

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c558-04i-p

Email: info@E-XFL.COM

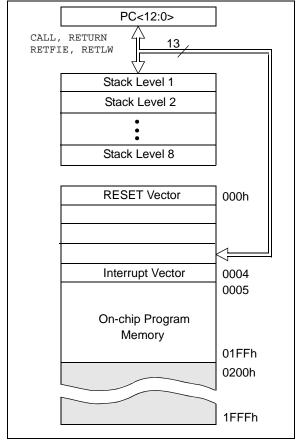
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:		Pin Numb	INOUT D			
Name	PDIP SOIC SSOP			Pin Type	Buffer Type	Description
00000000000						Description
OSC1/CLKIN	16	16	18		ST/CMOS	Oscillator crystal input/external clock source output.
OSC2/CLKOUT	15	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	4	4	4	I/P	ST	Master clear (Reset) input/programming voltage input. This pin is an active low RESET to the device.
RA0	17	17	19	I/O	ST	Bi-directional I/O port
RA1	18	18	20	I/O	ST	Bi-directional I/O port
RA2	1	1	1	I/O	ST	Bi-directional I/O port
RA3	2	2	2	I/O	ST	Bi-directional I/O port
RA4/T0CKI	3	3	3	I/O	ST	Bi-directional I/O port or external clock input for TMR0. Output is open drain type.
RB0/INT	6	6	7	I/O	TTL/ST ⁽¹⁾	Bi-directional I/O port can be software programmed for internal weak pull-up. RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	8	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.
RB2	8	8	9	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.
RB3	9	9	10	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.
RB4	10	10	11	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin.
RB5	11	11	12	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin.
RB6	12	12	13	I/O	TTL/ST ⁽²⁾	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin. Serial pro- gramming clock.
RB7	13	13	14	I/O	TTL/ST ⁽²⁾	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin. Serial pro- gramming data.
RC0 ⁽³⁾	18	18	18	I/O	TTL	Bi-directional I/O port input buffer.
RC1 ⁽³⁾	19	19	19	I/O	TTL	Bi-directional I/O port input buffer.
RC2 ⁽³⁾	20	20	20	I/O	TTL	Bi-directional I/O port input buffer.
RC3 ⁽³⁾	21	21	21	I/O	TTL	Bi-directional I/O port input buffer.
RC4 ⁽³⁾	22	22	22	I/O	TTL	Bi-directional I/O port input buffer.
RC5 ⁽³⁾	22	22	22	I/O	TTL	Bi-directional I/O port input buffer.
RC6 ⁽³⁾	24	24	24	I/O	TTL	Bi-directional I/O port input buffer.
RC7 ⁽³⁾	25	25	25	I/O	TTL	Bi-directional I/O port input buffer.
Vss	5	5	5,6	P		Ground reference for logic and I/O pins.
VDD	14	14	15,16	P		Positive supply for logic and I/O pins.
Legend:		= Output = Not used		/O = Input = Input	output	P = Power ST = Schmitt Trigger input
		L = TTL inp		– input		

TABLE 3-1: PIC16C55X PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.


3: PIC16C557 only.

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

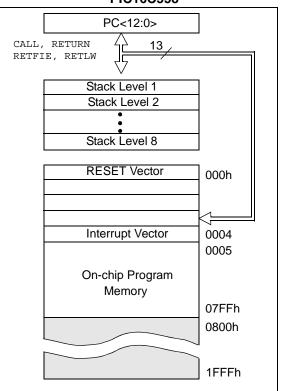

The PIC16C55X has a 13-bit program counter capable of addressing an 8 K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16C554 and 2K x 14 (0000h - 07FFh) for the PIC16C557 and PIC16C558 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 spaces in the PIC16C554, or 2K x 14 space of the PIC16C558 and PIC16C557. The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2).

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C557 AND PIC16C558

4.2 Data Memory Organization

The data memory (Figure 4-3 through Figure 4-5) is partitioned into two banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). Bank 0 is selected when the RP0 bit (STATUS <5>) is cleared. Bank 1 is selected when the RP0 bit is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-6Fh (Bank 0) on the PIC16C554 and 20-7Fh (Bank 0) and A0-BFh (Bank 1) on the PIC16C558 and PIC16C557 are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80×8 in the PIC16C554 and 128 x 8 in the PIC16C557 and PIC16C558. Each can be accessed either directly or indirectly through the File Select Register, FSR (Section 4.4).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Detail on Page:
Bank 0											
00h	INDF		Addressing this location uses contents of FSR to address data memory (not a physical register)					ory (not a	XXXX XXXX	21	
01h	TMR0	Timer0 N	imer0 Module's Register							xxxx xxxx	47
02h	PCL	Program	Counter's	(PC) Leas	t Significa	nt Byte				0000 0000	21
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	17
04h	FSR	Indirect of	data memo	ry address	s pointer					xxxx xxxx	21
05h	PORTA	-	—	—	RA4	RA3	RA2	RA1	RA0	x xxxx	23
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	25
07h	PORTC ⁽⁴⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	27
08h	_	Unimple	mented							_	
09h	_	Unimple	mented							_	
0Ah	PCLATH	_	—		Write but	fer for upp	per 5 bits o	of progran	n counter	0 0000	21
0Bh	INTCON	GIE	(3)	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	19
0Ch	—	Unimple	mented							_	
0Dh-1Eh	—	Unimple	mented							_	—
1Fh	—	Unimple	mented							_	_
Bank 1											
80h	INDF	Addressi physical	ing this loca register)	ation uses	contents	of FSR to a	address d	ata memo	ory (not a	XXXX XXXX	21
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	18
82h	PCL	Program	Counter's	(PC) Leas	t Significa	nt Byte				0000 0000	21
83h	STATUS	_	_	RP0	TO	PD	Z	DC	С	0001 1xxx	17
84h	FSR			Indirect d	ata memo	ry address	s pointer			xxxx xxxx	21
85h	TRISA	-	—	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	23
86h	TDIOD						TDIODO	TDICD4			05
0011	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	25
87h	TRISB	TRISB7 TRISC7	TRISB6 TRISC6	TRISB5 TRISC5	TRISB4 TRISC4	TRISB3 TRISC3	TRISB2	TRISC1	TRISB0 TRISC0	1111 1111 1111 1111	25
			TRISC6								
87h		TRISC7	TRISC6 mented								
87h 88h		TRISC7 Unimple	TRISC6 mented		TRISC4		TRISC2	TRISC1	TRISC0		27 —
87h 88h 89h	TRISC ⁽⁴⁾ — —	TRISC7 Unimple	TRISC6 mented		TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — —	27 — —
87h 88h 89h 8Ah	TRISC ⁽⁴⁾ — — PCLATH	TRISC7 Unimple Unimple	TRISC6 mented mented (3)	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — — —————————————————————————	27 — — 21
87h 88h 89h 8Ah 8Bh	TRISC ⁽⁴⁾ — — PCLATH	TRISC7 Unimple Unimple GIE	TRISC6 mented mented (3) mented	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — — —————————————————————————	27 — — 21
87h 88h 89h 8Ah 8Bh 8Ch	TRISC ⁽⁴⁾ — — PCLATH	TRISC7 Unimple Unimple GIE Unimple	TRISC6 mented mented (3) mented	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — — —————————————————————————	27 — — 21
87h 88h 89h 8Ah 8Bh 8Ch 8Dh	TRISC ⁽⁴⁾ — PCLATH INTCON — —	TRISC7 Unimple Unimple GIE Unimple	TRISC6 mented — (3) mented mented	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1 of program INTF	TRISC0	1111 1111 	27 — 21 19 —

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16C55X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: IRP & RP1 bits are reserved, always maintain these bits clear.

3: Bit 6 of INTCON register is reserved for future use. Always maintain this bit as clear.

4: PIC16C557 only.

4.2.2.4 PCON Register

The PCON register contains a flag bit to differentiate between a Power-on Reset, an external MCLR Reset or WDT Reset. See Section 6.3 and Section 6.4 for detailed RESET operation.

REGISTER 4-4: PCON REGISTER (ADDRESS 8Eh) U-0 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 POR bit7 bit 7-2 Unimplemented: Read as '0' bit 1 POR: Power-on Reset status bit 1 = No Power-on Reset occurred 0 = Power-on Reset occurred bit 0 Unimplemented: Read as '0' Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit0

NOTES:

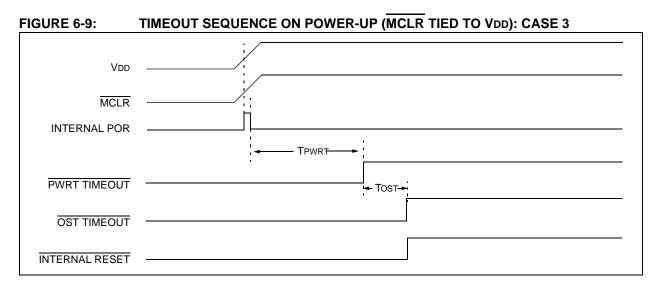
6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16C55X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

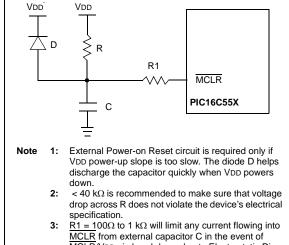
These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Interrupts
- 7. Watchdog Timer (WDT)
- 8. SLEEP
- 9. Code protection
- 10. ID Locations
- 11. In-circuit serial programming[™]

The PIC16C55X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), which is intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two functions onchip, most applications need no external RESET circuitry.


The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

6.1 Configuration Bits


The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

PIC16C55X

FIGURE 6-10: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

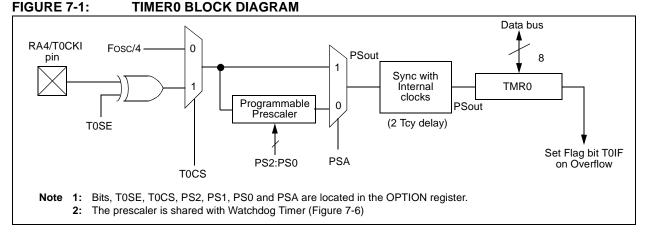
MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

7.0 TIMER0 MODULE

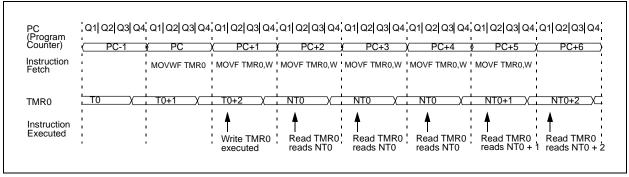
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.


Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the TOSE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.


The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 TIMER0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

FIGURE 7-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to WDT. Lines 5-7 are required only if the desired postscaler rate is 1:1 (PS<2:0> = 000) or 1:2 (PS<2:0> = 001).

EXAMPLE 7-1:	CHANGING PRESCALER
	(TIMER0→WDT)

	· · · · ·	
BCF	STATUS, RPO	;Skip if already in
		;Bank 0 CLRWDT Clear WDT
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	'00101111 <i>'</i> b	;These 3 lines (5, 6, 7)
MOVWF	OPTION	;Are required only if
		;Desired PS<2:0> are
		;CLRWDT 000 or 001
MOVLW	'00101xxx'b	;Set Postscaler to
MOVWF	OPTION	;Desired WDT rate
BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module use the sequence shown in Example 7-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 7-2: CHANGING PRESCALER (WDT→TIMER0)

	(· / · ····=···/
CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
MOVWF	OPTION	
BCF	STATUS, RPO	

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0 m	odule's registe	r						xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	Reserved	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0',

Note 1: Shaded bits are not used by TMR0 module.

NOTES:

8.0 INSTRUCTION SET SUMMARY

Each PIC16C55X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C55X instruction set summary in Table 8-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 8-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 8-1:OPCODE FIELD
DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compatibil- ity with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
то	Timeout bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

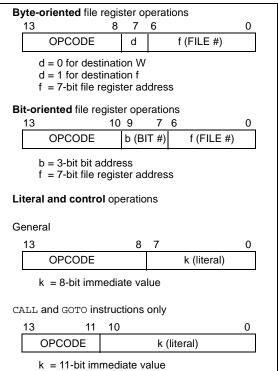
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 8-1 lists the instructions recognized by the MPASMTM assembler.

Figure 8-1 shows the three general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC[®] MCU products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 8-1: GENERAL FORMAT FOR INSTRUCTIONS

PIC16C55X

CLRW	Clear W	V		
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	00	0001	0000	0011
Description:	W register set.	is clear	ed. Zero bit	(Z) is
Words:	1			
Cycles:	1			
Example	CLRW			
	Before In	structio	n	
	W	=	0x5A	
	After Inst	ruction		
	W	=	0x00	
	Z	=	1	

COMF	Complement f						
Syntax:	[label]	COMF	f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7					
Operation:	$(\overline{f}) \rightarrow (des$	st)					
Status Affected:	Z						
Encoding:	00	1001	dfff	ffff			
Description:	The conter compleme stored in V stored bac	nted. If 'd V. If 'd' is	' is 0 the re 1 the resul				
Words:	1						
Cycles:	1						
Example	COMF	REG1,0)				
	Before In	struction					
	REG	1 =	0x13				
	After Inst	ruction					
	REG	1 =	0x13				
	W	=	0xEC				

CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$					
Status Affected:	TO, PD					
Encoding:	00 0000 0110 0100					
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.					
Words:	1					
Cycles:	1					
Example	CLRWDT					
	Before Instruction WDT counter = ? After Instruction					
	WDT counter = $0x00$					
	\underline{WDT} prescaler = 0					
	$\overline{TO} = 1$					
	PD = 1					

....

DECF	Decrement f					
Syntax:	[label] DECF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - 1 \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 0011 dfff ffff					
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	DECF CNT, 1					
	Before Instruction					
	CNT = 0x01					
	Z = 0					
	After Instruction					
	CNT = 0x00					
	Z = 1					

9.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE® II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

9.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

9.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

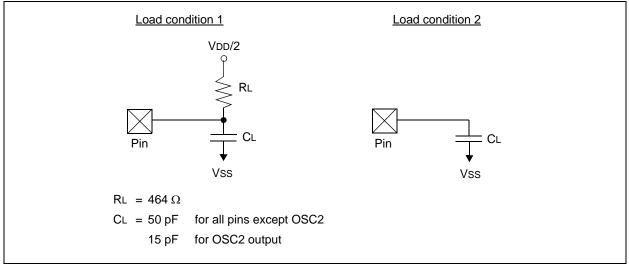
- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

9.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

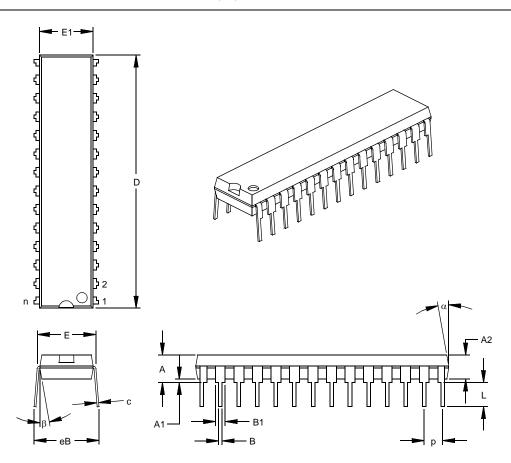
10.3 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

т				
F	Frequency	Т	Time	
Lowerc	ase subscripts (pp) and their meanings:			
рр				
ck	CLKOUT	OS	OSC1	
io	I/O port	t0	TOCKI	
mc	MCLR			
Upperc	ase letters and their meanings:			
S				
F	Fall	Р	Period	
Н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	


FIGURE 10-5: LOAD CONDITIONS

NOTES:

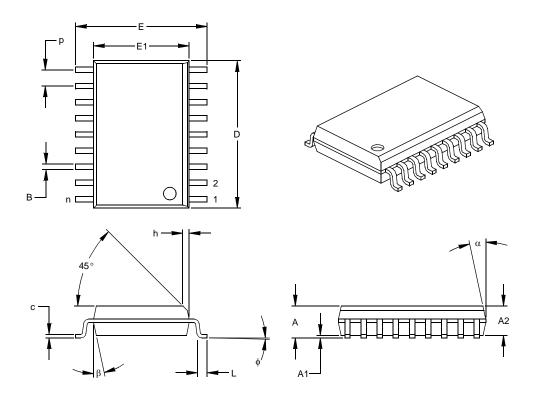
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ision L	n	MIN	NOM	MAX	MIN	NOM	MAX
							IVIAA
			28			28	
	р		.100			2.54	
	Α	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness		.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane		.015			0.38		
Shoulder to Shoulder Width		.300	.310	.325	7.62	7.87	8.26
	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length		1.345	1.365	1.385	34.16	34.67	35.18
	L	.125	.130	.135	3.18	3.30	3.43
	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width		.040	.053	.065	1.02	1.33	1.65
Lower Lead Width		.016	.019	.022	0.41	0.48	0.56
Ş	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top		5	10	15	5	10	15
Mold Draft Angle Bottom β		5	10	15	5	10	15
	§	A A2 A1 E E1 D L C B1 B1 B	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

* Controlling Parameter § Significant Characteristic

Notes:


Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

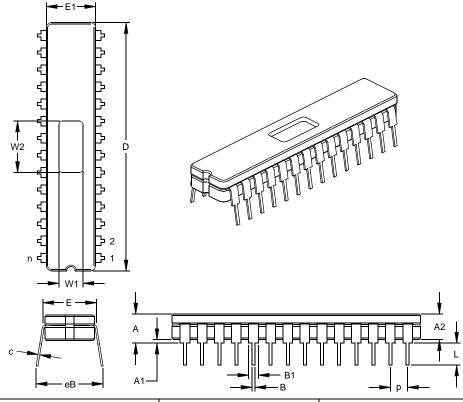
Drawing No. C04-070

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensio	Dimension Limits			MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom β		0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

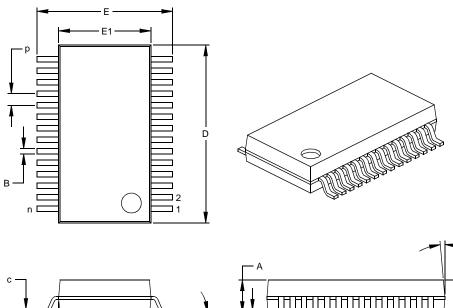

Notes:

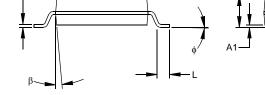
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

28-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging




	Units	INCHES*			MILLIMETERS		
Dimensio	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch			.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height		.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	1.430	1.458	1.485	36.32	37.02	37.72
Tip to Seating Plane	L	.135	.140	.145	3.43	3.56	3.68
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length		.290	.300	.310	7.37	7.62	7.87

Significant Characteristic JEDEC Equivalent: MO-058 Drawing No. C04-080

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			MILLIMETERS*		
Dimens	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	А	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	φ	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom β		0	5	10	0	5	10

Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150

Drawing No. C04-073

A2

NOTES: