

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c558-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations

Note: For additional information on enhancements, see Appendix A

CMOS Technology:

- Low power, high speed CMOS EPROM technology
- Fully static design
- Wide operating voltage range
 2.5V to 5.5V
- Commercial, Industrial and Extended temperature range
- Low power consumption
 - < 2.0 mA @ 5.0V, 4.0 MHz
 - 15 μA typical 3.0V, 32 kHz
 - < 1.0 μA typical standby current @ 3.0V

Device Differences

Device	Voltage Range	Oscillator
PIC16C554	2.5 - 5.5	(Note 1)
PIC16C557	2.5 - 5.5	(Note 1)
PIC16C558	2.5 - 5.5	(Note 1)

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

Table of Contents

	_
.0 General Description	. 5
.0 PIC16C55X Device Varieties	. 7
.0 General Description	. 9
.0 Memory Organization	13
0.0 Special Features of the CPU	31
.0 Timer0 Module	
0 Instruction Set Summary	53
.0 Development Support	67
0.0 Electrical Specifications	73
1.0 Packaging Information	87
vppendix A: Enhancements	97
ppendix B: Compatibility	97
ndex	99
Dn-Line Support 1	01
Systems Information and Upgrade Hot Line	01
Dn-Line Support	02
Product Identification System	03

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

4.2.2.4 PCON Register

The PCON register contains a flag bit to differentiate between a Power-on Reset, an external MCLR Reset or WDT Reset. See Section 6.3 and Section 6.4 for detailed RESET operation.

REGISTER 4-4: PCON REGISTER (ADDRESS 8Eh) U-0 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 POR bit7 bit 7-2 Unimplemented: Read as '0' bit 1 POR: Power-on Reset status bit 1 = No Power-on Reset occurred 0 = Power-on Reset occurred bit 0 Unimplemented: Read as '0' Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit0

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16C55X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Interrupts
- 7. Watchdog Timer (WDT)
- 8. SLEEP
- 9. Code protection
- 10. ID Locations
- 11. In-circuit serial programming[™]

The PIC16C55X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), which is intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two functions onchip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

6.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

6.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a pre-packaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 6-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 6-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

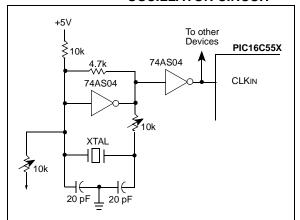
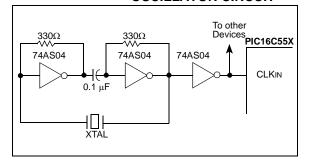
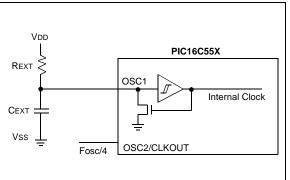
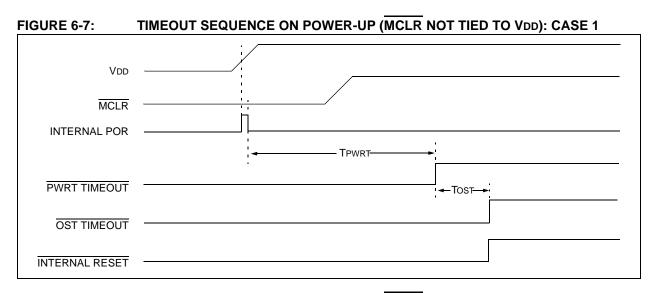



Figure 6-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 6-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT



6.2.4 RC OSCILLATOR


For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 6-5 shows how the R/C combination is connected to the PIC16C55X. For REXT values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep REXT between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

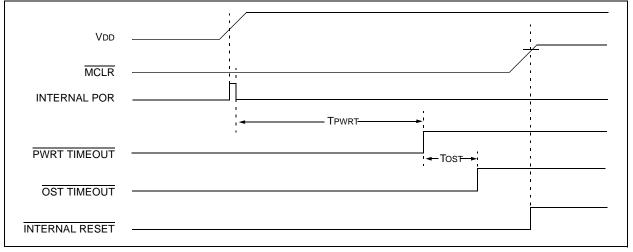

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

FIGURE 6-5: RC OSCILLATOR MODE

TABLE 8-2: PIC16C55X INSTRUCTION SET

Mnemonic, Description C Operands		14-Bit Opcode		e Status		Neter			
		Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	STER OF	PERAT	IONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000		ffff	z	1,2
MOVWF	f	Move W to f	1	00	0000		ffff	_	- ,=
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00		dfff		С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff		Č	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff		C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110		ffff	0,20,2	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110		ffff	Z	1,2
		BIT-ORIENTED FILE REGIST		RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1(2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1(2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	,	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11		kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11		kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11		kkkk		C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11		kkkk		0,00,2 Z	
			-					<u>ک</u>	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

8.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Encoding:	11 111x kkkk kkkk
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.
Words:	1
Cycles:	1
Example	ADDLW 0x15
	Before Instruction
	W = 0x10
	After Instruction
	W = 0x25

ADDWF	Add W and f			
Syntax:	[<i>label</i>] ADDWF f,d			
Operands:	$0 \le f \le 127$			
	$d \in [0,1]$			
Operation:	$(W) + (f) \to (dest)$			
Status Affected:	C, DC, Z			
Encoding:	00 0111 dfff ffff			
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example	ADDWF FSR, 0			
	Before Instruction			
	W = 0x17			
	FSR = 0xC2			
	After Instruction			
	W = 0xD9			
	FSR = 0xC2			

ANDLW	AND Li	teral wit	h W	
Syntax:	[label]	ANDLW	/ k	
Operands:	$0 \le k \le 2$	255		
Operation:	(W) .AN	ID. (k) →	• (W)	
Status Affected:	Z			
Encoding:	11	1001	kkkk	kkkk
	The conter AND'ed wi result is pl	th the eig	ht bit literal	'k'. The
Words:	1			
Cycles:	1			
Example	ANDLW	0x5F		
	Before I	nstructio	on	
	W	=	0xA3	
	After Ins	struction		
	W	=	0x03	

ANDWF	AND W with f			
Syntax:	[<i>label</i>] ANDWF f,d			
Operands:	$0 \le f \le 127$			
	$d \in [0,1]$			
Operation:	(W) .AND. (f) \rightarrow (dest)			
Status Affected:	Z			
Encoding:	00 0101 dfff ffff			
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example	ANDWF FSR, 1			
	Before Instruction			
	W = 0x17			
	FSR = 0xC2			
	After Instruction			
	W = 0x17			
	FSR = 0x02			

-

PIC16C55X

BCF	Bit Clea	ar f		
Syntax:	[label]	BCF 1	f,b	
Operands:	$0 \le f \le 1$ $0 \le b \le 1$			
Operation:	$0 \rightarrow (f < $	b>)		
Status Affected:	None			
Encoding:	01	00bb	bfff	ffff
Description:	Bit 'b' in re	gister 'f' is	s cleared.	
Words:	1			
Cycles:	1			
Example	BCF	FLAG_F	REG, 7	
	After Inst	G_REG		C7 47

	Bit	Set	f
--	-----	-----	---

BSF

Syntax:	[<i>label</i>] BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b >)$			
Status Affected:	None			
Encoding:	01	01bb	bfff	ffff
Description:	Bit 'b' in re	gister 'f' is	s set.	
Words:	1			
Cycles:	1			
Example	BSF	FLAG_F	REG, 7	,
	Before In FLA After Inst	G_REG		0A
	FLAG	G_REG	= 0x	8A

BTFSC	Bit Test, Skip if Clear		
Syntax:	[label] BTFSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	skip if (f) = 0		
Status Affected:	None		
Encoding:	01 10bb bfff ffff		
Description:	If bit 'b' in register 'f' is '0' then the next instruction is skipped. If bit 'b' is '0' then the next instruction fetched during the current instruction execution is dis- carded, and a NOP is executed instead, making this a two-cycle instruction.		
Words:	1		
Cycles:	1(2)		
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • •		
	Before Instruction		
	PC = address HERE		
	After Instruction if FLAG<1> = 0, PC = address TRUE if FLAG<1> = 1, PC = address TRUE		
	PC = address FALSE		

PIC16C55X

CLRW	Clear W									
Syntax:	[label] CLRW									
Operands:	None									
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$								
Status Affected:	Z									
Encoding:	00	0001	0000	0011						
Description:	W register set.	W register is cleared. Zero bit (Z) is set.								
Words:	1									
Cycles:	1									
Example	CLRW									
	Before In	structio	n							
	W = 0x5A									
	After Inst	ruction								
	W	=	0x00							
	Z	=	1							

COMF	Complement f								
Syntax:	[label]	[label] COMF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7							
Operation:	$(\overline{f}) \rightarrow (des$	st)							
Status Affected:	Z								
Encoding:	00	1001	dfff	ffff					
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Example	COMF	REG1,0)						
	Before In	struction							
	REG1 = 0x13								
	After Inst	ruction							
	REG	1 =	0x13						
	W	W = 0xEC							

Clear Watchdog Timer						
[label] CLRWDT						
None						
$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$						
TO, PD						
00 0000 0110 0100						
CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.						
1						
1						
CLRWDT						
Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1						

.....

DECF	Decrement f								
Syntax:	[<i>label</i>] DECF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	(f) - 1 \rightarrow (dest)								
Status Affected:	Z								
Encoding:	00 0011 dfff ffff								
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Example	DECF CNT, 1								
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1								

PIC16C55X

MOVF	Move f						
Syntax:	[label]	MOVF	f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$						
Operation:	$(f) \rightarrow (dest)$						
Status Affected:	Z						
Encoding:	00	1000	dfff	ffff			
Description:	The contents of register f is moved to a destination dependant upon the status of d. If $d = 0$, des- tination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected.						
Words:	1						
Cycles:	1						
Example	MOVF	FSR,	0				
	After Instruction W = value in FSR registe Z = 1						

NOP	No Operation							
Syntax:	[label]	NOP						
Operands:	None							
Operation:	No operation							
Status Affected:	None							
Encoding:	00	0000	0xx0	0000				
Description:	No operat	ion.						
Words:	1							
Cycles:	1							
Example	NOP							

MOVWF	Move W to f							
Syntax:	[label] MOVWF f							
Operands:	$0 \leq f \leq 127$							
Operation:	$(W) \rightarrow (f)$							
Status Affected:	None							
Encoding:	00 0000 lfff ffff							
Description:	Move data from W register to register 'f'.							
Words:	1							
Cycles:	1							
Example	MOVWF OPTION							
	Before Instruction							
	OPTION = 0xFF							
	W = 0x4F							
	After Instruction							
	OPTION = 0x4F							
	W = 0x4F							

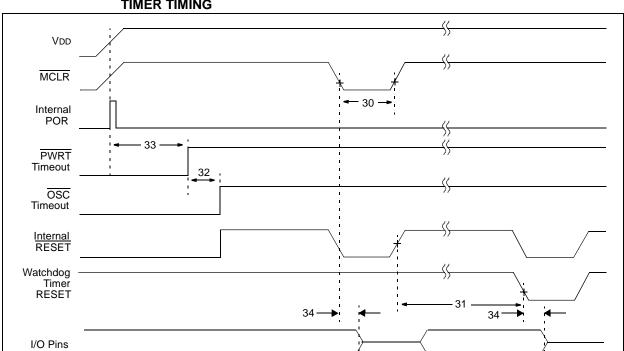
OPTION	Load Option Register								
Syntax:	[label] OPTION								
Operands:	None								
Operation:	$(W) \rightarrow O$	PTION							
Status Affected:	None								
Encoding:	00 0000 0110 0010								
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.								
Words:	1								
Cycles:	1								
Example									
	To maintain upward compatibility with future PIC MCU products, do not use this instruction.								

10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

DC Characteristics				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Conditions				
	Vdd	Supply Voltage						
D001		16LC55X	3.0 2.5	_	5.5 5.5	V	XT and RC osc configuration LP osc configuration	
D001 D001A		16C55X	3.0 4.5		5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode	
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 6.4, Power-on Reset for details	
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 6.4, Power-on Reset for details	
	Idd	Supply Current ⁽²⁾						
D010		16LC55X	_	1.4	2.5	mA	XT and RC osc configuration Fosc = 2.0 MHz, VDD = 3.0V, WDT disabled ⁽⁴⁾	
D010A			_	26	53	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
D010		16C55X	_	1.8	3.3	mA	XT and RC osc configuration Fosc = 4 MHz, VDD = 5.5V, WDT disabled ⁽⁴⁾	
D010A			_	35	70	μΑ	LP osc configuration, PIC16C55X-04 only Fosc = 32 kHz, VDD = 4.0V, WDT disabled	
D013			—	9.0	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V, WDT disabled	

These parameters are characterized but not tested.

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

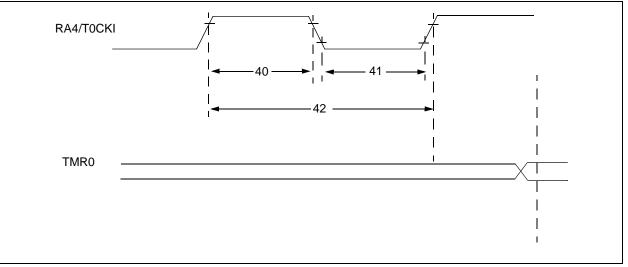
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

<u>OSC1</u> = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

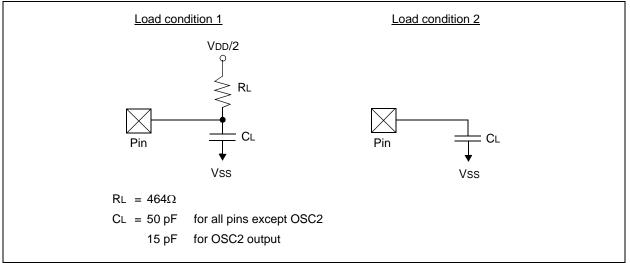
FIGURE 10-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING


TABLE 10-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000		—	ns	-40° to +85°C
31	Twdt	Watchdog Timer Timeout Period (No Prescaler)	7*	18	33*	ms	VDD = 5.0V, -40° to +85°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	—	—	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5.0V, -40° to +85°C
34	Tioz	I/O hi-impedance from MCLR low		—	2.0*	μS	
*	These na	arameters are characterized but not	tested				

These parameters are characterized but not tested.

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.


TABLE 10-4: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 TCY + 20*	—	_	ns	
			With Prescaler	10*	_	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 TCY + 20*	_	_	ns	
			With Prescaler	10*	_	_	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> * N		_	ns	N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

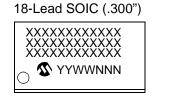

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 10-10: LOAD CONDITIONS

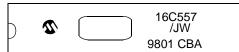
© 1996-2013 Microchip Technology Inc.

Package Marking Information (Cont'd)

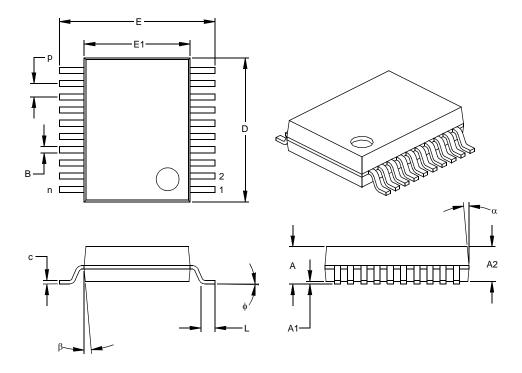
Example PIC16C558 -04I / S0218 S0218 9818 CDK

 \cap

18-Lead CERDIP Windowed


Example

28-Lead CERDIP Windowed



Example

20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units INCHES*					N	IILLIMETERS	
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	А	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	ø	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

© 1996-2013 Microchip Technology Inc.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	x <u>xx</u> xxx	Examples:
Device To	emperature Package Pattern Range	a) PIC17C756–16L Commercial Temp., PLCC package, 16 MHz, normal VDD limits
Device	PIC17C756: Standard VDD range PIC17C756T: (Tape and Reel) PIC17LC756: Extended VDD range	 b) PIC17LC756–08/PT Commercial Temp., TQFP package, 8MHz, extended VDD limits c) PIC17C756–33I/PT Industrial Temp.,
Temperature Range	$\begin{array}{rcl} - & = & 0^{\circ}C \text{ to } +70^{\circ}C \\ I & = & -40^{\circ}C \text{ to } +85^{\circ}C \end{array}$	TQFP package, 33 MHz, normal VDD limits
Package	CL = Windowed LCC PT = TQFP L = PLCC	
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)

NOTES:

NOTES: