

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	80 × 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc554-04e-p

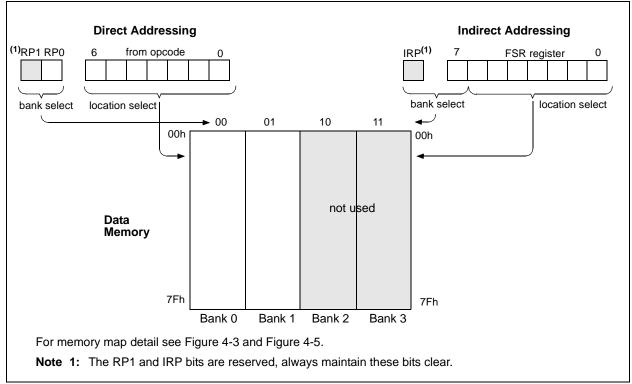
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources.


Note:	Interrupt flag bits get set when an interrupt
	condition occurs regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>).

REGISTER 4-3:	INTCON REGISTER (ADDRESS 0BH OR 8BH)							
	R/W-0	Reserved	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	—	T0IE	INTE	RBIE	T0IF	INTF	RBIF
	bit7							bit0
bit 7	GIE: Global	Interrupt Ena	ble bit					
		s all un-maske s all interrupts		5				
bit 6	Reserved:	For future use	. Always m	aintain this	bit clear.			
bit 5	TOIE: TMR(Overflow Inte	errupt Enab	le bit				
		s the TMR0 int s the TMR0 in						
bit 4	INTE: RB0/	INT External I	nterrupt En	able bit				
		s the RB0/INT s the RB0/INT		•				
bit 3	RBIE: RB P	ort Change In	terrupt Ena	ble bit				
		s the RB port of s the RB port of the	0					
bit 2	TOIF: TMRC	Overflow Inte	errupt Flag	bit				
	1 = TMR0 register has overflowed (must be cleared in software)0 = TMR0 register did not overflow							
bit 1	INTF: RB0/	INT External li	nterrupt Fla	g bit				
	 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur 							
bit 0	RBIF: RB Port Change Interrupt Flag bit							
	1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software)			re)				
	0 = None of	the RB7:RB4	pins have	changed sta	ate			
	Legend:							
	R = Readat	ole bit	W = W	ritable bit	U = Unir	nplemented	bit, read as '()'
	- n = Value	at POR reset	'1' = Bit	t is set	'0' = Bit	is cleared	x = Bit is u	nknown

REGISTER 4-3: INTCON REGISTER (ADDRESS 0BH OR 8BH)

© 1996-2013 Microchip Technology Inc.

5.4 I/O Programming Considerations

5.4.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit 0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-1 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}$, ${\tt BSF}$, etc.) on an I/O port.

A pin actively outputting a low or high should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16C55X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Interrupts
- 7. Watchdog Timer (WDT)
- 8. SLEEP
- 9. Code protection
- 10. ID Locations
- 11. In-circuit serial programming[™]

The PIC16C55X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), which is intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two functions onchip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

6.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

6.2 Oscillator Configurations

6.2.1 OSCILLATOR TYPES

The PIC16C55X can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

6.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 6-1). The PIC16C55X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 6-2).

FIGURE 6-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

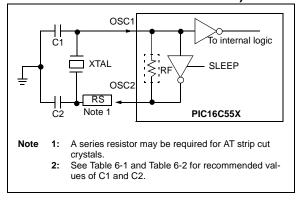
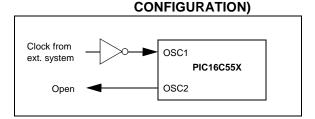
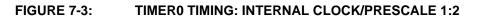



FIGURE 6-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 6-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS (PRELIMINARY)


Ranges			
Mode	Freq	OSC1(C1)	OSC2(C2)
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	22 - 100 pF 15 - 68 pF 15 - 68 pF
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF
Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design			

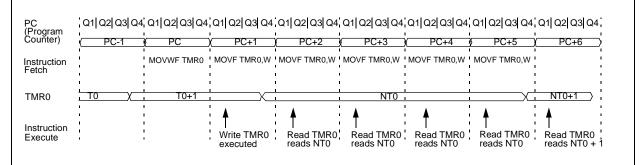
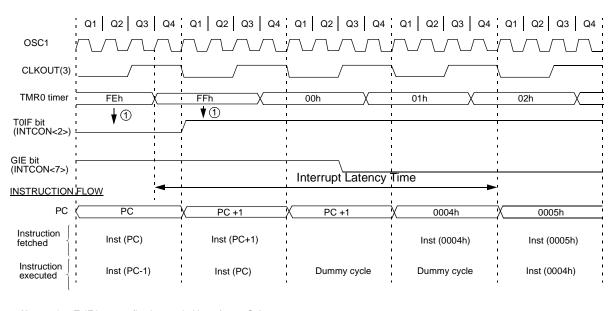

of the oscillator but also increases the
start-up time. These values are for design
guidance only. Since each resonator has
its own characteristics, the user should
consult with the resonator manufacturer for
appropriate values of external compo-
nents.

TABLE 6-2:	CAPACITOR SELECTION FOR
	CRYSTAL OSCILLATOR
	(PRELIMINARY)


Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 30 pF	15 - 30 pF
XT	100 kHz	68 - 150 pF	150 - 200 pF
	2 MHz	15 - 30 pF	15 - 30 pF
	4 MHz	15 - 30 pF	15 - 30 pF
HS	8 MHz	15 - 30 pF	15 - 30 pF
	10 MHz	15 - 30 pF	15 - 30 pF
	20 MHz	15 - 30 pF	15 - 30 pF
Note 1:	Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid over- driving crystals with low-drive level specifi- cation. Since each crystal has its own characteristics, the user should consult with the crystal manufacturer for appropri- ate values of external components.		

PIC16C55X

T0IF interrupt flag is sampled here (every Q1). Note 1:

Interrupt latency = 4 Tcr, where Tcr = instruction cycle time. CLKOUT is available only in RC Oscillator mode. 2:

3:

8.0 INSTRUCTION SET SUMMARY

Each PIC16C55X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C55X instruction set summary in Table 8-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 8-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 8-1:OPCODE FIELD
DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compatibil- ity with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
то	Timeout bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

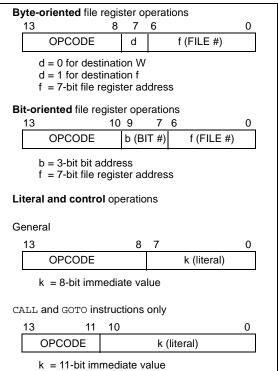
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 8-1 lists the instructions recognized by the MPASMTM assembler.

Figure 8-1 shows the three general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC[®] MCU products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 8-1: GENERAL FORMAT FOR INSTRUCTIONS

PIC16C55X

BCF	Bit Clea	ar f		
Syntax:	[label]	BCF 1	f,b	
Operands:	$0 \le f \le 1$ $0 \le b \le 1$			
Operation:	$0 \rightarrow (f < $	b>)		
Status Affected:	None			
Encoding:	01	00bb	bfff	ffff
Description:	Bit 'b' in re	gister 'f' is	s cleared.	
Words:	1			
Cycles:	1			
Example	BCF	FLAG_F	REG, 7	
	After Inst	G_REG		C7 47

	Bit	Set	f
--	-----	-----	---

BSF

Syntax:	[<i>label</i>]BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	7		
Operation:	$1 \rightarrow (f < b;$	>)		
Status Affected:	None			
Encoding:	01	01bb	bfff	ffff
Description:	Bit 'b' in re	gister 'f' is	s set.	
Words:	1			
Cycles:	1			
Example	BSF	FLAG_F	REG, 7	,
	Before In FLA After Inst	G_REG		0A
	FLAG	G_REG	= 0x	8A

BTFSC	Bit Test, Skip if Clear		
Syntax:	[label] BTFSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	skip if (f) = 0		
Status Affected:	None		
Encoding:	01 10bb bfff ffff		
Description:	If bit 'b' in register 'f' is '0' then the next instruction is skipped. If bit 'b' is '0' then the next instruction fetched during the current instruction execution is dis- carded, and a NOP is executed instead, making this a two-cycle instruction.		
Words:	1		
Cycles:	1(2)		
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • •		
	Before Instruction		
	PC = address HERE		
	After Instruction if FLAG<1> = 0, PC = address TRUE if FLAG<1> = 1,		
	PC = address FALSE		

DECFSZ	Decrement f, Skip if 0								
Syntax:	[label] DECFSZ f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0								
Status Affected:	None								
Encoding:	00 1011 dfff ffff								
Description:	The contents of register 'f' are decremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.								
Words:	1								
Cycles:	1(2)								
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •								
	Before Instruction PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE+1								

GOTO	Unconditional Branch									
Syntax:	[<i>label</i>] GOTO k									
Operands:	$0 \le k \le 2047$									
Operation:	$k \rightarrow PC < 10:0 >$									
	$PCLATH<4:3> \rightarrow PC<12:11>$									
Status Affected:	None									
Encoding:	10 lkkk kkkk kkkk									
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.									
Words:	1									
Cycles:	2									
Example	GOTO THERE									
	After Instruction									
INCF	PC = Address THERE									
_	Increment f									
INCF Syntax: Operands:										
Syntax:	Increment f [<i>label</i>] INCF f,d $0 \le f \le 127$									
Syntax: Operands:	Increment f [<i>label</i>] INCF f,d $0 \le f \le 127$ $d \in [0,1]$									
Syntax: Operands: Operation:	Increment f [<i>label</i>] INCF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) + 1 \rightarrow (dest)									
Syntax: Operands: Operation: Status Affected:	Increment f [<i>label</i>] INCF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) + 1 \rightarrow (dest) Z									
Syntax: Operands: Operation: Status Affected: Encoding:	Increment f[label] INCF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) + 1 \rightarrow (dest)Z001010dffffffThe contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the									
Syntax: Operands: Operation: Status Affected: Encoding: Description:	Increment f[label]INCF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) + 1 \rightarrow (dest)$ Z001010dfffffffThe contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.									

INCF CNT, 1 Before Instruction CNT = 0xFFZ = 0After Instruction CNT = 0x00Z = 1

RRF	Rotate Right f through Carry									
Syntax:	[label]	RRF 1	,d							
Operands:	$0 \le f \le 127$ $d \in [0,1]$									
Operation:	See desc	ription b	below							
Status Affected:	С									
Encoding:	00	1100	dff	f	ffff					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.									
	C Register f									
			Regist	ter f	┠┺					
Words:	1		Regist	ter f]•					
Words: Cycles:	1 1]-▶[Regist	ter f]•]					
	•]-•[ter f] •]					
Cycles:	1		REG		<u>}</u>					
Cycles:	1 RRF	struction	REG	\$1,0	.0					
Cycles:	1 RRF Before Ins	struction	REG n 1110	\$1,0	.0					
Cycles:	1 RRF Before In REG	struction 1 = 1 = (REG n 1110	\$1,0	.0					
Cycles:	1 RRF Before In REG C	struction 1 = 1 = 0 ruction	REG n 1110	\$1,0	-					
Cycles:	1 RRF Before Ins REG C After Instr	struction 1 = 2 = 0 ruction 1 = 2	REG N L110	;1,0 011 011	.0					

SLEEP

Syntax:	[<i>label</i>]	SLEEP						
Operands:	None							
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$							
Status Affected:	$\overline{\text{TO}}, \overline{\text{PD}}$							
Encoding:	00	0000	0110	0011				
Description:	The power-down status bit, <u>PD</u> is cleared. Timeout status bit, <u>TO</u> is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 6.8 for more details							
Words:	1							
Cycles:	1							
Example:	SLEEP							

SUBLW	Subtract W from Literal									
Syntax:	[<i>label</i>] SUBLW k									
Operands:	$0 \leq k \leq 255$									
Operation:	k - (W) → ($k - (W) \rightarrow (W)$								
Status Affected:	C, DC, Z									
Encoding:	11	110x	kkkk	kkkk						
Description:	The W regist plement met 'k'. The resul	hod) fror	n the eight	bit literal						
Words:	1									
Cycles:	1									
Example 1:	SUBLW	0x02								
	Before Inst	ruction								
	W	= 1								
	С	= ?)							
	After Instru	ction								
	W	= 1								
	С	= 1	; result is	positive						
Example 2:	Before Inst	ruction								
	W	= 2	2							
	С	= ?)							
	After Instru	ction								
	W	= 0)							
	С	= 1	; result is	s zero						
Example 3:	Before Inst	ruction								
	W	= 3	3							
	С	= ?)							
	After Instru	ction								
	W)xFF							
	C	= 0); result i	s nega-						

tive

 \odot 1996-2013 Microchip Technology Inc.

XORLW	Exclusive OR Literal with W									
Syntax:	[<i>label</i>] XORLW k									
Operands:	$0 \le k \le 25$	5								
Operation:	(W) .XOR	k . k → (λ	N)							
Status Affected:	Z									
Encoding:	11	1010	kkkk	kkkk						
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.									
Words:	1									
Cycles:	1									
Example:	XORLW	0xAF								
	Before In:	structior	ı							
	W	=	0xB5							
	After Inst	ruction								
	W	=	0x1A							

XORWF	Exclusive OR W with f								
Syntax:	[<i>label</i>] XORWF f,d								
Operands:	$0 \le f \le 127$ d $\in [0,1]$								
Operation:	(W) .XOR. (f) \rightarrow (dest)								
Status Affected:	Z								
Encoding:	00 0110 dfff ffff								
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Example	XORWF REG 1								
	Before Instruction								
	REG = 0xAF W = 0xB5								
	After Instruction								
	REG = 0x1A								
	W = 0xB5								

 \odot 1996-2013 Microchip Technology Inc.

10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

DC Cha	racterist				ure -4	litions (unless otherwise stated) $0^{\circ}C \le TA \le +85^{\circ}C$ for industrial and $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial and $0^{\circ}C \le TA \le +125^{\circ}C$ for extended	
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Vdd	Supply Voltage					
D001		16LC55X	3.0 2.5	_	5.5 5.5	V	XT and RC osc configuration LP osc configuration
D001 D001A		16C55X	3.0 4.5		5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 6.4, Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 6.4, Power-on Reset for details
	Idd	Supply Current ⁽²⁾					
D010		16LC55X	_	1.4	2.5	mA	XT and RC osc configuration Fosc = 2.0 MHz, VDD = 3.0V, WDT disabled ⁽⁴⁾
D010A			_	26	53	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D010		16C55X	_	1.8	3.3	mA	XT and RC osc configuration Fosc = 4 MHz, VDD = 5.5V, WDT disabled ⁽⁴⁾
D010A			_	35	70	μΑ	LP osc configuration, PIC16C55X-04 only Fosc = 32 kHz, VDD = 4.0V, WDT disabled
D013			—	9.0	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

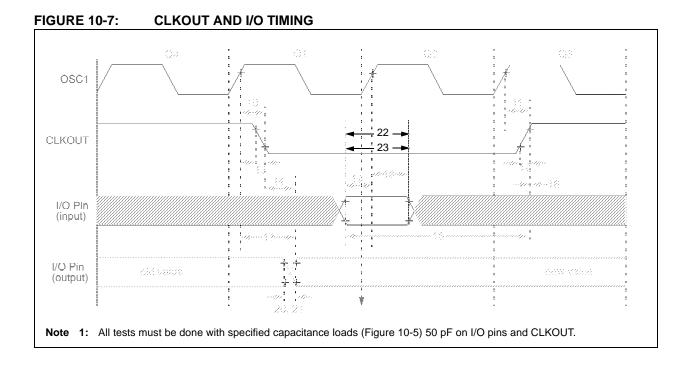
<u>OSC1</u> = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

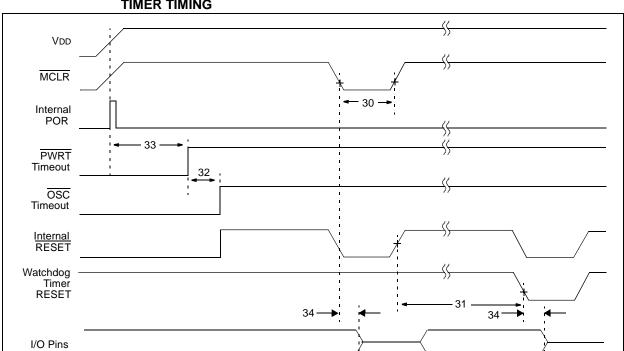
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

10.2 DC Characteristics: PIC16C55X (Commercial, Industrial, Extended) PIC16LC55X(Commercial, Industrial, Extended)

DC Cha	racteris	tics	Standard Ope Operating tem	-	re -40°C ≤ T 0°C ≤ 1	A ≤ +8 īA ≤ +7	s otherwise stated) 5°C for industrial and 70°C for commercial and 25°C for automotive
		1	Operating volt	age Vo	D range as de	scribed	d in DC spec Table 10-1
Param. No.	Sym	Characteristic	Min	Тур†	Max	Unit	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	_	0.8V 0.15 Vdd	V	VDD = 4.5V to 5.5V otherwise
D031		with Schmitt Trigger input	Vss		0.2 Vdd	V	
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	_	0.2 VDD	V	(Note1)
D033		OSC1 (in XT* and HS)	Vss	—	0.3 Vdd	V	
		OSC1 (in LP*)	Vss	—	0.6 Vdd-1.0	V	
	Vін	Input High Voltage					
		I/O ports		—			
D040		with TTL buffer	2.0V 0.8 + 0.25 VDD	_	Vdd Vdd	V V	VDD = 4.5V to 5.5V otherwise
D041		with Schmitt Trigger input	0.8V		Vdd		
D042		MCLR RA4/T0CKI	0.8 Vdd	—	Vdd	V	
D043 D043A		OSC1 (XT*, HS and LP*) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	—	Vdd	V	(Note1)
D070	Ipurb	PORTB weak pull-up current	50	200	400	μΑ	VDD = 5.0V, VPIN = VSS
	١L	Input Leakage Current ⁽²⁾⁽³⁾					
		I/O ports (Except PORTA)			±1.0	μΑ	$Vss \le VPIN \le VDD, \text{ pin at hi-impedance}$
D060		PORTA	—	—	±0.5	μA	$Vss \le VPIN \le VDD, pin at hi-impedance$
D061		RA4/T0CKI	—	—	±1.0	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1, MCLR	—	—	±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	IOL=8.5 mA, VDD=4.5V, -40° to +85°C
			—	—	0.6	V	IOL=7.0 mA, VDD=4.5V, +125°C
D083		OSC2/CLKOUT	_	—	0.6	V	IOL=1.6 mA, VDD=4.5V, -40° to +85°C
		(RC only)	—	—	0.6	V	IOL=1.2 mA, VDD=4.5V, +125°C
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports (Except RA4)	VDD-0.7	—		V	IOH=-3.0 mA, VDD=4.5V, -40° to +85°C

These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C55X be driven with external clock in RC mode.

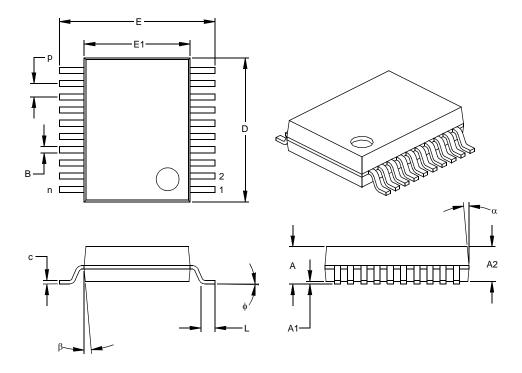
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

PIC16C55X

FIGURE 10-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 10-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS


Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000		—	ns	-40° to +85°C
31	Twdt	Watchdog Timer Timeout Period (No Prescaler)	7*	18	33*	ms	VDD = 5.0V, -40° to +85°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	—	—	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5.0V, -40° to +85°C
34	Tioz	I/O hi-impedance from MCLR low		—	2.0*	μS	
*	These na	arameters are characterized but not	tested				

These parameters are characterized but not tested.

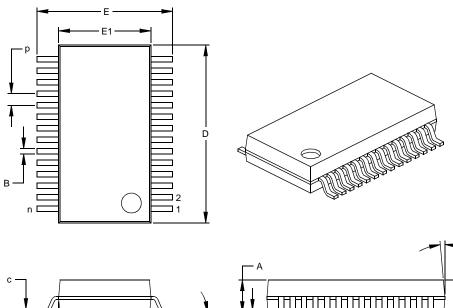
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

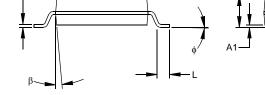
20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	А	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	ø	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

© 1996-2013 Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*		
Dimens	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	φ	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150

Drawing No. C04-073

A2

INDEX

A

ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	9
Assembler	
MPASM Assembler	67

В

BCF Instruction	
Block Diagram	
TIMER0	47
TMR0/WDT PRESCALER	50
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	57

С

CALL Instruction	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	57
CLRW Instruction	
CLRWDT Instruction	
Code Protection	
COMF Instruction	
Configuration Bits	

D

Data Memory Organization	
DECF Instruction	58
DECFSZ Instruction	59
Development Support	67

Ε

Errata3	
External Crystal Oscillator Circuit	

G

General purpose Register File13	
GOTO Instruction	

I

	~~
I/O Ports	
I/O Programming Considerations	28
ICEPIC In-Circuit Emulator	
ID Locations	46
INCF Instruction	
INCFSZ Instruction	
In-Circuit Serial Programming	46
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	55
ADDWF	55
ANDLW	55
ANDWF	55
BCF	56
BSF	56
BTFSC	56
BTFSS	57
CALL	57
CLRF	57

CLRW	58
CLRWDT	58
COMF	58
DECF	58
DECFSZ	59
GOTO	59
INCF	59
INCFSZ	60
IORLW	60
IORWF	60
MOVF	61
MOVLW	60
MOVWF	61
NOP	61
OPTION	61
RETFIE	62
RETLW	62
RETURN	62
RLF	62
RRF	63
SLEEP	63
SUBLW	63
SUBWF	64
SWAPF	64
TRIS	64
XORLW	65
XORWF	65
Instruction Set Summary	53
INT Interrupt	42
INTCON Register	19
Interrupts	41
IORLW Instruction	60
IORWF Instruction	60

Κ

М

MOVF Instruction
MOVLW Instruction
MOVWF Instruction
MPLAB C17 and MPLAB C18 C Compilers 67
MPLAB ICD In-Circuit Debugger 69
MPLAB ICE High Performance Universal In-Circuit Emulator
with MPLAB IDE
MPLAB Integrated Development Environment Software 67
MPLINK Object Linker/MPLIB Object Librarian 68

Ν

NOP Instruction	. 61
	. 01

0

One-Time-Programmable (OTP) Devices	7
OPTION Instruction	61
OPTION Register	
Oscillator Configurations	33
Oscillator Start-up Timer (OST)	36

Ρ

)
)
)
)
)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	x <u>xx</u> xxx	Examples:
Device To	emperature Package Pattern Range	a) PIC17C756–16L Commercial Temp., PLCC package, 16 MHz, normal VDD limits
Device	PIC17C756: Standard VDD range PIC17C756T: (Tape and Reel) PIC17LC756: Extended VDD range	 b) PIC17LC756–08/PT Commercial Temp., TQFP package, 8MHz, extended VDD limits c) PIC17C756–33I/PT Industrial Temp.,
Temperature Range	$\begin{array}{rcl} - & = & 0^{\circ}C \text{ to } +70^{\circ}C \\ I & = & -40^{\circ}C \text{ to } +85^{\circ}C \end{array}$	TQFP package, 33 MHz, normal VDD limits
Package	CL = Windowed LCC PT = TQFP L = PLCC	
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)