC17LC756: Extended VDD range	 b) PIC17LC756–08/PT Commercial Temp., TQFP package, 8MHz, extended VDD limits c) PIC17C756–33I/PT Industrial Temp.,
Temperature Range	$\begin{array}{rcl} - & = & 0^{\circ}C \text{ to } +70^{\circ}C \\ I & = & -40^{\circ}C \text{ to } +85^{\circ}C \end{array}$	TQFP package, 33 MHz, normal VDD limits
Package	CL = Windowed LCC PT = TQFP L = PLCC	
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)