

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc554-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16C55X are 18, 20 and 28-Pin EPROM-based members of the versatile PIC16CXX family of low cost, high performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16C55X have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C55X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C554 has 80 bytes of RAM. The PIC16C557 and PIC16C558 have 128 bytes of RAM. The PIC16C554 and PIC16C558 have 13 I/O pins and an 8bit timer/counter with an 8-bit programmable prescaler. The PIC16C557 has 22 I/O pins and an 8-bit timer/ counter with an 8-bit programmable prescaler.

PIC16C55X devices have special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for high speed crystals. The SLEEP (power-down) mode offers power saving. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESET.

A highly reliable Watchdog Timer, with its own on-chip RC oscillator, provides protection against software lock-up. A UV-erasable CERDIP packaged version is ideal for code development while the cost effective One-Time Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16C55X midrange microcontroller families.

A simplified block diagram of the PIC16C55X is shown in Figure 3-1.

The PIC16C55X series fit perfectly in applications ranging from motor control to low power remote sensors. The EPROM technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C55X very versatile.

1.1 Family and Upward Compatibility

Users familiar with the family of microcontrollers will realize that this is an enhanced version of the architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for can be easily ported to PIC16C55X family of devices (Appendix B).

The PIC16C55X family fills the niche for users wanting to migrate up from the family and not needing various peripheral features of other members of the PIC16XX mid-range microcontroller family.

1.2 Development Support

The PIC16C55X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer.

2.0 PIC16C55X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C55X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] and PROMATE[®] programmers both support programming of the PIC16C55X.

2.2 One-Time Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium-to-high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

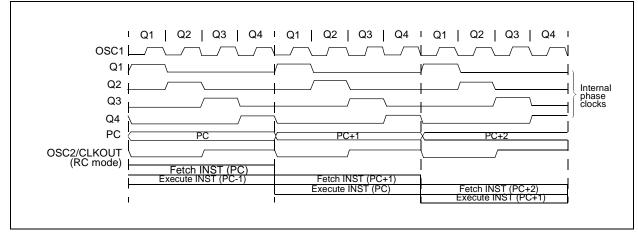
2.4 Serialized Quick-Turnaround Production (SQTP[™]) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

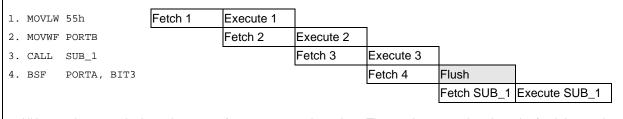
3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-2.


3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle

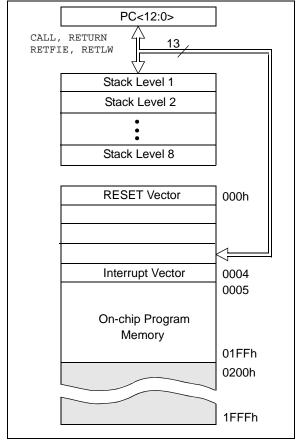
while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW


All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

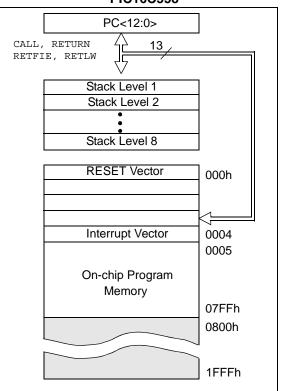

The PIC16C55X has a 13-bit program counter capable of addressing an 8 K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16C554 and 2K x 14 (0000h - 07FFh) for the PIC16C557 and PIC16C558 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 spaces in the PIC16C554, or 2K x 14 space of the PIC16C558 and PIC16C557. The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2).

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C557 AND PIC16C558

4.2 Data Memory Organization

The data memory (Figure 4-3 through Figure 4-5) is partitioned into two banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). Bank 0 is selected when the RP0 bit (STATUS <5>) is cleared. Bank 1 is selected when the RP0 bit is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-6Fh (Bank 0) on the PIC16C554 and 20-7Fh (Bank 0) and A0-BFh (Bank 1) on the PIC16C558 and PIC16C557 are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80×8 in the PIC16C554 and 128 x 8 in the PIC16C557 and PIC16C558. Each can be accessed either directly or indirectly through the File Select Register, FSR (Section 4.4).

FIGURE 4-3:

DATA MEMORY MAP FOR THE PIC16C554

File Address	3		File Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h	1 OILIB	THE	87h		
08h			88h		
09h			89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch			8Ch		
0Dh			8Dh		
0Eh		PCON	8Eh		
0Eh		10011	8Fh		
10h			90h		
11h			91h		
12h			92h		
13h			93h		
14h			94h		
15h			95h		
16h			96h		
17h			97h		
18h			98h		
19h			99h		
1Ah			9Ah		
1Bh			9Bh		
1Ch			9Ch		
1Dh			9Dh		
1Eh			9Eh		
1Fh			9Fh		
20h			A0h		
-	General		7.011		
	Purpose Register				
6Fh	regiotor				
70h					
ſ					
7Fh			FFh		
,,,,,	Bank 0	Bank 1			
Unimplemented data memory locations, read as '0'.					
Note 1:					

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C557

	IHE	PIC16C557		
File Address	8		File Address	
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h	
01h	TMR0	OPTION	81h	
02h	PCL	PCL	82h	
03h	STATUS	STATUS	83h	
04h	FSR	FSR	84h	
05h	PORTA	TRISA	85h	
06h	PORTB	TRISB	86h	
07h	PORTC	TRISC	87h	
08h			88h	
09h			89h	
0Ah	PCLATH	PCLATH	8Ah	
0Bh	INTCON	INTCON	8Bh	
0Ch			8Ch	
0Dh			8Dh	
0Eh		PCON	8Eh	
0Fh			8Fh	
10h			90h	
11h			91h	
12h			92h	
13h			93h	
14h			94h	
15h			95h	
16h			96h	
17h			97h	
18h			98h	
19h			99h	
1Ah			9Ah	
1Bh			9Bh	
1Ch			9Ch	
1Dh			9Dh	
1Eh			9Eh	
1Fh			9Fh	
20h			A0h	
	General	General		
	Purpose Register	Purpose Register		
			BFh	
			C0h	
7Fh			FFh	
,,,,,	Bank 0	Bank 1		
Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.				

FIGURE 4-5: DATA MEMORY MAP FOR THE PIC16C558

File Address	3		File Address			
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h			
01h	TMR0	OPTION	81h			
02h	PCL	PCL	82h			
03h	STATUS	STATUS	83h			
04h	FSR	FSR	84h			
05h	PORTA	TRISA	85h			
06h	PORTB	TRISB	86h			
07h	1 OKID	THOE	87h			
08h			88h			
09h			89h			
0Ah	PCLATH	PCLATH	8Ah			
0Bh	INTCON	INTCON	8Bh			
0Dh	INTCON	INTCON	8Ch			
0Dh			8Dh			
0Eh		PCON	8Eh			
0En 0Fh		FCON	8Fh			
10h			90h			
10h 11h			_			
			91h			
12h			92h			
13h			93h			
14h			94h			
15h			95h			
16h			96h			
17h			97h			
18h			98h			
19h			99h			
1Ah			9Ah			
1Bh			9Bh			
1Ch			9Ch			
1Dh			9Dh			
1Eh			9Eh			
1Fh			9Fh			
20h	Conoral	Conorol	A0h			
	General Purpose	General Purpose				
	Register	Register	BFh			
			C0h			
			-			
7Fh			FFh			
	Bank 0	Bank 1				
Unimp	Unimplemented data memory locations, read as '0'.					
Note 1:	Not a physical reg					

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (Table 4-1). These registers are static RAM.

The Special Function Registers can be classified into two sets (core and peripheral). The special function registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

4.2.2.1 STATUS Register

The STATUS register, shown in Figure 4-2, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as the destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uu1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect any status bits. For other instructions, not affecting any status bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C55X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit</u> Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
	IRP	RP1	RP0	TO	PD	Z	DC	С	
	bit7							bit0	
bit 7	IRP: Register Bank Select bit (used for Indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh) The IRP bit is reserved on the PIC16C55X, always maintain this bit clear								
bit 6-5	RP1:RP0: Register Bank Select bits (used for Direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes. The RP1 bit is reserved on the PIC16C55X, always maintain this bit clear.								
bit 4		bit /er-up, CLRWDT meout occurred		or sleep inst	truction				
bit 3	PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction								
bit 2	 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero 								
bit 1	reversed) 1 = A carry-o	rry/borrow bit (ut from the 4th out from the 4tl	low order bit	of the result	occurred	instructions) (for borrow the	e polarity is	
bit 0	1 = A carry-o	ow bit (ADDWF , ut from the Mos out from the Mo	st Significant	bit of the res	ult occurred				
Note 1:		e polarity is reve otate (RRF, RL r.							
	Legend:								
	R = Readable	ə bit	W = Wri	itable bit	U = Unim	plemented bit,	read as '0'		

- n = Value at POR reset

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;	Initial PORT settin	ng	s: PORTB<7:4> Inputs
;			
;			PORTB<3:0> Outputs
;	PORTB<7:6> have ext	te	rnal pull-up and are
;	not connected to of	th	er circuitry
;			
;			PORT latch PORT pins
;			
;			
	BCF PORTB, 7	;	01pp pppp 11pp pppp
	BCF PORTB, 6	;	10pp pppp 11pp pppp
	BSF STATUS, RPO	;	
	BCF TRISB, 7	;	10pp pppp 11pp pppp
	BCF TRISB, 6	;	10pp pppp 10pp pppp

5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle, as shown in Figure 5-6. Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with an NOP or another instruction not accessing this I/O port.

GURE 5-6:	SUCCESSIVE I/O C	DPERATION				
	$Q_1 Q_2 Q_3 Q_4$	$Q_1 Q_2 Q_3 Q_4$	Q1	Q2 Q3 Q4	$Q_1 _{Q_2} _{Q_3} _{Q_3}$	Q4
PC	PC	PC + 1	X	PC + 2	PC + 3	
Instruction fetched	MOVWF PORTB Write to PORTB	MOVF PORTB, W Read PORTB	1 1 1	NOP I I I I	NOP	1 1 1
RB <7:0>			XXX			<u> </u>
		TPD 🗕	, , , , , , , , , , , , , , , , , , ,	Port pin sampled here		
	1 1	Execute MOVWF PORTB	I I	Execute MOVF PORTB, W	Execute NOP	:
2: Data se	ample shows write to PO etup time = (0.25 Tcy - Tp valid. Therefore, at higher	D) where TCY = instruct	ion cy	cle and TPD = prop	• •	1 cycle to

© 1996-2013 Microchip Technology Inc.

REGISTER 6-1: CONFIGURATION WORD

	CP1	CP0	CP1	CP0	CP1	CP0	—	Reserved	CP1	CP0	PWRTE	WDTE	F0SC1	F0SC0
	bit 13													bit 0
				(4)										
bit 13-8			protection	bits ⁽¹⁾ de protect	ion off									
bit 5-4	10 = 04 01 = 02	00h - 07f 200h - 07f	Fh code	protected protected protected										
bit 7	Unimpl	emented	I: Read as	s '1'										
bit 6	Reserv	ed: Do no	ot use											
bit 3	PWRTE : Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled													
bit 2	WDTE:	Watchdo	g Timer E	nable bit										
		T enable T disable	-											
bit 1-0	FOSC1	:FOSC0:	Oscillator	r Selectior	n bits									
		C oscillato												
		S oscillato F oscillato												
	00 = LF	oscillato	or											
	Note	1: All c	of the CP1	I:CP0 pair	s have to	be given	the same	value to ena	ble the o	code pro	tection sche	eme listed.		
	Legend	1:												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	s '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

6.5.1 RB0/INT INTERRUPT

An external interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 6.8 for details on SLEEP and Figure 6-14 for timing of wakeup from SLEEP through RB0/INT interrupt.

6.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 7.0.

6.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may get set.

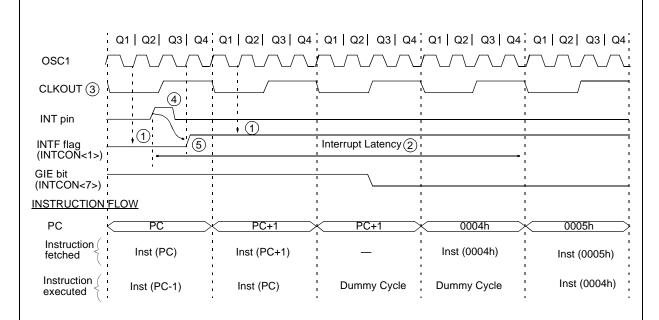


FIGURE 6-12: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4 TCY where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in RC Oscillator mode.
- 4: For minimum width of INT pulse, refer to AC specs.
- 5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

6.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 6-1 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 6-1:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

EXAMPLE 6-1: SAVING THE STATUS AND W REGISTERS IN RAM

	117	
MOVWF	W_TEMP	;copy W to TEMP ;register, could be in
		-
		;either bank
SWAPF	STATUS,W	;swap STATUS to be
		;saved into W
BCF	STATUS, RPO	;change to bank0
		;regardless of
		;current bank
MOVWF	STATUS_TEMP	;save STATUS to bank0
		;register
:		
:		
:		
SWAPF	STATUS_TEMP, W	1;swap STATUS_TEMP
		;register into W, sets
		;bank to original state
MOVWF	STATUS	;move W into STATUS
		;register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

6.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET. If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 6.1).

6.7.1 WDT PERIOD

The WDT has a nominal timeout period of 18 ms, (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part-to-part (see DC specs). If longer timeout periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer timeout.

6.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT timeout occurs.

PIC16C55X

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$
Status Affected:	None
Encoding:	00 0000 0000 1001
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	RETFIE
	After Interrupt PC = TOS GIE = 1

RETURN	Return	from Su	Ibroutine	•
Syntax:	[label]	RETUR	N	
Operands:	None			
Operation:	$TOS\toF$	ъС		
Status Affected:	None			
Encoding:	00	0000	0000	1000
Description:	Return fro POPed an is loaded i This is a ty	d the top nto the pr	of the stac ogram cou	k (TOS) inter.
Words:	1			
Cycles:	2			
Example	RETURN			
	After Inte PC	rrupt = T	OS	

RETLW	Return with Literal in W	I
Syntax:	[<i>label</i>] RETLW k	S
Operands:	$0 \le k \le 255$	0
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	0
Status Affected:	None	St
Encoding:	11 01xx kkkk kkkk	E
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	D
Words:	1	
Cycles:	2	
Example	CALL TABLE;W contains table ;offset value • ;W now has table value •	W C <u>y</u> Ex
TABLE	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • RETLW kn ; End of table	
	Before Instruction	
	W = 0x07	
	After Instruction	
	W = value of k8	

RLF	Rotate Left f through Carry
yntax:	[<i>label</i>] RLF f,d
perands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
peration:	See description below
tatus Affected:	С
ncoding:	00 1101 dfff ffff
escription:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
/ords:	1
ycles:	1
xample	RLF REG1,0
	Before Instruction
	REG1 = 1110 0110
	C = 0
	After Instruction
	REG1 = 1110 0110
	W = 1100 1100
	C = 1

XORLW	Exclusi	ve OR I	_iteral wi	ith W		
Syntax:	[label]	XORLW	/ k			
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Encoding:	11	1010	kkkk	kkkk		
Description:	The conter XOR'ed wi The result	th the eig	ght bit liter	al 'k'.		
Words:	1					
Cycles:	1					
Example:	XORLW	0xAF				
	Before In:	structior	า			
	W	=	0xB5			
	After Inst	ruction				
	W	=	0x1A			

XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0110 dfff ffff
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	XORWF REG 1
	Before Instruction
	REG = 0xAF W = 0xB5
	After Instruction
	REG = 0x1A
	W = 0xB5

 \odot 1996-2013 Microchip Technology Inc.

TABLE 9-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC12CXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXX	PIC16F62)	X7381319	AIC16C7X	PIC16C8X	PIC16F8X)	(X6C36C9X)	PIC17C4X	XTJTIJIA	PIC18CXX	PIC18FXX)	83CXX 52CXX/ 54CXX/	исаххх	МСКЕХХХ	MCP2510
MPLAB [®] Integrated Development Environment	>	^	>	>	~	>	>	>	>	^	^	>	>	>	>				
MPLAB [®] C17 C Compiler												~	>						
MPLAB [®] C18 C Compiler														~	~				
MPASM TM Assembler/ MPLINK TM Object Linker	>	~	>	>	~	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	r <	>	>	>	>	**`^	>	>	>	>	>	>	>	>	>				
ICEPICTM In-Circuit Emulator	>		>	>	>		>	>	>		>								
eb MPLAB® ICD In-Circuit Debugger				*>			*>			>					>				
PICSTART [®] Plus Entry Level Development Programmer	>	~	>	`	`	**`	>	`	~	`	>	>	>	>	`				
PRO MATE® II Universal Device Programmer	>	>	>	>	~	**/	>	>	^	^	>	>	>	>	>	^	^		
PICDEM TM 1 Demonstration Board			>		>		.+		>			>							
PICDEM TM 2 Demonstration Board				.↓			⁺,							>	>				
PICDEM TM 3 Demonstration Board											>								
PICDEM TM 14A Demonstration Board		>																	
PICDEM TM 17 Demonstration Board													>						
KEELoα [®] Evaluation Kit																	>		
KEELoq [®] Transponder Kit																	>		
microlD TM Programmer's Kit																		~	
125 kHz microlD™ Developer's Kit																		>	
125 kHz Anticollision microlD™ Developer's Kit																		>	
13.56 MHz Anticollision microlD™ Developer's Kit																		>	
MCP2510 CAN Developer's Kit																			~

 $\ensuremath{\textcircled{}^{\circ}}$ 1996-2013 Microchip Technology Inc.

NOTES:

10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

DC Cha	racteristi	cs		-		ure -4	litions (unless otherwise stated) $0^{\circ}C \le TA \le +85^{\circ}C$ for industrial and $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial and $0^{\circ}C \le TA \le +125^{\circ}C$ for extended
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D020	IPD	Power-Down Current ⁽³⁾					
		16LC55X	_	0.7	2	μΑ	VDD = 3.0V, WDT disabled
		16C55X	—	1.0	2.5 15	μΑ μΑ	VDD = 4.0V, WDT disabled (+85°C to +125°C)
	ΔI WDT	WDT Current ⁽⁵⁾					
		16LC55X	_	6.0	15	μΑ	VDD = 3.0V
		16C55X	_	6.0	20	μA	VDD = 4.0V (+85°C to +125°C)

* These parameters are characterized but not tested.

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD,

- $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or VSS.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

10.2 DC Characteristics: PIC16C55X (Commercial, Industrial, Extended) PIC16LC55X(Commercial, Industrial, Extended) (Continued)

			•	-	•		otherwise stated)
			Operating tem	peratur			5°C for industrial and
DC Cha	racteris	tics					70°C for commercial and
							25°C for automotive
	1		Operating volt	age VD	D range as des	scribed	t in DC spec Table 10-1
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions
			Vdd-0.7	-	—	V	Iон=-2.5 mA, Vdd=4.5V, +125°С
D092		OSC2/CLKOUT	Vdd-0.7	-		V	lон=-1.3 mA, VDD=4.5V, -40° to +85°С
		(RC only)	Vdd-0.7			V	ІОн=-1.0 mA, VDD=4.5V, +125°С
*	Vod	Open-Drain High Voltage			10*	V	RA4 pin
		Capacitive Loading Specs on	Output Pins			•	
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C55X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

© 1996-2013 Microchip Technology Inc.

NOTES:

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
From	: Name	
1 1011	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce:	Literature Number: DS40143E
Ques	stions:	
1. \	What are the best features of this document?	
-		
- 2. H	How does this document meet your hardware and softwar	re development needs?
_		
_		
3. E	Do you find the organization of this document easy to follo	ow? If not, why?
-		
-		
4. \	What additions to the document do you think would enhar	nce the structure and subject?
-		
5. \	What deletions from the document could be made without	affecting the overall usefulness?
0. 1		
-		
6. I	s there any incorrect or misleading information (what and	where)?
_		
-		
7. H	How would you improve this document?	
-		
-		