

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

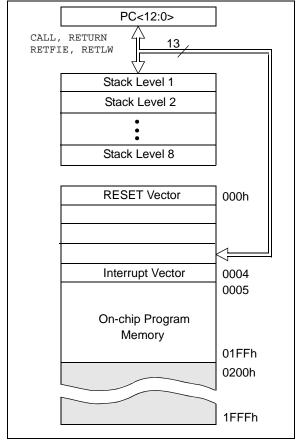
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Program Memory Size896B (512 x 14)Program Memory TypeOTPEEPROM Size-RAM Size80 x 8	Details	
Core Size8-BitCore Size4MHzSpeed4MHzConnectivity-PeripheralsPOR, WDTNumber of I/O13Program Memory Size896B (512 x 14)Program Memory TypeOTPEEPROM Size-RAM Size80 x 8Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type18-DIP (0.300°, 7.62mm)Package / Case18-DIP	Product Status	Active
Speed4MHzConnectivity-PeripheralsPOR, WDTNumber of I/O13Program Memory Size896B (512 x 14)Program Memory TypeOTPEEPROM Size-RAM Size80 x 8Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type18-DIP (0.300", 7.62mm)Package / Case18-DIP	Core Processor	PIC
Connectivity-PeripheralsPOR, WDTNumber of I/O13Program Memory Size896B (512 x 14)Program Memory TypeOTPEDROM Size-RAM Size80 x 8Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Operating Temperature-40°C ~ 85°C (TA)Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)	Core Size	8-Bit
PeripheralsPOR, WDTNumber of I/O13Program Memory Size896B (512 x 14)Program Memory TypeOTPEEPROM Size-RAM Size80 x 8Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	Speed	4MHz
Number of I/O13Program Memory Size896B (512 x 14)Program Memory TypeOTPEEPROM Size-RAM Size80 x 8Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)	Connectivity	-
Program Memory Size896B (512 x 14)Program Memory TypeOTPEEPROM Size-RAM Size80 x 8Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	Peripherals	POR, WDT
Program Memory TypeOTPEEPROM Size-RAM Size80 x 8Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	Number of I/O	13
EEPROM Size-RAM Size80 x 8Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	Program Memory Size	896B (512 x 14)
RAM Size80 × 8Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	Program Memory Type	OTP
Voltage - Supply (Vcc/Vdd)2.5V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	EEPROM Size	<u>.</u>
Data Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	RAM Size	80 x 8
Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	Data Converters	-
Mounting TypeThrough HolePackage / Case18-DIP (0.300", 7.62mm)Supplier Device Package18-PDIP	Oscillator Type	External
Package / Case 18-DIP (0.300", 7.62mm) Supplier Device Package 18-PDIP	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 18-PDIP	Mounting Type	Through Hole
	Package / Case	18-DIP (0.300", 7.62mm)
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16lc554-04i-p	Supplier Device Package	18-PDIP
	Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc554-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


NOTES:

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

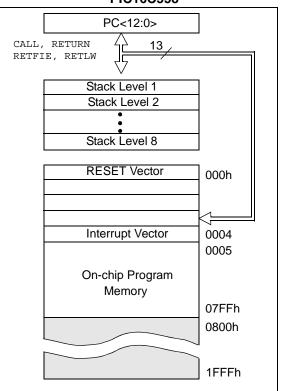

The PIC16C55X has a 13-bit program counter capable of addressing an 8 K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16C554 and 2K x 14 (0000h - 07FFh) for the PIC16C557 and PIC16C558 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 spaces in the PIC16C554, or 2K x 14 space of the PIC16C558 and PIC16C557. The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2).

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C557 AND PIC16C558

4.2 Data Memory Organization

The data memory (Figure 4-3 through Figure 4-5) is partitioned into two banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). Bank 0 is selected when the RP0 bit (STATUS <5>) is cleared. Bank 1 is selected when the RP0 bit is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-6Fh (Bank 0) on the PIC16C554 and 20-7Fh (Bank 0) and A0-BFh (Bank 1) on the PIC16C558 and PIC16C557 are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80×8 in the PIC16C554 and 128 x 8 in the PIC16C557 and PIC16C558. Each can be accessed either directly or indirectly through the File Select Register, FSR (Section 4.4).

FIGURE 4-3:

DATA MEMORY MAP FOR THE PIC16C554

File Address	3		File Address					
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h					
01h	TMR0	OPTION	81h					
02h	PCL	PCL	82h					
03h	STATUS	STATUS	83h					
04h	FSR	FSR	84h					
05h	PORTA	TRISA	85h					
06h	PORTB	TRISB	86h					
07h	1 OILIB	THE	87h					
08h			88h					
09h			89h					
0Ah	PCLATH	PCLATH	8Ah					
0Bh	INTCON	INTCON	8Bh					
0Ch			8Ch					
0Dh			8Dh					
0Eh		PCON	8Eh					
0Eh		10011	8Fh					
10h			90h					
11h			91h					
12h			92h					
13h			93h					
14h			94h					
15h			95h					
16h			96h					
17h			97h					
18h			98h					
19h			99h					
1Ah			9Ah					
1Bh			9Bh					
1Ch			9Ch					
1Dh			9Dh					
1Eh			9Eh					
1Fh			9Fh					
20h			A0h					
-	General		7.011					
	Purpose Register							
6Fh	regiotor							
70h								
ſ								
7Fh			FFh					
,,,,,	Bank 0	Bank 1						
Unim	Unimplemented data memory locations, read as '0'.							
Note 1:	Not a physical regi							

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C557

	IHE	PIC16C557					
File Address	8		File Address				
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h				
01h	TMR0	OPTION	81h				
02h	PCL	PCL	82h				
03h	STATUS	STATUS	83h				
04h	FSR	FSR	84h				
05h	PORTA	TRISA	85h				
06h	PORTB	TRISB	86h				
07h	PORTC	TRISC	87h				
08h			88h				
09h			89h				
0Ah	PCLATH	PCLATH	8Ah				
0Bh	INTCON	INTCON	8Bh				
0Ch			8Ch				
0Dh			8Dh				
0Eh		PCON	8Eh				
0Fh			8Fh				
10h			90h				
11h			91h				
12h			92h				
13h			93h				
14h			94h				
15h			95h				
16h			96h				
17h			97h				
18h			98h				
19h			99h				
1Ah			9Ah				
1Bh			9Bh				
1Ch			9Ch				
1Dh			9Dh				
1Eh			9Eh				
1Fh			9Fh				
20h			A0h				
	General	General					
	Purpose Register	Purpose Register					
			BFh				
			C0h				
7Fh			FFh				
,,,,,	Bank 0 Bank 1						
Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.							

TABLE 5-1: PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function
RA0	Bit 0	ST	Bi-directional I/O port.
RA1	Bit 1	ST	Bi-directional I/O port.
RA2	Bit 2	ST	Bi-directional I/O port.
RA3	Bit 3	ST	Bi-directional I/O port.
RA4/T0CKI	Bit 4	ST	Bi-directional I/O port or external clock input for TMR0. Output is open drain type.

Legend: ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA	—	_		RA4	RA3	RA2	RA1	RA0	x xxxx	u uuuu
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0', x = unknown, u = unchanged

Note 1: Shaded bits are not used by PORTA.

6.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a pre-packaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 6-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 6-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

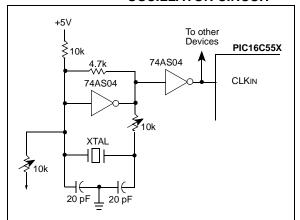
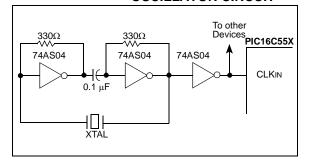
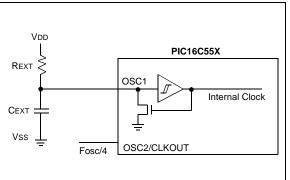



Figure 6-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 6-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT



6.2.4 RC OSCILLATOR

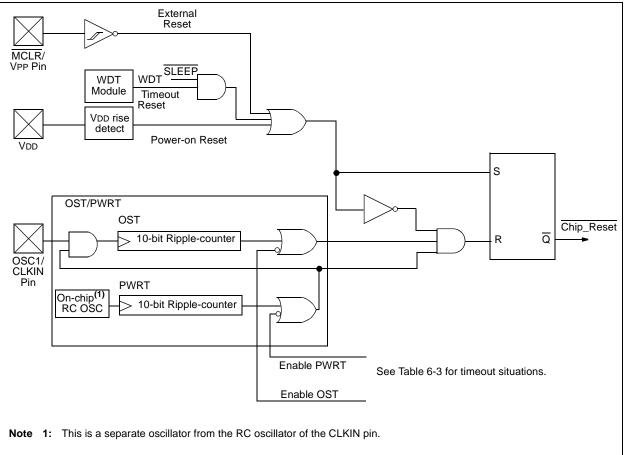
For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 6-5 shows how the R/C combination is connected to the PIC16C55X. For REXT values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep REXT between 3 k Ω and 100 k Ω .

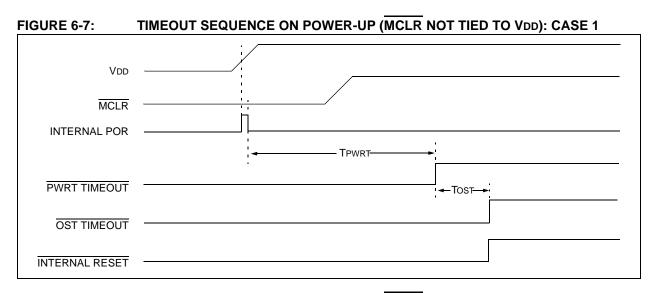
Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

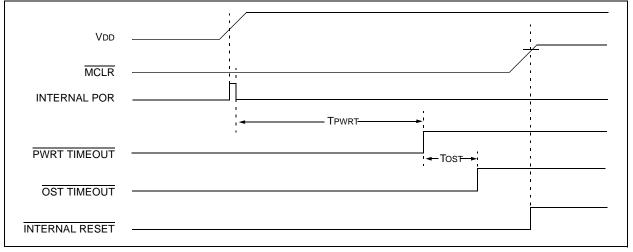
FIGURE 6-5: RC OSCILLATOR MODE

6.3 RESET


The PIC16C55X differentiates between various kinds of RESET:


- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (normal operation)
- WDT wake-up (SLEEP)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset, on MCLR or WDT Reset and on MCLR Reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 6-4. These bits are used in software to determine the nature of the RESET. See Table 6-6 for a full description of RESET states of all registers. A simplified block diagram of the on-chip RESET circuit is shown in Figure 6-6.


The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 10-3 for pulse width specification.

6.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 6-1 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 6-1:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

EXAMPLE 6-1: SAVING THE STATUS AND W REGISTERS IN RAM

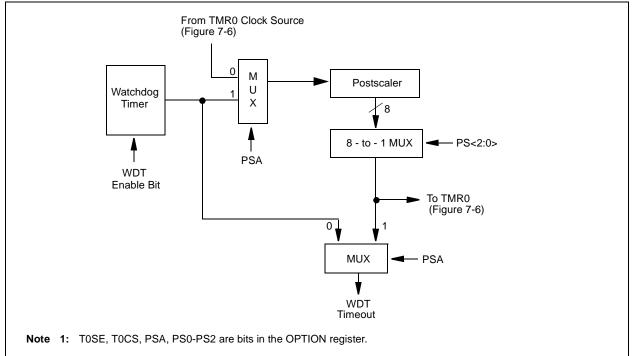
	117	
MOVWF	W_TEMP	;copy W to TEMP ;register, could be in
		-
		;either bank
SWAPF	STATUS,W	;swap STATUS to be
		;saved into W
BCF	STATUS, RPO	;change to bank0
		;regardless of
		;current bank
MOVWF	STATUS_TEMP	;save STATUS to bank0
		;register
:		
:		
:		
SWAPF	STATUS_TEMP, W	1;swap STATUS_TEMP
		;register into W, sets
		;bank to original state
MOVWF	STATUS	;move W into STATUS
		;register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

6.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET. If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 6.1).

6.7.1 WDT PERIOD

The WDT has a nominal timeout period of 18 ms, (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part-to-part (see DC specs). If longer timeout periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.


The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer timeout.

6.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT timeout occurs.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
2007h	Config. bits	_	Reserved	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0		
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

TABLE 8-2: PIC16C55X INSTRUCTION SET

Mnemonic, Description		Cycles		14-Bit	Opcode	Status	Neter				
Opera		Description		MSb			LSb	Affected	Notes		
	BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2		
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2		
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2		
CLRW	-	Clear W	1	00	0001	0000	0011	Z			
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2		
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2		
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3		
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2		
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3		
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2		
MOVF	f, d	Move f	1	00	1000		ffff	z	1,2		
MOVWF	f	Move W to f	1	00	0000		ffff	_	- ,=		
NOP	-	No Operation	1	00	0000	0xx0	0000				
RLF	f, d	Rotate Left f through Carry	1	00		dfff		С	1,2		
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff		Č	1,2		
SUBWF	f, d	Subtract W from f	1	00	0010	dfff		C,DC,Z	1,2		
SWAPF	f, d	Swap nibbles in f	1	00	1110		ffff	0,20,2	1,2		
XORWF	f, d	Exclusive OR W with f	1	00	0110		ffff	Z	1,2		
		BIT-ORIENTED FILE REGIST		RATION	IS						
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2		
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2		
BTFSC	f, b	Bit Test f, Skip if Clear	1(2)	01	10bb	bfff	ffff		3		
BTFSS	f, b	Bit Test f, Skip if Set	1(2)	01	11bb	bfff	ffff		3		
		LITERAL AND CONTROL	OPERAT	IONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z			
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z			
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk				
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD			
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	,			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z			
MOVLW	k	Move literal to W	1	11		kkkk					
RETFIE	-	Return from interrupt	2	00	0000	0000	1001				
RETLW	k	Return with literal in W	2	11		kkkk					
RETURN	-	Return from Subroutine	2	00	0000	0000	1000				
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD			
SUBLW	k	Subtract W from literal	1	11		kkkk		C,DC,Z			
XORLW	k	Exclusive OR literal with W	1	11		kkkk		0,00,2 Z			
			-					<u>ک</u>			

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

8.1 Instruction Descriptions

ADDLW	Add Literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \le k \le 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Encoding:	11 111x kkkk kkkk				
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.				
Words:	1				
Cycles:	1				
Example	ADDLW 0x15				
	Before Instruction				
	W = 0x10				
	After Instruction				
	W = 0x25				

ADDWF	Add W and f						
Syntax:	[<i>label</i>] ADDWF f,d						
Operands:	$0 \le f \le 127$						
	$d \in [0,1]$						
Operation:	$(W) + (f) \to (dest)$						
Status Affected:	C, DC, Z						
Encoding:	00 0111 dfff ffff						
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	ADDWF FSR, 0						
	Before Instruction						
	W = 0x17						
	FSR = 0xC2						
	After Instruction						
	W = 0xD9						
	FSR = 0xC2						

ANDLW	AND Li	teral wit	h W				
Syntax:	[label]	ANDLW	/ k				
Operands:	$0 \le k \le 2$	255					
Operation:	(W) .AN	ID. (k) →	• (W)				
Status Affected:	Z						
Encoding:	11	1001	kkkk	kkkk			
	The conter AND'ed wi result is pl	th the eig	ht bit literal	'k'. The			
Words:	1						
Cycles:	1						
Example	ANDLW	0x5F					
	Before I	nstructio	on				
	W	=	0xA3				
	After Instruction						
	W	=	0x03				

ANDWF	AND W with f					
Syntax:	[label] ANDWF f,d					
Operands:	$0 \le f \le 127$					
	$d \in [0,1]$					
Operation:	(W) .AND. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 0101 dfff ffff					
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ANDWF FSR, 1					
	Before Instruction					
	W = 0x17					
	FSR = 0xC2					
	After Instruction					
	W = 0x17					
	FSR = 0x02					

-

PIC16C55X

MOVF	Move f				
Syntax:	[label]	MOVF	f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in \left[0,1\right] \end{array}$				
Operation:	$(f) \rightarrow (des$	st)			
Status Affected:	Z				
Encoding:	00	1000	dfff	ffff	
Description:	The conte moved to upon the tination is destination = 1 is use since stat	a destina status of W regis on is file r oful to tes	ation dep f d. If d = ter. If d = register f i st a file re	endant 0, des- 1, the tself. d egister	
Words:	1				
Cycles:	1				
Example	MOVF	FSR,	0		
	After Inst W Z		e in FSR I	register	

NOP	No Operation				
Syntax:	[label]				
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Encoding:	00	0000	0xx0	0000	
Description:	No operat	ion.			
Words:	1				
Cycles:	1				
Example	NOP				

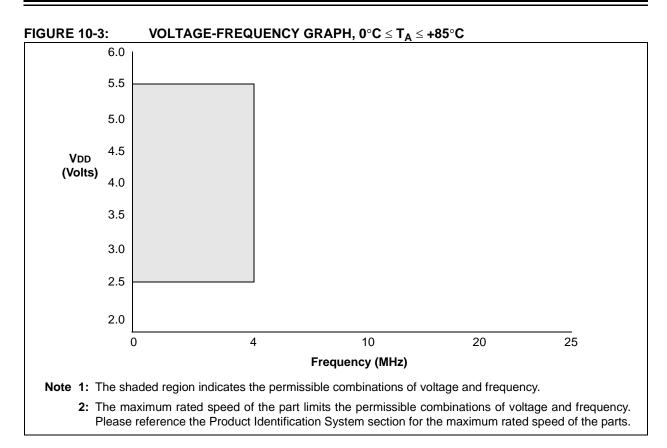
MOVWF	Move W to f				
Syntax:	[label] MOVWF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$(W) \rightarrow (f)$				
Status Affected:	None				
Encoding:	00 0000 1fff ffff				
Description:	Move data from W register to register 'f'.				
Words:	1				
Cycles:	1				
Example	MOVWF OPTION				
	Before Instruction				
	OPTION = 0xFF				
	W = 0x4F				
	After Instruction				
	OPTION = 0x4F				
	W = 0x4F				

OPTION	Load Option Register				
Syntax:	[label]	OPTION	N		
Operands:	None				
Operation:	$(W) \rightarrow O$	PTION			
Status Affected:	None				
Encoding:	00	0000	0110	0010	
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibility with future PIC MCU products, do not use this instruction.				

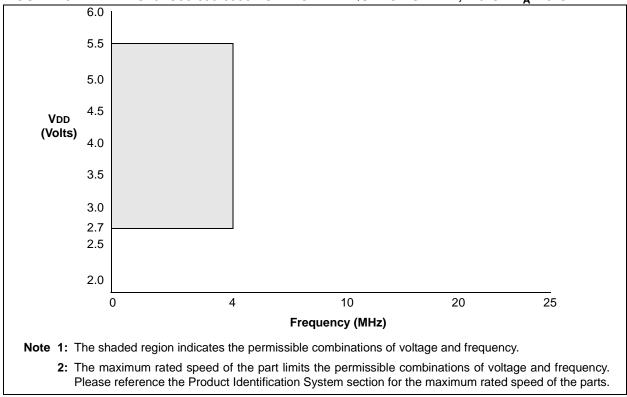
 \odot 1996-2013 Microchip Technology Inc.

PIC16C55X

SUBWF	Subtract W from f
Syntax:	[label] SUBWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - (W) \rightarrow (dest)
Status Affected:	C, DC, Z
Encoding:	00 0010 dfff ffff
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example 1:	SUBWF REG1,1
	Before Instruction
	REG1 = 3
	W = 2
	C = ?
	After Instruction
	REG1 = 1
	W = 2
	C = 1; result is positive
Example 2:	Before Instruction
	REG1 = 2
	W = 2 $C = ?$
	After Instruction
	REG1 = 0 W = 2
	C = 1; result is zero
Example 3:	Before Instruction
	REG1 = 1
	W = 2
	C = ?
	After Instruction
	REG1 = 0xFF
	W = 2
	C = 0; result is negative


SWAPF	Swap Nibbles in f					
Syntax:	[<i>label</i>] SWAPF f,d					
Operands:	$0 \le f \le 127$					
	d ∈ [0,1]					
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)					
Status Affected:	None					
Encoding:	00 1110 dfff ffff					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.					
Words:	1					
Cycles:	1					
Example	SWAPF REG, 0					
	Before Instruction					
	REG1 = 0xA5					
	After Instruction					
	REG1 = 0xA5					
	W = 0x5A					
TRIS	Load TRIS Register					
Syntax:	[<i>label</i>] TRIS f					
Operands:	$5 \le f \le 7$					
Operation:	(W) \rightarrow TRIS register f;					
Status Affected:	None					
Encoding:	00 0000 0110 Offf					
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.					
Words:	1					
Cycles:	1					
Example						
	To maintain upward compatibility with future PIC MCU products, do					

To maintain upward compatibility with future PIC MCU products, do not use this instruction.


XORLW	Exclusive OR Literal with W					
Syntax:	[label] XORLW k					
Operands:	$0 \le k \le 25$	5				
Operation:	(W) .XOR	k . k → (λ	N)			
Status Affected:	Z					
Encoding:	11	1010	kkkk	kkkk		
Description:	The conter XOR'ed wi The result	th the eig	ght bit liter	al 'k'.		
Words:	1					
Cycles:	1					
Example:	XORLW	0xAF				
	Before In:	structior	ı			
	W	=	0xB5			
	After Instruction					
	W	=	0x1A			

XORWF	Exclusive OR W with f					
Syntax:	[<i>label</i>] XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 0110 dfff ffff					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	XORWF REG 1					
	Before Instruction					
	REG = 0xAF W = 0xB5					
	After Instruction					
	REG = 0x1A					
	W = 0xB5					

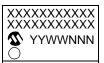
 \odot 1996-2013 Microchip Technology Inc.

^{© 1996-2013} Microchip Technology Inc.

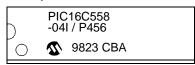
NOTES:

11.0 PACKAGING INFORMATION

11.1 Package Marking Information


18-Lead PDIP

28-Lead PDIP


20-Lead SSOP

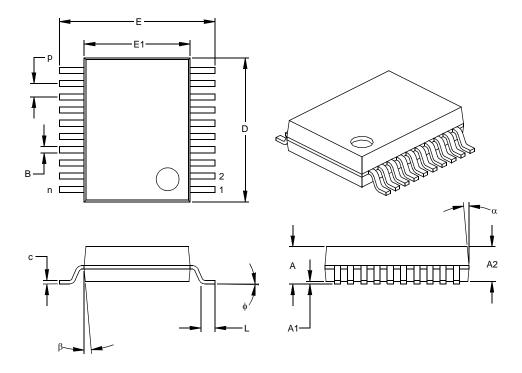
28-Lead SSOP

Example

Example

Example

Example



Leç	gend:	XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Not	b	e carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

© 1996-2013 Microchip Technology Inc.

20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	А	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	ø	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

© 1996-2013 Microchip Technology Inc.

INDEX

A

ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	9
Assembler	
MPASM Assembler	67

В

BCF Instruction	
Block Diagram	
TIMER0	47
TMR0/WDT PRESCALER	50
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	57

С

CALL Instruction	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	57
CLRW Instruction	
CLRWDT Instruction	
Code Protection	
COMF Instruction	
Configuration Bits	

D

Data Memory Organization	
DECF Instruction	58
DECFSZ Instruction	59
Development Support	67

Ε

Errata3	
External Crystal Oscillator Circuit	

G

General purpose Register File13	
GOTO Instruction	

I

	~~
I/O Ports	
I/O Programming Considerations	28
ICEPIC In-Circuit Emulator	
ID Locations	46
INCF Instruction	
INCFSZ Instruction	
In-Circuit Serial Programming	46
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	55
ADDWF	55
ANDLW	55
ANDWF	55
BCF	56
BSF	56
BTFSC	56
BTFSS	57
CALL	57
CLRF	57

CLRW	58
CLRWDT	58
COMF	58
DECF	58
DECFSZ	59
GOTO	59
INCF	59
INCFSZ	60
IORLW	60
IORWF	60
MOVF	61
MOVLW	60
MOVWF	61
NOP	61
OPTION	61
RETFIE	62
RETLW	62
RETURN	62
RLF	62
RRF	63
SLEEP	63
SUBLW	63
SUBWF	64
SWAPF	64
TRIS	64
XORLW	65
XORWF	65
Instruction Set Summary	53
INT Interrupt	42
INTCON Register	19
Interrupts	41
IORLW Instruction	60
IORWF Instruction	60

Κ

Μ

MOVF Instruction
MOVLW Instruction
MOVWF Instruction
MPLAB C17 and MPLAB C18 C Compilers 67
MPLAB ICD In-Circuit Debugger 69
MPLAB ICE High Performance Universal In-Circuit Emulator
with MPLAB IDE
MPLAB Integrated Development Environment Software 67
MPLINK Object Linker/MPLIB Object Librarian 68

Ν

NOP Instruction	. 61
	. 01

0

One-Time-Programmable (OTP) Devices	7
OPTION Instruction	61
OPTION Register	
Oscillator Configurations	33
Oscillator Start-up Timer (OST)	36

Ρ

)
)
)
)
)

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent	
From	: Name		
1 1011	Company		
	Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
Appl	ication (optional):		
Wou	ld you like a reply?YN		
Devi	ce:	Literature Number: DS40143E	
Ques	stions:		
1. \	What are the best features of this document?		
-			
- 2. H	How does this document meet your hardware and softwar	re development needs?	
_			
_			
3. E	3. Do you find the organization of this document easy to follow? If not, why?		
-			
-			
4. \	4. What additions to the document do you think would enhance the structure and subject?		
-			
5. \	What deletions from the document could be made without	affecting the overall usefulness?	
0. 1	5. What deletions from the document could be made without affecting the overall usefulness?		
-			
6. I	s there any incorrect or misleading information (what and	where)?	
_			
-			
7. H	How would you improve this document?		
-			
-			