

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 20MHz                                                                      |
| Connectivity               | -                                                                          |
| Peripherals                | POR, WDT                                                                   |
| Number of I/O              | 13                                                                         |
| Program Memory Size        | 3.5KB (2K x 14)                                                            |
| Program Memory Type        | OTP                                                                        |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 128 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                  |
| Data Converters            | -                                                                          |
| Oscillator Type            | External                                                                   |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 18-SOIC (0.295", 7.50mm Width)                                             |
| Supplier Device Package    | 18-SOIC                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c558t-20-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C55X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C55X uses a Harvard architecture in which program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently from 8-bit wide data words. Instruction opcodes are 14-bit wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a singlecycle (200 ns @ 20 MHz) except for program branches. The table below lists the memory (EPROM and RAM).

| Device    | Program<br>Memory<br>(EPROM) | Data<br>Memor<br>(RAM) |
|-----------|------------------------------|------------------------|
| PIC16C554 | 512                          | 80                     |
| PIC16C557 | 2 K                          | 128                    |
| PIC16C558 | 2 K                          | 128                    |

The PIC16C554 addresses 512 x 14 on-chip program memory. The PIC16C557 and PIC16C558 addresses 2 K x 14 program memory. All program memory is internal.

The PIC16C55X can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped into the data memory. The PIC16C55X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C55X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C55X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

# 3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-2.

## 3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle

while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).



## FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

## EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW



All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

## FIGURE 4-3:

## DATA MEMORY MAP FOR THE PIC16C554

| File<br>Address                                                                           | 3                   |                     | File<br>Address |  |
|-------------------------------------------------------------------------------------------|---------------------|---------------------|-----------------|--|
| 00h                                                                                       | INDF <sup>(1)</sup> | INDF <sup>(1)</sup> | 80h             |  |
| 01h                                                                                       | TMR0                | OPTION              | 81h             |  |
| 02h                                                                                       | PCL                 | PCL                 | 82h             |  |
| 03h                                                                                       | STATUS              | STATUS              | 83h             |  |
| 04h                                                                                       | FSR                 | FSR                 | 84h             |  |
| 05h                                                                                       | PORTA               | TRISA               | 85h             |  |
| 06h                                                                                       | PORTB               | TRISB               | 86h             |  |
| 07h                                                                                       |                     |                     | 87h             |  |
| 08h                                                                                       |                     |                     | 88h             |  |
| 09h                                                                                       |                     |                     | 89h             |  |
| 0Ah                                                                                       | PCLAIH              | PCLAIH              | 8Ah             |  |
| 0Bh                                                                                       | INTCON              | INICON              | 8Bh             |  |
| 0Ch                                                                                       |                     |                     | 8Ch             |  |
|                                                                                           |                     | DCON                |                 |  |
| 0En                                                                                       |                     | PCON                | 8En             |  |
| 10h                                                                                       |                     |                     |                 |  |
| 1011<br>11h                                                                               |                     |                     | 9011            |  |
| 12h                                                                                       |                     |                     | 92h             |  |
| 13h                                                                                       |                     |                     | - 93h           |  |
| 14h                                                                                       |                     |                     | 94h             |  |
| 15h                                                                                       |                     |                     | 95h             |  |
| 16h                                                                                       |                     |                     | 96h             |  |
| 17h                                                                                       |                     |                     | 97h             |  |
| 18h                                                                                       |                     |                     | 98h             |  |
| 19h                                                                                       |                     |                     | 99h             |  |
| 1Ah                                                                                       |                     |                     | 9Ah             |  |
| 1Bh                                                                                       |                     |                     | 9Bh             |  |
| 1Ch                                                                                       |                     |                     | 9Ch             |  |
| 1Dh                                                                                       |                     |                     | 9Dh             |  |
| 1Eh                                                                                       |                     |                     | 9Eh             |  |
| 1Fh                                                                                       |                     |                     | 9Fh             |  |
| 20h                                                                                       | General<br>Purpose  |                     | A0h             |  |
| 6Fh                                                                                       | Register            |                     |                 |  |
| 70h                                                                                       |                     |                     |                 |  |
|                                                                                           |                     |                     |                 |  |
| ı<br>I                                                                                    |                     |                     | $\neg$          |  |
|                                                                                           |                     |                     |                 |  |
| 7Fh                                                                                       |                     |                     | FFh             |  |
| 7111                                                                                      | Bank 0              | Bank 1              |                 |  |
| Unimplemented data memory locations, read as '0'. <b>Note 1:</b> Not a physical register. |                     |                     |                 |  |

#### FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C557

| File<br>Address                         | 5                   |                     | File<br>Address |  |  |
|-----------------------------------------|---------------------|---------------------|-----------------|--|--|
| 00h                                     | INDF <sup>(1)</sup> | INDF <sup>(1)</sup> | 80h             |  |  |
| 01h                                     | TMR0                | OPTION              | 81h             |  |  |
| 02h                                     | PCL                 | PCL                 | 82h             |  |  |
| 03h                                     | STATUS              | STATUS              | 83h             |  |  |
| 04h                                     | FSR                 | FSR                 | 84h             |  |  |
| 05h                                     | PORTA               | TRISA               | 85h             |  |  |
| 06h                                     | PORTB               | TRISB               | 86h             |  |  |
| 07h                                     | PORTC               | TRISC               | 87h             |  |  |
| 08h                                     |                     |                     | 88h             |  |  |
| 09h                                     |                     |                     | 89h             |  |  |
| 0Ah                                     | PCLATH              | PCLATH              | 8Ah             |  |  |
| 0Bh                                     | INTCON              | INTCON              | 8Bh             |  |  |
| 0Ch                                     |                     |                     | 8Ch             |  |  |
| 0Dh                                     |                     |                     | 8Dh             |  |  |
| 0Eh                                     |                     | PCON                | 8Eh             |  |  |
| 0Fh                                     |                     |                     | 8Fh             |  |  |
| 10h                                     |                     |                     | 90h             |  |  |
| 11h                                     |                     |                     | 91h             |  |  |
| 12h                                     |                     |                     | 92h             |  |  |
| 13h                                     |                     |                     | 93h             |  |  |
| 14h                                     |                     |                     |                 |  |  |
| 15h                                     |                     |                     | 95h             |  |  |
| 16h                                     |                     |                     | 96h             |  |  |
| 17h                                     |                     |                     | 97h             |  |  |
| 18h                                     |                     |                     | 98h             |  |  |
| 19h                                     |                     |                     | 99h             |  |  |
| 1Ah                                     |                     |                     | 9Ah             |  |  |
| 1Bh                                     |                     |                     | 9Bh             |  |  |
| 1Ch                                     |                     |                     | 9Ch             |  |  |
| 1Dh                                     |                     |                     | 9Dh             |  |  |
| 1Eh                                     |                     |                     | 9Eh             |  |  |
| 1Fh                                     |                     |                     | 9Fh             |  |  |
| 20h                                     |                     |                     | A0h             |  |  |
| -                                       | General             | General             | 7.011           |  |  |
|                                         | Purpose<br>Register | Purpose             |                 |  |  |
|                                         | register            |                     | BFh             |  |  |
|                                         |                     |                     | C0h             |  |  |
|                                         |                     |                     |                 |  |  |
| ſ                                       |                     |                     |                 |  |  |
|                                         |                     |                     |                 |  |  |
| 7Eh                                     |                     |                     | FFh             |  |  |
| 1 ETT 4                                 | Bank 0              | Bank 1              |                 |  |  |
| Unimp                                   | lemented data mer   | mory locations      | ad as '0'       |  |  |
| <b>Note 1:</b> Not a physical register. |                     |                     |                 |  |  |

#### 4.2.2.4 PCON Register

The PCON register contains a flag bit to differentiate between a Power-on Reset, an external MCLR Reset or WDT Reset. See Section 6.3 and Section 6.4 for detailed RESET operation.

#### **REGISTER 4-4:** PCON REGISTER (ADDRESS 8Eh) U-0 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 POR bit7 bit 7-2 Unimplemented: Read as '0' bit 1 POR: Power-on Reset status bit 1 = No Power-on Reset occurred 0 = Power-on Reset occurred bit 0 Unimplemented: Read as '0' Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit0

## 5.0 I/O PORTS

The PIC16C554 and PIC16C558 have two ports, PORTA and PORTB. The PIC16C557 has three ports, PORTA, PORTB and PORTC.

## 5.1 PORTA and TRISA Registers

PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open-drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Note 1: On RESET, the TRISA register is set to all inputs.

FIGURE 5-1: BLOCK DIAGRAM OF PORT PINS RA<3:0>



## FIGURE 5-2: BL

BLOCK DIAGRAM OF RA4



# 5.3 PORTC and TRISC Registers<sup>(1)</sup>

PORTC is a 8-bit wide latch. All pins have data direction bits (TRIS registers) which can configure these pins as input or output.

A '1' in the TRISC register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISC register puts the contents of the output latch on the selected pin(s).

Reading the PORTC register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch

FIGURE 5-5: BLOCK DIAGRAM OF



| Name | Bit # | Buffer Type | Function                 |
|------|-------|-------------|--------------------------|
| RC0  | Bit 0 | TTL         | Bi-directional I/O port. |
| RC1  | Bit 1 | TTL         | Bi-directional I/O port. |
| RC2  | Bit 2 | TTL         | Bi-directional I/O port. |
| RC3  | Bit 3 | TTL         | Bi-directional I/O port. |
| RC4  | Bit 4 | TTL         | Bi-directional I/O port. |
| RC5  | Bit 5 | TTL         | Bi-directional I/O port. |
| RC6  | Bit 6 | TTL         | Bi-directional I/O port. |
| RC7  | Bit 7 | TTL         | Bi-directional I/O port. |

Legend: ST = Schmitt Trigger, TTL = TTL input

### TABLE 5-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC AND TRISC

| Address | Name  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR | Value on<br>All Other<br>RESETS |
|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------|---------------------------------|
| 07h     | PORTC | RC7    | RC6    | RC5    | RC4    | RC3    | RC2    | RC1    | RC0    | xxxx xxxx       | uuuu uuuu                       |
| 87h     | TRISC | TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 | 1111 1111       | 1111 1111                       |

Legend: x = unknown, u = unchanged Note 1: PIC16C557 ONLY.

### 6.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a pre-packaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 6-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k $\Omega$  resistor provides the negative feedback for stability. The 10 k $\Omega$  potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

#### FIGURE 6-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT



Figure 6-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a  $180^{\circ}$  phase shift in a series resonant oscillator circuit. The  $330\Omega$  resistors provide the negative feedback to bias the inverters in their linear region.

#### FIGURE 6-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT



## 6.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 6-5 shows how the R/C combination is connected to the PIC16C55X. For REXT values below 2.2 k $\Omega$ , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M $\Omega$ ), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep REXT between 3 k $\Omega$  and 100 k $\Omega$ .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).



## FIGURE 6-5: RC OSCILLATOR MODE

## 6.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 6-1 stores and restores the STATUS and W registers. The user register, W\_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W\_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS\_TEMP, must be defined in Bank 0. The Example 6-1:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

#### EXAMPLE 6-1: SAVING THE STATUS AND W REGISTERS IN RAM

| MOVWF | W_TEMP         | ;copy W to TEMP<br>;register, could be in |
|-------|----------------|-------------------------------------------|
|       |                | ;either bank                              |
| SWAPF | STATUS,W       | ;swap STATUS to be                        |
|       |                | ;saved into W                             |
| BCF   | STATUS, RPO    | ;change to bank0                          |
|       |                | ;regardless of                            |
|       |                | ;current bank                             |
| MOVWF | STATUS_TEMP    | ;save STATUS to bank0                     |
|       |                | ;register                                 |
| :     |                |                                           |
| :     |                |                                           |
| :     |                |                                           |
| SWAPF | STATUS_TEMP, W | ;swap STATUS_TEMP                         |
|       |                | ;register into W, sets                    |
|       |                | ;bank to original state                   |
| MOVWF | STATUS         | ;move W into STATUS                       |
|       |                | ;register                                 |
| SWAPF | W_TEMP,F       | ;swap W_TEMP                              |
| SWAPF | W_TEMP,W       | ;swap W_TEMP into W                       |

## 6.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET. If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 6.1).

## 6.7.1 WDT PERIOD

The WDT has a nominal timeout period of 18 ms, (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part-to-part (see DC specs). If longer timeout periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The  $\overline{\text{TO}}$  bit in the STATUS register will be cleared upon a Watchdog Timer timeout.

## 6.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT timeout occurs.

## 7.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

#### 7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4TOSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

### 7.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.



## 7.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note: There is only one prescaler available which is mutually exclusive between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

© 1996-2013 Microchip Technology Inc.

NOTES:

# PIC16C55X

| CLRW             | Clear V                              | V                 |              |        |  |
|------------------|--------------------------------------|-------------------|--------------|--------|--|
| Syntax:          | [ label ]                            | CLRW              |              |        |  |
| Operands:        | None                                 |                   |              |        |  |
| Operation:       | $00h \rightarrow (V 1 \rightarrow Z$ | V)                |              |        |  |
| Status Affected: | Z                                    |                   |              |        |  |
| Encoding:        | 00                                   | 0001              | 0000         | 0011   |  |
| Description:     | W register set.                      | is clear          | ed. Zero bit | (Z) is |  |
| Words:           | 1                                    |                   |              |        |  |
| Cycles:          | 1                                    |                   |              |        |  |
| Example          | CLRW                                 |                   |              |        |  |
|                  | Before In                            | structio          | n            |        |  |
|                  | W                                    | =                 | 0x5A         |        |  |
|                  | After Inst                           | After Instruction |              |        |  |
|                  | W                                    | =                 | 0x00         |        |  |
|                  | 7                                    | _                 | 1            |        |  |

| COMF             | Comple                                              | ement f                                                 |                                                           |                  |  |
|------------------|-----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|------------------|--|
| Syntax:          | [ <i>label</i> ] COMF f,d                           |                                                         |                                                           |                  |  |
| Operands:        | 0 ≤ f ≤ 127<br>d ∈ [0,1]                            |                                                         |                                                           |                  |  |
| Operation:       | $(\overline{f}) \rightarrow (des$                   | st)                                                     |                                                           |                  |  |
| Status Affected: | Z                                                   |                                                         |                                                           |                  |  |
| Encoding:        | 00                                                  | 1001                                                    | dfff                                                      | ffff             |  |
| Description:     | The conten<br>compleme<br>stored in V<br>stored bac | nts of reg<br>nted. If 'd<br>V. If 'd' is<br>k in regis | ister 'f' are<br>' is 0 the re<br>1 the resul<br>ter 'f'. | esult is<br>t is |  |
| Words:           | 1                                                   |                                                         |                                                           |                  |  |
| Cycles:          | 1                                                   |                                                         |                                                           |                  |  |
| Example          | COMF                                                | REG1,(                                                  | )                                                         |                  |  |
|                  | Before In                                           | struction                                               | 1                                                         |                  |  |
|                  | REG                                                 | 1 =                                                     | 0x13                                                      |                  |  |
|                  | After Inst                                          | ruction                                                 |                                                           |                  |  |
|                  | REG                                                 | 1 =                                                     | 0x13                                                      |                  |  |
|                  | W                                                   | =                                                       | 0xEC                                                      |                  |  |

| CLRWDI           | Clear Watchdog                                                                                                                                                      | Jimer                                   |                  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|
| Syntax:          | [label] CLRWD                                                                                                                                                       | Γ                                       |                  |
| Operands:        | None                                                                                                                                                                |                                         |                  |
| Operation:       | $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{W}DT \text{ prescale} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$ | er,                                     |                  |
| Status Affected: | TO, PD                                                                                                                                                              |                                         |                  |
| Encoding:        | 00 0000                                                                                                                                                             | 0110                                    | 0100             |
| Description:     | CLRWDT instruction r<br>Watchdog Timer. It a<br>prescaler of the WD<br>and PD are set.                                                                              | esets the<br>Ilso resets<br>T. Status I | s the<br>bits TO |
| Words:           | 1                                                                                                                                                                   |                                         |                  |
| Cycles:          | 1                                                                                                                                                                   |                                         |                  |
| Example          | CLRWDT                                                                                                                                                              |                                         |                  |
|                  | Before Instruction<br>WDT counter<br>After Instruction                                                                                                              | = ?                                     |                  |
|                  | WDT counter                                                                                                                                                         | = 0                                     | ×00              |
|                  | WDT prescale                                                                                                                                                        | er = 0                                  |                  |
|                  | TO                                                                                                                                                                  | = 1                                     |                  |
|                  | PD                                                                                                                                                                  | = 1                                     |                  |

.....

| DECF             | Decrement f                                                                                                                                 |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] DECF f,d                                                                                                                            |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                             |
| Operation:       | (f) - 1 $\rightarrow$ (dest)                                                                                                                |
| Status Affected: | Z                                                                                                                                           |
| Encoding:        | 00 0011 dfff ffff                                                                                                                           |
| Description:     | Decrement register 'f'. If 'd' is 0 the<br>result is stored in the W register. If 'd'<br>is 1 the result is stored back in register<br>'f'. |
| Words:           | 1                                                                                                                                           |
| Cycles:          | 1                                                                                                                                           |
| Example          | DECF CNT, 1                                                                                                                                 |
|                  | Before Instruction<br>CNT = 0x01<br>Z = 0<br>After Instruction<br>CNT = 0x00<br>Z = 1                                                       |
|                  |                                                                                                                                             |

# PIC16C55X

| RETFIE           | Return from Interrupt                                                                                                                                                                                            |        |      |      |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|--|--|--|--|--|
| Syntax:          | [ label ]                                                                                                                                                                                                        | RETFIE | 1    |      |  |  |  |  |  |
| Operands:        | None                                                                                                                                                                                                             |        |      |      |  |  |  |  |  |
| Operation:       | $TOS \rightarrow PC, \\ 1 \rightarrow GIE$                                                                                                                                                                       |        |      |      |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                                             |        |      |      |  |  |  |  |  |
| Encoding:        | 00                                                                                                                                                                                                               | 0000   | 0000 | 1001 |  |  |  |  |  |
| Description:     | Return from Interrupt. Stack is POPed<br>and Top of Stack (TOS) is loaded in<br>the PC. Interrupts are enabled by<br>setting Global Interrupt Enable bit,<br>GIE (INTCON<7>). This is a two-cycle<br>instruction |        |      |      |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                                                                |        |      |      |  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                                                                                |        |      |      |  |  |  |  |  |
| Example          | RETFIE                                                                                                                                                                                                           |        |      |      |  |  |  |  |  |
|                  | After Inte                                                                                                                                                                                                       | rrupt  |      |      |  |  |  |  |  |
|                  | PC                                                                                                                                                                                                               | = T    | OS   |      |  |  |  |  |  |
|                  | GIE                                                                                                                                                                                                              | = 1    |      |      |  |  |  |  |  |

| RETURN           | Return from Subroutine                                                                                                                                  |               |      |      |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|------|--|--|--|--|--|
| Syntax:          | [ label ]                                                                                                                                               | RETUR         | N    |      |  |  |  |  |  |
| Operands:        | None                                                                                                                                                    |               |      |      |  |  |  |  |  |
| Operation:       | $TOS \rightarrow PC$                                                                                                                                    |               |      |      |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                    |               |      |      |  |  |  |  |  |
| Encoding:        | 00                                                                                                                                                      | 0000          | 0000 | 1000 |  |  |  |  |  |
| Description:     | Return from subroutine. The stack is<br>POPed and the top of the stack (TOS)<br>is loaded into the program counter.<br>This is a two-cycle instruction. |               |      |      |  |  |  |  |  |
| Words:           | 1                                                                                                                                                       |               |      |      |  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                       |               |      |      |  |  |  |  |  |
| Example          | RETURN                                                                                                                                                  |               |      |      |  |  |  |  |  |
|                  | After Inte<br>PC                                                                                                                                        | errupt<br>= T | OS   |      |  |  |  |  |  |

| RETLW            | Return with Literal in W                                                                                                                                                            |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] RETLW k S                                                                                                                                                          |  |  |  |  |  |
| Operands:        | $0 \le k \le 255$ C                                                                                                                                                                 |  |  |  |  |  |
| Operation:       | $k \rightarrow (W);$<br>TOS $\rightarrow$ PC C                                                                                                                                      |  |  |  |  |  |
| Status Affected: | None S                                                                                                                                                                              |  |  |  |  |  |
| Encoding:        | 11 01xx kkkk kkkk E                                                                                                                                                                 |  |  |  |  |  |
| Description:     | The W register is loaded with the eight<br>bit literal 'k'. The program counter is<br>loaded from the top of the stack (the<br>return address). This is a two-cycle<br>instruction. |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                                   |  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                                                   |  |  |  |  |  |
| Example          | CALL TABLE;W contains table<br>;offset value C<br>• ;W now has table<br>value E                                                                                                     |  |  |  |  |  |
| TABLE            | ADDWF PC ;W = offset<br>RETLW k1 ;Begin table<br>RETLW k2 ;<br>•<br>RETLW kn ; End of table                                                                                         |  |  |  |  |  |
|                  | Before Instruction                                                                                                                                                                  |  |  |  |  |  |
|                  | W = 0x07                                                                                                                                                                            |  |  |  |  |  |
|                  | Atter Instruction                                                                                                                                                                   |  |  |  |  |  |
|                  |                                                                                                                                                                                     |  |  |  |  |  |

| RLF            | Rotate Left f through Carry                                                                                                                                                                                 |           |      |     |      |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-----|------|--|--|--|--|
| /ntax:         | [ label ]                                                                                                                                                                                                   | RLF f     | ,d   |     |      |  |  |  |  |
| perands:       | $0 \le f \le 127$<br>d $\in [0,1]$                                                                                                                                                                          |           |      |     |      |  |  |  |  |
| peration:      | See desc                                                                                                                                                                                                    | ription b | elow |     |      |  |  |  |  |
| atus Affected: | С                                                                                                                                                                                                           |           |      |     |      |  |  |  |  |
| ncoding:       | 00                                                                                                                                                                                                          | 1101      | dff  | f   | ffff |  |  |  |  |
| escription:    | The contents of register 'f' are rotated<br>one bit to the left through the Carry<br>Flag. If 'd' is 0 the result is placed in<br>the W register. If 'd' is 1 the result is<br>stored back in register 'f'. |           |      |     |      |  |  |  |  |
| ords:          | 1                                                                                                                                                                                                           |           |      |     |      |  |  |  |  |
| ycles:         | 1                                                                                                                                                                                                           |           |      |     |      |  |  |  |  |
| xample         | RLF                                                                                                                                                                                                         | REG1,     | 0    |     |      |  |  |  |  |
|                | Before In                                                                                                                                                                                                   | structior | ٦    |     |      |  |  |  |  |
|                | REG                                                                                                                                                                                                         | 1 = 1     | 110  | 011 | . 0  |  |  |  |  |
|                | С                                                                                                                                                                                                           | = 0       | )    |     |      |  |  |  |  |
|                | After Inst                                                                                                                                                                                                  | ruction   |      |     |      |  |  |  |  |
|                | REG                                                                                                                                                                                                         | 1 = 1     | .110 | 011 | .0   |  |  |  |  |
|                | W                                                                                                                                                                                                           | = 1       | 100  | 110 | 0    |  |  |  |  |
|                | С                                                                                                                                                                                                           | = 1       | _    |     |      |  |  |  |  |
|                |                                                                                                                                                                                                             |           |      |     |      |  |  |  |  |

| XORLW            | Exclusive OR Literal with W                                                                                             |           |      |      |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------|-----------|------|------|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] XORLW k                                                                                                |           |      |      |  |  |  |  |  |
| Operands:        | $0 \le k \le 255$                                                                                                       |           |      |      |  |  |  |  |  |
| Operation:       | (W) .XOR. $k \rightarrow (W)$                                                                                           |           |      |      |  |  |  |  |  |
| Status Affected: | Z                                                                                                                       |           |      |      |  |  |  |  |  |
| Encoding:        | 11                                                                                                                      | 1010      | kkkk | kkkk |  |  |  |  |  |
| Description:     | The contents of the W register are<br>XOR'ed with the eight bit literal 'k'.<br>The result is placed in the W register. |           |      |      |  |  |  |  |  |
| Words:           | 1                                                                                                                       |           |      |      |  |  |  |  |  |
| Cycles:          | 1                                                                                                                       |           |      |      |  |  |  |  |  |
| Example:         | XORLW                                                                                                                   | 0xAF      |      |      |  |  |  |  |  |
|                  | Before In                                                                                                               | structior | า    |      |  |  |  |  |  |
|                  | W                                                                                                                       | =         | 0xB5 |      |  |  |  |  |  |
|                  | After Inst                                                                                                              | ruction   |      |      |  |  |  |  |  |
|                  | W                                                                                                                       | =         | 0x1A |      |  |  |  |  |  |

| XORWF            | Exclusive OR W with f                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Syntax:          | [label] XORWF f,d                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                                       |  |  |  |  |  |  |  |  |
| Operation:       | (W) .XOR. (f) $\rightarrow$ (dest)                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Encoding:        | 00 0110 dfff ffff                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Description:     | Exclusive OR the contents of the<br>W register with register 'f'. If 'd' is 0 the<br>result is stored in the W register. If 'd'<br>is 1 the result is stored back in register<br>'f'. |  |  |  |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Cycles:          | 1                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Example          | XORWF REG 1                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                  | Before Instruction                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                  | REG = 0xAF $W = 0xB5$                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                  | After Instruction                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                  | REG = 0x1A                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                  | W = 0xB5                                                                                                                                                                              |  |  |  |  |  |  |  |  |

 $\odot$  1996-2013 Microchip Technology Inc.

## 10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

| DC Characteristics |      |                                               |            | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |            |        |                                                                                           |  |
|--------------------|------|-----------------------------------------------|------------|------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------|--|
| Param<br>No.       | Sym  | Characteristic                                | Min        | Тур†                                                 | Max        | Units  | Conditions                                                                                |  |
|                    | Vdd  | Supply Voltage                                |            |                                                      |            |        |                                                                                           |  |
| D001               |      | 16LC55X                                       | 3.0<br>2.5 | _                                                    | 5.5<br>5.5 | V      | XT and RC osc configuration<br>LP osc configuration                                       |  |
| D001<br>D001A      |      | 16C55X                                        | 3.0<br>4.5 |                                                      | 5.5<br>5.5 | V<br>V | XT, RC and LP osc configuration<br>HS osc configuration                                   |  |
| D002               | Vdr  | RAM Data Retention<br>Voltage <sup>(1)</sup>  | —          | 1.5*                                                 |            | V      | Device in SLEEP mode                                                                      |  |
| D003               | VPOR | VDD Start Voltage to<br>ensure Power-on Reset | -          | Vss                                                  | -          | V      | See Section 6.4, Power-on Reset for details                                               |  |
| D004               | SVDD | VDD Rise Rate to ensure<br>Power-on Reset     | 0.05*      | —                                                    | —          | V/ms   | See Section 6.4, Power-on Reset for details                                               |  |
|                    | IDD  | Supply Current <sup>(2)</sup>                 |            |                                                      |            |        |                                                                                           |  |
| D010               |      | 16LC55X                                       | _          | 1.4                                                  | 2.5        | mA     | XT and RC osc configuration<br>Fosc = 2.0 MHz, VDD = 3.0V, WDT<br>disabled <sup>(4)</sup> |  |
| D010A              |      |                                               |            | 26                                                   | 53         | μA     | LP osc configuration<br>Fosc = 32 kHz, VDD = 3.0V, WDT<br>disabled                        |  |
| D010               |      | 16C55X                                        | _          | 1.8                                                  | 3.3        | mA     | XT and RC osc configuration<br>Fosc = 4 MHz, VDD = 5.5V,<br>WDT disabled <sup>(4)</sup>   |  |
| D010A              |      |                                               | _          | 35                                                   | 70         | μΑ     | LP osc configuration,<br>PIC16C55X-04 only<br>Fosc = 32 kHz, VDD = 4.0V,<br>WDT disabled  |  |
| D013               |      |                                               | —          | 9.0                                                  | 20         | mA     | HS osc configuration<br>Fosc = $20 \text{ MHz}$ , VDD = $5.5 \text{V}$ ,<br>WDT disabled  |  |

These parameters are characterized but not tested.

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

<u>OSC1</u> = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The  $\Delta$  current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

## 10.2 DC Characteristics: PIC16C55X (Commercial, Industrial, Extended) PIC16LC55X(Commercial, Industrial, Extended)

|               |          |                                             | Standard Operating Conditions (unless otherwise stated)<br>Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and |        |                  |         |                                                             |  |  |
|---------------|----------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|---------|-------------------------------------------------------------|--|--|
| DC Cha        | racteris | stics                                       | $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial and                                                                                    |        |                  |         |                                                             |  |  |
|               |          |                                             | $-40^{\circ}C \le TA \le +125^{\circ}C$ for automotive                                                                                     |        |                  |         |                                                             |  |  |
|               |          |                                             | Operating volt                                                                                                                             | age vo | D range as de    | scribed | a in DC spec Table 10-1                                     |  |  |
| Param.<br>No. | Sym      | Characteristic                              | Min                                                                                                                                        | Тур†   | Max              | Unit    | Conditions                                                  |  |  |
|               | VIL      | Input Low Voltage                           |                                                                                                                                            |        |                  |         |                                                             |  |  |
|               |          | I/O ports                                   |                                                                                                                                            |        |                  |         |                                                             |  |  |
| D030          |          | with TTL buffer                             | Vss                                                                                                                                        | —      | 0.8V<br>0.15 Vdd | V       | VDD = 4.5V to 5.5V<br>otherwise                             |  |  |
| D031          |          | with Schmitt Trigger input                  | Vss                                                                                                                                        |        | 0.2 Vdd          | V       |                                                             |  |  |
| D032          |          | MCLR, RA4/T0CKI,OSC1 (in RC mode)           | Vss                                                                                                                                        | -      | 0.2 Vdd          | V       | (Note1)                                                     |  |  |
| D033          |          | OSC1 (in XT* and HS)                        | Vss                                                                                                                                        | —      | 0.3 Vdd          | V       |                                                             |  |  |
|               |          | OSC1 (in LP*)                               | Vss                                                                                                                                        | —      | 0.6 Vdd-1.0      | V       |                                                             |  |  |
|               | Vін      | Input High Voltage                          |                                                                                                                                            | 1      |                  |         | 1                                                           |  |  |
|               |          | I/O ports                                   |                                                                                                                                            | —      |                  |         |                                                             |  |  |
| D040          |          | with TTL buffer                             | 2.0V<br>0.8 + 0.25 VDD                                                                                                                     |        | Vdd<br>Vdd       | V<br>V  | VDD = 4.5V to 5.5V<br>otherwise                             |  |  |
| D041          |          | with Schmitt Trigger input                  | 0.8V                                                                                                                                       |        | Vdd              |         |                                                             |  |  |
| D042          |          | MCLR RA4/T0CKI                              | 0.8 Vdd                                                                                                                                    | —      | Vdd              | V       |                                                             |  |  |
| D043<br>D043A |          | OSC1 (XT*, HS and LP*)<br>OSC1 (in RC mode) | 0.7 Vdd<br>0.9 Vdd                                                                                                                         | —      | Vdd              | V       | (Note1)                                                     |  |  |
| D070          | IPURB    | PORTB weak pull-up current                  | 50                                                                                                                                         | 200    | 400              | μA      | VDD = 5.0V, VPIN = VSS                                      |  |  |
|               | lı∟      | Input Leakage Current <sup>(2)(3)</sup>     |                                                                                                                                            |        |                  |         |                                                             |  |  |
|               |          | I/O ports (Except PORTA)                    |                                                                                                                                            |        | ±1.0             | μA      | VSS $\leq$ VPIN $\leq$ VDD, pin at hi-impedance             |  |  |
| D060          |          | PORTA                                       | —                                                                                                                                          | _      | ±0.5             | μA      | $Vss \leq VPIN \leq VDD, pin at hi-impedance$               |  |  |
| D061          |          | RA4/T0CKI                                   | —                                                                                                                                          | —      | ±1.0             | μΑ      | $Vss \leq V \text{PIN} \leq V \text{DD}$                    |  |  |
| D063          |          | OSC1, MCLR                                  | —                                                                                                                                          | _      | ±5.0             | μA      | Vss $\leq$ VPIN $\leq$ VDD, XT, HS and LP osc configuration |  |  |
|               | Vol      | Output Low Voltage                          |                                                                                                                                            |        |                  |         |                                                             |  |  |
| D080          |          | I/O ports                                   | —                                                                                                                                          | -      | 0.6              | V       | IOL=8.5 mA, VDD=4.5V, -40° to<br>+85°C                      |  |  |
|               |          |                                             | —                                                                                                                                          | —      | 0.6              | V       | IOL=7.0 mA, VDD=4.5V, +125°C                                |  |  |
| D083          |          | OSC2/CLKOUT                                 | —                                                                                                                                          | —      | 0.6              | V       | IOL=1.6 mA, VDD=4.5V, -40° to<br>+85°C                      |  |  |
|               |          | (RC only)                                   | —                                                                                                                                          | —      | 0.6              | V       | IOL=1.2 mA, VDD=4.5V, +125°C                                |  |  |
|               | Vон      | Output High Voltage <sup>(3)</sup>          |                                                                                                                                            |        |                  |         |                                                             |  |  |
| D090          |          | I/O ports (Except RA4)                      | Vdd-0.7                                                                                                                                    | _      |                  | V       | IOH=-3.0 mA, VDD=4.5V, -40° to<br>+85°C                     |  |  |
|               |          |                                             |                                                                                                                                            |        |                  |         |                                                             |  |  |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C55X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

# PIC16C55X







## TABLE 10-4: TIMER0 CLOCK REQUIREMENTS

| Param<br>No. | Sym  | Characteristic         |                | Min                    | Тур† | Max | Units | Conditions                            |
|--------------|------|------------------------|----------------|------------------------|------|-----|-------|---------------------------------------|
| 40           | Tt0H | T0CKI High Pulse Width | No Prescaler   | 0.5 TCY + 20*          | _    | _   | ns    |                                       |
|              |      |                        | With Prescaler | 10*                    | _    | —   | ns    |                                       |
| 41           | Tt0L | T0CKI Low Pulse Width  | No Prescaler   | 0.5 TCY + 20*          | _    | —   | ns    |                                       |
|              |      |                        | With Prescaler | 10*                    | _    | —   | ns    |                                       |
| 42           | Tt0P | T0CKI Period           |                | <u>Tcy + 40</u> *<br>N | —    | _   | ns    | N = prescale value<br>(1, 2, 4,, 256) |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

## FIGURE 10-10: LOAD CONDITIONS



© 1996-2013 Microchip Technology Inc.

## 18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging



|                            | Units  | INCHES* |      |      | MILLIMETERS |       |       |  |
|----------------------------|--------|---------|------|------|-------------|-------|-------|--|
| Dimension                  | Limits | MIN     | NOM  | MAX  | MIN         | NOM   | MAX   |  |
| Number of Pins             | n      |         | 18   |      |             | 18    |       |  |
| Pitch                      | р      |         | .100 |      |             | 2.54  |       |  |
| Top to Seating Plane       | А      | .140    | .155 | .170 | 3.56        | 3.94  | 4.32  |  |
| Molded Package Thickness   | A2     | .115    | .130 | .145 | 2.92        | 3.30  | 3.68  |  |
| Base to Seating Plane      | A1     | .015    |      |      | 0.38        |       |       |  |
| Shoulder to Shoulder Width | Е      | .300    | .313 | .325 | 7.62        | 7.94  | 8.26  |  |
| Molded Package Width       | E1     | .240    | .250 | .260 | 6.10        | 6.35  | 6.60  |  |
| Overall Length             | D      | .890    | .898 | .905 | 22.61       | 22.80 | 22.99 |  |
| Tip to Seating Plane       | L      | .125    | .130 | .135 | 3.18        | 3.30  | 3.43  |  |
| Lead Thickness             | С      | .008    | .012 | .015 | 0.20        | 0.29  | 0.38  |  |
| Upper Lead Width           | B1     | .045    | .058 | .070 | 1.14        | 1.46  | 1.78  |  |
| Lower Lead Width           | В      | .014    | .018 | .022 | 0.36        | 0.46  | 0.56  |  |
| Overall Row Spacing §      | eB     | .310    | .370 | .430 | 7.87        | 9.40  | 10.92 |  |
| Mold Draft Angle Top       | α      | 5       | 10   | 15   | 5           | 10    | 15    |  |
| Mold Draft Angle Bottom    | β      | 5       | 10   | 15   | 5           | 10    | 15    |  |

\* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

### 28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging







|                          | Units  | INCHES* |      |      | MILLIMETERS |       |       |
|--------------------------|--------|---------|------|------|-------------|-------|-------|
| Dimension                | Limits | MIN     | NOM  | MAX  | MIN         | NOM   | MAX   |
| Number of Pins           | n      |         | 28   |      |             | 28    |       |
| Pitch                    | р      |         | .050 |      |             | 1.27  |       |
| Overall Height           | А      | .093    | .099 | .104 | 2.36        | 2.50  | 2.64  |
| Molded Package Thickness | A2     | .088    | .091 | .094 | 2.24        | 2.31  | 2.39  |
| Standoff §               | A1     | .004    | .008 | .012 | 0.10        | 0.20  | 0.30  |
| Overall Width            | Е      | .394    | .407 | .420 | 10.01       | 10.34 | 10.67 |
| Molded Package Width     | E1     | .288    | .295 | .299 | 7.32        | 7.49  | 7.59  |
| Overall Length           | D      | .695    | .704 | .712 | 17.65       | 17.87 | 18.08 |
| Chamfer Distance         | h      | .010    | .020 | .029 | 0.25        | 0.50  | 0.74  |
| Foot Length              | L      | .016    | .033 | .050 | 0.41        | 0.84  | 1.27  |
| Foot Angle Top           | ф      | 0       | 4    | 8    | 0           | 4     | 8     |
| Lead Thickness           | С      | .009    | .011 | .013 | 0.23        | 0.28  | 0.33  |
| Lead Width               | В      | .014    | .017 | .020 | 0.36        | 0.42  | 0.51  |
| Mold Draft Angle Top     | α      | 0       | 12   | 15   | 0           | 12    | 15    |
| Mold Draft Angle Bottom  | β      | 0       | 12   | 15   | 0           | 12    | 15    |

\* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013

Drawing No. C04-052

## THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

## CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

## CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support