

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c558t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

	_
.0 General Description	. 5
.0 PIC16C55X Device Varieties	. 7
.0 General Description	. 9
.0 Memory Organization	13
0.0 Special Features of the CPU	31
.0 Timer0 Module	
0 Instruction Set Summary	53
.0 Development Support	67
0.0 Electrical Specifications	73
1.0 Packaging Information	87
vppendix A: Enhancements	97
ppendix B: Compatibility	97
ndex	99
Dn-Line Support 1	01
Systems Information and Upgrade Hot Line	01
Dn-Line Support	02
Product Identification System	03

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

NOTES:

1.0 GENERAL DESCRIPTION

The PIC16C55X are 18, 20 and 28-Pin EPROM-based members of the versatile PIC16CXX family of low cost, high performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16C55X have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C55X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C554 has 80 bytes of RAM. The PIC16C557 and PIC16C558 have 128 bytes of RAM. The PIC16C554 and PIC16C558 have 13 I/O pins and an 8bit timer/counter with an 8-bit programmable prescaler. The PIC16C557 has 22 I/O pins and an 8-bit timer/ counter with an 8-bit programmable prescaler.

PIC16C55X devices have special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for high speed crystals. The SLEEP (power-down) mode offers power saving. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESET.

A highly reliable Watchdog Timer, with its own on-chip RC oscillator, provides protection against software lock-up. A UV-erasable CERDIP packaged version is ideal for code development while the cost effective One-Time Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16C55X midrange microcontroller families.

A simplified block diagram of the PIC16C55X is shown in Figure 3-1.

The PIC16C55X series fit perfectly in applications ranging from motor control to low power remote sensors. The EPROM technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C55X very versatile.

1.1 Family and Upward Compatibility

Users familiar with the family of microcontrollers will realize that this is an enhanced version of the architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for can be easily ported to PIC16C55X family of devices (Appendix B).

The PIC16C55X family fills the niche for users wanting to migrate up from the family and not needing various peripheral features of other members of the PIC16XX mid-range microcontroller family.

1.2 Development Support

The PIC16C55X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer.

TABLE 1-1: PIC16C55X FAMILY OF DEVICES

		PIC16C554	PIC16C557	PIC16C558
Clock	Maximum Frequency of Operation (MHz)	20	20	20
Memory	EPROM Program Memory (x14 words)	512	2K	2K
	Data Memory (bytes)	80	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0
	Interrupt Sources	3	3	3
	I/O Pins	13	22	13
Features	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5
catares	Brown-out Reset	—	—	—
	Packages	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC; 28-pin SSOP	18-pin DIP, SOIC, SSOP

I/O current capability. All PIC16C55X Family devices use serial programming with clock pin RB6 and data pin RB7.

2.0 PIC16C55X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C55X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] and PROMATE[®] programmers both support programming of the PIC16C55X.

2.2 One-Time Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium-to-high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround Production (SQTP[™]) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Detail on Page:
Bank 0											
00h	INDF		Addressing this location uses contents of FSR to address data memory (not a physical register)							XXXX XXXX	21
01h	TMR0	Timer0 N	/lodule's Re	egister						xxxx xxxx	47
02h	PCL	Program	Counter's	(PC) Leas	t Significa	nt Byte				0000 0000	21
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	17
04h	FSR	Indirect of	data memo	ry address	s pointer					xxxx xxxx	21
05h	PORTA	-	—	—	RA4	RA3	RA2	RA1	RA0	x xxxx	23
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	25
07h	PORTC ⁽⁴⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	27
08h	_	Unimple	mented							_	
09h	_	Unimple	mented							_	
0Ah	PCLATH	_	—		Write but	fer for upp	per 5 bits o	of progran	n counter	0 0000	21
0Bh	INTCON	GIE	(3)	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	19
0Ch	—	Unimple	mented							_	
0Dh-1Eh	—	Unimple	Unimplemented							_	—
1Fh	—	Unimple	mented							_	_
Bank 1											
80h	INDF	Addressi physical	ing this loca register)	ation uses	contents	of FSR to a	address d	ata memo	ory (not a	XXXX XXXX	21
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	18
82h	PCL	Program	Counter's	(PC) Leas	t Significa	nt Byte				0000 0000	21
83h	STATUS	_	_	RP0	TO	PD	Z	DC	С	0001 1xxx	17
84h	FSR			Indirect d	ata memo	ry address	s pointer			xxxx xxxx	21
85h	TRISA	-	—	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	23
86h	TDIOD						TDIODO	TDICD4			05
0011	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	25
87h	TRISB	TRISB7 TRISC7	TRISB6 TRISC6	TRISB5 TRISC5	TRISB4 TRISC4	TRISB3 TRISC3	TRISB2	TRISC1	TRISB0 TRISC0	1111 1111 1111 1111	25
			TRISC6								
87h		TRISC7	TRISC6 mented								
87h 88h		TRISC7 Unimple	TRISC6 mented		TRISC4		TRISC2	TRISC1	TRISC0		27 —
87h 88h 89h	TRISC ⁽⁴⁾ — —	TRISC7 Unimple	TRISC6 mented		TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — —	27 — —
87h 88h 89h 8Ah	TRISC ⁽⁴⁾ — — PCLATH	TRISC7 Unimple Unimple	TRISC6 mented mented (3)	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — — —————————————————————————	27 — — 21
87h 88h 89h 8Ah 8Bh	TRISC ⁽⁴⁾ — — PCLATH	TRISC7 Unimple Unimple GIE	TRISC6 mented mented (3) mented	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — — —————————————————————————	27 — — 21
87h 88h 89h 8Ah 8Bh 8Ch	TRISC ⁽⁴⁾ — — PCLATH	TRISC7 Unimple Unimple GIE Unimple	TRISC6 mented mented (3) mented	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111 — — —————————————————————————	27 — — 21
87h 88h 89h 8Ah 8Bh 8Ch 8Dh	TRISC ⁽⁴⁾ — PCLATH INTCON — —	TRISC7 Unimple Unimple GIE Unimple	TRISC6 mented — (3) mented mented	TRISC5	TRISC4 Write but	TRISC3	TRISC2	TRISC1 of program INTF	TRISC0	1111 1111 	27 — 21 19 —

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16C55X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

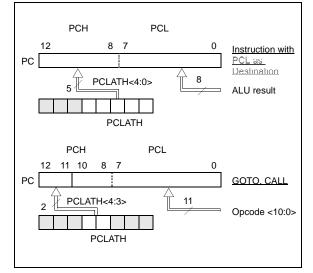
2: IRP & RP1 bits are reserved, always maintain these bits clear.

3: Bit 6 of INTCON register is reserved for future use. Always maintain this bit as clear.

4: PIC16C557 only.

4.2.2.4 PCON Register

The PCON register contains a flag bit to differentiate between a Power-on Reset, an external MCLR Reset or WDT Reset. See Section 6.3 and Section 6.4 for detailed RESET operation.


REGISTER 4-4: PCON REGISTER (ADDRESS 8Eh) U-0 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 POR bit7 bit 7-2 Unimplemented: Read as '0' bit 1 POR: Power-on Reset status bit 1 = No Power-on Reset occurred 0 = Power-on Reset occurred bit 0 Unimplemented: Read as '0' Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit0

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high bits (PC<12:8>) are not directly readable or writable and come from PCLATH. On any RESET, the PC is cleared. Figure 4-6 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 4-6 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-6: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16C55X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-1 and Figure 4-2). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RET-FIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

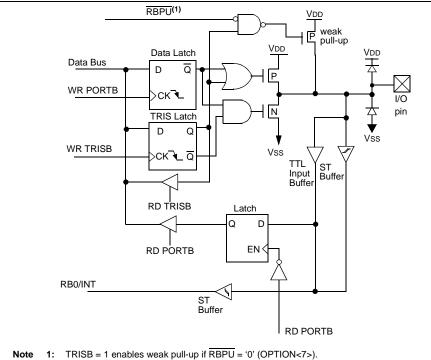
The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or vectoring to an interrupt address.

4.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the file select register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a nooperation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-7. However, IRP is not used in the PIC16C55X.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMP	LE 4-1:	INDIR	INDIRECT ADDRESSING				
NEXT	movlw movwf clrf incf btfss goto	0x20 FSR INDF FSR FSR,4 NEXT	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next ;yes continue</pre>				

CONTINUE:

TABLE 5-3: PORTB FUNCTIONS

Name	Bit #	Buffer Type	Function
RB0/INT	Bit 0	TTL/ST ⁽¹⁾	Bi-directional I/O port. Internal software programmable weak pull-up.
RB1	Bit 1	TTL	Bi-directional I/O port. Internal software programmable weak pull-up.
RB2	Bit 2	TTL	Bi-directional I/O port. Internal software programmable weak pull-up.
RB3	Bit 3	TTL	Bi-directional I/O port. Internal software programmable weak pull-up.
RB4	Bit 4	TTL	Bi-directional I/O port (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	Bit 5	TTL	Bi-directional I/O port (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	Bit 6	TTL/ST ⁽²⁾	Bi-directional I/O port (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock pin.
RB7	Bit 7	TTL/ST ⁽²⁾	Bi-directional I/O port (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data pin.

Legend: ST = Schmitt Trigger, TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB AND TRISB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
0BH, 8BH	INTCON	GIE	Reserved	TOIE	INTE	BRIE	T0IF	INTF	RBIF	0000 000x	0000 000x

Legend: x = unknown, u = unchanged

Note 1: Shaded bits are not used by PORTB.

6.2 Oscillator Configurations

6.2.1 OSCILLATOR TYPES

The PIC16C55X can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

6.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 6-1). The PIC16C55X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 6-2).

FIGURE 6-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

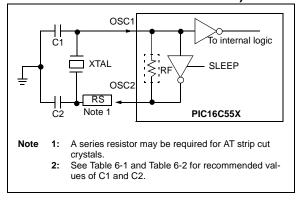
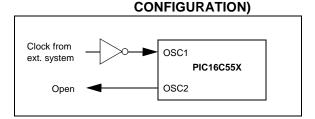



FIGURE 6-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 6-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS (PRELIMINARY)

Ranges	Characterize							
Mode	Freq	OSC2(C2)						
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	22 - 100 pF 15 - 68 pF 15 - 68 pF					
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF					
Note 1:	Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design							

of the oscillator but also increases the
start-up time. These values are for design
guidance only. Since each resonator has
its own characteristics, the user should
consult with the resonator manufacturer for
appropriate values of external compo-
nents.

TABLE 6-2:	CAPACITOR SELECTION FOR
	CRYSTAL OSCILLATOR
	(PRELIMINARY)

Mode	Freq	OSC1(C1)	OSC2(C2)				
LP	32 kHz	68 - 100 pF	68 - 100 pF				
	200 kHz	15 - 30 pF	15 - 30 pF				
XT	100 kHz	68 - 150 pF	150 - 200 pF				
	2 MHz	15 - 30 pF	15 - 30 pF				
	4 MHz	15 - 30 pF	15 - 30 pF				
HS	8 MHz	15 - 30 pF	15 - 30 pF				
	10 MHz	15 - 30 pF	15 - 30 pF				
	20 MHz	15 - 30 pF	15 - 30 pF				
Note 1:	Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid over- driving crystals with low-drive level specifi- cation. Since each crystal has its own characteristics, the user should consult with the crystal manufacturer for appropri- ate values of external components.						

6.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a pre-packaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 6-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 6-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

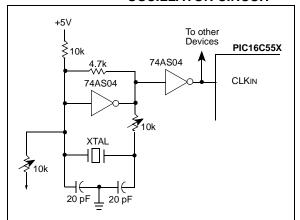
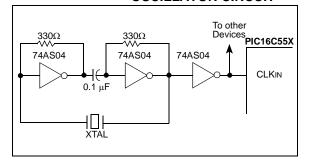
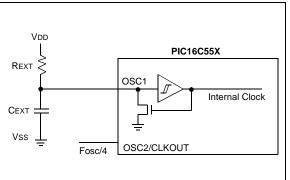



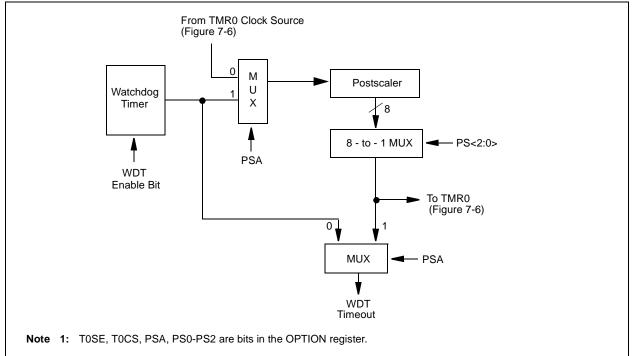
Figure 6-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 6-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT



6.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 6-5 shows how the R/C combination is connected to the PIC16C55X. For REXT values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep REXT between 3 k Ω and 100 k Ω .


Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

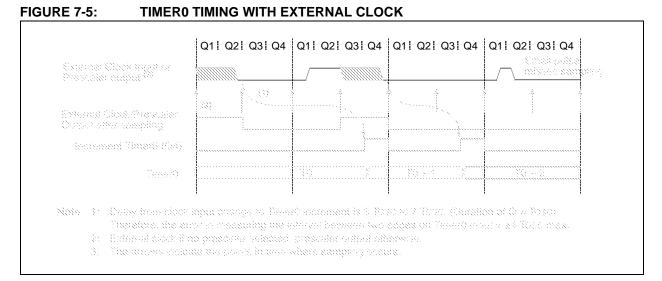
The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

FIGURE 6-5: RC OSCILLATOR MODE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
2007h	Config. bits	_	Reserved	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0		
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

7.2 Using Timer0 with External Clock


When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4TOSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

7.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note: There is only one prescaler available which is mutually exclusive between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

© 1996-2013 Microchip Technology Inc.

8.1 Instruction Descriptions

ADDLW	Add Literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \le k \le 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Encoding:	11 111x kkkk kkkk				
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.				
Words:	1				
Cycles:	1				
Example	ADDLW 0x15				
	Before Instruction				
	W = 0x10				
	After Instruction				
	W = 0x25				

ADDWF	Add W and f					
Syntax:	[label] ADDWF f,d					
Operands:	$0 \le f \le 127$					
	$d \in [0,1]$					
Operation:	$(W) + (f) \to (dest)$					
Status Affected:	C, DC, Z					
Encoding:	00 0111 dfff ffff					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ADDWF FSR, 0					
	Before Instruction					
	W = 0x17					
	FSR = 0xC2					
	After Instruction					
	W = 0xD9					
	FSR = 0xC2					

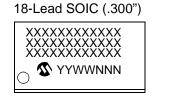
ANDLW	AND Li	teral wit	h W		
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .AN	ID. (k) →	• (W)		
Status Affected:	Z				
Encoding:	11	1001	kkkk	kkkk	
	The conter AND'ed wi result is pl	th the eig	ht bit literal	'k'. The	
Words:	1				
Cycles:	1				
Example	ANDLW	0x5F			
	Before I	nstructio	on		
	W	=	0xA3		
	After Ins	struction			
	W	=	0x03		

ANDWF	AND W with f				
Syntax:	[<i>label</i>] ANDWF f,d				
Operands:	$0 \le f \le 127$				
	$d \in [0,1]$				
Operation:	(W) .AND. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0101 dfff ffff				
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ANDWF FSR, 1				
	Before Instruction				
	W = 0x17				
	FSR = 0xC2				
	After Instruction				
	W = 0x17				
	FSR = 0x02				

-

RRF	Rotate	Right f	throu	igh (Carry		
Syntax:	[label]	RRF 1	,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	See description below						
Status Affected:	С						
Encoding:	00	1100	dff	f	ffff		
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.						
			Regist	ter f	┠╼		
Words:	1		Regist	ter f]-•		
Words: Cycles:	1 1] → [Regist	ter f] •		
	•			ter f	<u>}-</u>		
Cycles:	1		REG		<u>-</u>		
Cycles:	1 RRF	struction	REG	\$1,0	0		
Cycles:	1 RRF Before Ins	struction	REG n 1110	\$1,0	.0		
Cycles:	1 RRF Before Ins REG C After Instr	struction 1 = 1 = 0 ruction	REG n 1110	\$1,0	0		
Cycles:	1 RRF Before In: REG C After Insti REG	struction 1 = 1 = 0 ruction	REG n 1110	\$1,0	-		
Cycles:	1 RRF Before Ins REG C After Instr	struction 1 = 1 = (ruction 1 = 1	REG N L110	;1,0 011 011	.0		

SLEEP


Syntax:	[label]	SLEEP		
Operands:	None			
Operation:	$\begin{array}{c} 00h \rightarrow V\\ 0 \rightarrow WE\\ 1 \rightarrow \overline{TO}\\ 0 \rightarrow \overline{PD} \end{array}$	T presca	ıler,	
Status Affected:	$\overline{\text{TO}}, \overline{\text{PD}}$			
Encoding:	00	0000	0110	0011
Description:	cleared. set. Wate prescaler The proc mode wit	er-down st Timeout st hdog Time are cleard essor is pu h the oscil ion 6.8 for	atus bit, T er and its ed. ut into SLI llator stop	O is EEP ped.
Words:	1			
Cycles:	1			
Example:	SLEEP			

SUBLW	Subtract W from Literal					
Syntax:	[<i>label</i>] SUBLW k					
Operands:	$0 \le k \le 255$					
Operation:	k - (W) → ($k - (W) \to (W)$				
Status Affected:	C, DC, Z	C, DC, Z				
Encoding:	11	110x	kkkk	kkkk		
Description:	plement me	The W register is subtracted (2's com- plement method) from the eight bit literal 'k'. The result is placed in the W register.				
Words:	1					
Cycles:	1					
Example 1:	SUBLW	0x02				
	Before Ins	truction				
	W	= 1	l			
	С	= ?	?			
	After Instru	uction				
	W	= 1	l			
	С	= 1	l; result is	positive		
Example 2:	Before Ins	truction				
	W	= 2	2			
	С	= ?	2			
	After Instru	uction				
	W	= ()			
	С	= 1	l; result is	s zero		
Example 3:	Before Ins	truction				
	W	= 3	3			
	С	= ?	2			
	After Instru	uction				
	W)xFF			
	С	= (); result i	s nega-		

tive

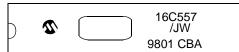
 \odot 1996-2013 Microchip Technology Inc.

Package Marking Information (Cont'd)

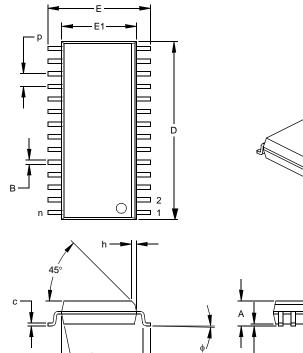
Example PIC16C558 -04I / S0218 S0218 9818 CDK

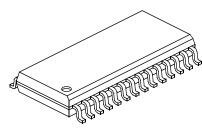
 \cap

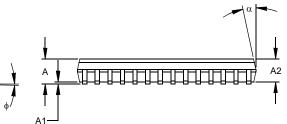
18-Lead CERDIP Windowed


Example

28-Lead CERDIP Windowed




Example



28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES*			MILLIMETERS			
Dimens	sion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15
* Osustas Illia a Devenue stav							

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013

Drawing No. C04-052

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
From	: Name	
1 1011	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce:	Literature Number: DS40143E
Ques	stions:	
1. \	What are the best features of this document?	
-		
- 2. H	How does this document meet your hardware and softwar	re development needs?
_		
_		
3. E	Do you find the organization of this document easy to follo	ow? If not, why?
-		
-		
4. \	What additions to the document do you think would enhar	nce the structure and subject?
-		
5. \	What deletions from the document could be made without	affecting the overall usefulness?
0. 1		
-		
6. I	s there any incorrect or misleading information (what and	where)?
_		
-		
7. H	How would you improve this document?	
-		
-		