

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc558-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

	_
.0 General Description	. 5
.0 PIC16C55X Device Varieties	. 7
.0 Architectural Overview	. 9
.0 Memory Organization	13
.0 I/O Ports	23
.0 Special Features of the CPU	31
.0 Timer0 Module	47
.0 Instruction Set Summary	53
.0 Development Support	67
0.0 Electrical Specifications	73
1.0 Packaging Information	87
vppendix A: Enhancements	97
vppendix B: Compatibility	97
ndex	99
Dn-Line Support 1	01
Systems Information and Upgrade Hot Line	01
Reader Response	02
Product Identification System 1	03

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 GENERAL DESCRIPTION

The PIC16C55X are 18, 20 and 28-Pin EPROM-based members of the versatile PIC16CXX family of low cost, high performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16C55X have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C55X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C554 has 80 bytes of RAM. The PIC16C557 and PIC16C558 have 128 bytes of RAM. The PIC16C554 and PIC16C558 have 13 I/O pins and an 8bit timer/counter with an 8-bit programmable prescaler. The PIC16C557 has 22 I/O pins and an 8-bit timer/ counter with an 8-bit programmable prescaler.

PIC16C55X devices have special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for high speed crystals. The SLEEP (power-down) mode offers power saving. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESET.

A highly reliable Watchdog Timer, with its own on-chip RC oscillator, provides protection against software lock-up. A UV-erasable CERDIP packaged version is ideal for code development while the cost effective One-Time Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16C55X midrange microcontroller families.

A simplified block diagram of the PIC16C55X is shown in Figure 3-1.

The PIC16C55X series fit perfectly in applications ranging from motor control to low power remote sensors. The EPROM technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C55X very versatile.

1.1 Family and Upward Compatibility

Users familiar with the family of microcontrollers will realize that this is an enhanced version of the architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for can be easily ported to PIC16C55X family of devices (Appendix B).

The PIC16C55X family fills the niche for users wanting to migrate up from the family and not needing various peripheral features of other members of the PIC16XX mid-range microcontroller family.

1.2 Development Support

The PIC16C55X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer.

2.0 PIC16C55X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C55X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] and PROMATE[®] programmers both support programming of the PIC16C55X.

2.2 One-Time Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium-to-high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround Production (SQTP[™]) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

4.2.2.1 STATUS Register

The STATUS register, shown in Figure 4-2, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as the destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uu1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect any status bits. For other instructions, not affecting any status bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C55X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit</u> Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 4-1:	STATUS REGISTER (ADDRESS 03h OR 83h	h)
---------------	-------------------------------------	----

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit7							bit0
bit 7	IRP : Register 1 = Bank 2, 3 0 = Bank 0, 1 The IRP bit is	r Bank Select b 3 (100h - 1FFh) 1 (00h - FFh) s reserved on th	it (used for Ir ne PIC16C55	ndirect addre X, always m	ssing) aintain this bit	clear		
bit 6-5	RP1:RP0 : Re 11 = Bank 3 10 = Bank 2 01 = Bank 1 00 = Bank 0 Each bank is	egister Bank Se (180h - 1FFh) (100h - 17Fh) (80h - FFh) (00h - 7Fh) 128 bytes. The	elect bits (use RP1 bit is re	d for Direct a	addressing) ne PIC16C553	K, always main	tain this bit cl	ear.
bit 4	TO : Timeout 1 = After pow 0 = A WDT ti	bit /er-up, CLRWDT meout occurred	instruction, o	Or SLEEP ins	truction			
bit 3	PD : Power-de 1 = After pow 0 = By execu	own bit /er-up or by the /tion of the SLE	CLRWDT inst	truction				
bit 2	Z : Zero bit 1 = The resu 0 = The resu	It of an arithme	tic or logic op tic or logic op	peration is ze	ro t zero			
bit 1	DC: Digit ca reversed) 1 = A carry-o 0 = No carry-	rry/borrow bit (ut from the 4th out from the 4tl	ADDWF, AI	of the result it of the result	LW, SUBWF occurred It	instructions) (for borrow th	e polarity is
bit 0	C : Carry/borr 1 = A carry-o 0 = No carry-	ow bit (ADDWF , ut from the Mos out from the Mo	ADDLW, SU st Significant ost Significar	BLW, SUBWF bit of the res at bit of the re	instructions) ult occurred sult occurred			
Note 1:	For borrow the operand. For source registe	e polarity is reve rotate (RRF, RL er.	ersed. A subt F) instructior	raction is exe as, this bit is	ecuted by add loaded with ei	ing the two's c ther the high o	omplement of r low order bi	the second t of the
	Legend:							
	R = Readabl	e bit	W = Wri	table bit	U = Unim	plemented bit,	read as '0'	

- n = Value at POR reset

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

bit 5

4.2.2.2 OPTION Register

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note 1: To achieve a 1:1 prescaler assignment for
TMR0, assign the prescaler to the WDT
(PSA = 1).

REGISTER 4-2:	OPTION REGISTER	(ADDRESS 81H)
---------------	------------------------	---------------

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
bit7							bit0

- bit 7 **RBPU**: PORTB Pull-up Enable bit
 - 1 = PORTB pull-ups are disabled
 - 0 = PORTB pull-ups are enabled by individual port latch values

bit 6 **INTEDG**: Interrupt Edge Select bit

- 1 = Interrupt on rising edge of RB0/INT pin
- 0 = Interrupt on falling edge of RB0/INT pin
- TOCS: TMR0 Clock Source Select bit
 - 1 = Transition on RA4/T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)
- bit 4 TOSE: TMR0 Source Edge Select bit
 - 1 = Increment on high-to-low transition on RA4/T0CKI pin
 - 0 = Increment on low-to-high transition on RA4/T0CKI pin

bit 3 **PSA**: Prescaler Assignment bit

- 1 = Prescaler is assigned to the WDT
- 0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1 : 256	1 : 128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;	Initial PORT settings: PORTB<7:4> Inputs
;	
;	PORTB<3:0> Outputs
;	PORTB<7:6> have external pull-up and are
;	not connected to other circuitry
;	
;	PORT latch PORT pins
;	
;	
	BCF PORTB, 7 ; 01pp pppp 11pp pppp
	BCF PORTB, 6 ; 10pp pppp 11pp pppp
	BSF STATUS, RPO ;
	BCF TRISB, 7 ; 10pp pppp 11pp pppp
	BCF TRISB, 6 ; 10pp pppp 10pp pppp

5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle, as shown in Figure 5-6. Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with an NOP or another instruction not accessing this I/O port.

	Q1 Q2 Q3 Q4	$Q_1 Q_2 Q_3 Q_4$	Q1 Q2 Q3 Q4	$Q_1 Q_2 Q_3 Q_4$
PC	PC	PC + 1	X PC + 2	PC + 3
Instruction fetched	MOVWF PORTB Write to	MOVF PORTB, W Read PORTB	NOP	NOP
RB <7:0>				i
		Tpd 🔶	Port pin sampled here	1 1 1
	1 I	Execute MOVWF PORTB	Execute MOVF PORTB, W	Execute NOP

© 1996-2013 Microchip Technology Inc.

6.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a pre-packaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 6-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 6-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 6-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 6-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

6.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 6-5 shows how the R/C combination is connected to the PIC16C55X. For REXT values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep REXT between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

FIGURE 6-5: RC OSCILLATOR MODE

6.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST)

6.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.6V - 1.8V). To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607 "Power-up Trouble Shooting".

6.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) timeout on power-up only, from POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the <u>VDD</u> to rise to an acceptable level. A configuration bit, <u>PWRTE</u> can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-Up Time delay will vary from chip to chip and due to VDD, temperature and process variation. See DC parameters for details.

6.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST timeout is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

6.4.4 TIMEOUT SEQUENCE

On power-up, the timeout sequence is as follows: First PWRT timeout is invoked after POR has expired, then OST is activated. The total timeout will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in RC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no timeout at all. Figure 6-7, Figure 6-8 and Figure 6-9 depict timeout sequences.

Since the timeouts occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the timeouts will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 6-8). This is useful for testing purposes or to synchronize more than one PIC16C55X device operating in parallel.

Table 6-5 shows the RESET conditions for some special registers, while Table 6-6 shows the RESET conditions for all the registers.

6.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the \overline{TO} bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hiimpedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The T0CKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
	by a WDT timeout does not drive MCLR
	pin low.

6.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- External RESET input on MCLR pin 1
- Watchdog Timer Wake-up (if WDT was enabled) 2.
- Interrupt from RB0/INT pin or RB Port change 3.

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up is cleared when SLEEP is invoked. TO bit is cleared if WDT Wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes-up from SLEEP, regardless of the source of wake-up.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 OSC1 MMM Tost(2) CLKOUT(4) INT pin INTF flag (INTCON<1>) Interrupt Latency⁽²⁾ GIE bit (INTCON<7>) Processor in SLEEP **INSTRUCTION FLOW** PC PC+2 PC + 2PC+' PC+2 0004h 0005 Instruction fetched Inst(PC + 1) Inst(PC + 2) Inst(0004h) Inst(0005h) Inst(PC) = SLEEPInstruction executed Inst(PC - 1) SLEEP Inst(PC + 1) Dummy cycle Dummy cycle Inst(0004h) Note

FIGURE 6-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

1: XT, HS or LP Oscillator mode assumed.

TOST = 1024Tosc (drawing not to scale). This delay will not be there for RC osc mode. 2:

GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line. 3:

CLKOUT is not available in these osc modes, but shown here for timing reference. 4:

7.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the TOSE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 TIMER0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

FIGURE 7-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER

8.0 INSTRUCTION SET SUMMARY

Each PIC16C55X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C55X instruction set summary in Table 8-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 8-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 8-1:OPCODE FIELD
DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compatibil- ity with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
то	Timeout bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 8-1 lists the instructions recognized by the MPASMTM assembler.

Figure 8-1 shows the three general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC[®] MCU products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 8-1: GENERAL FORMAT FOR INSTRUCTIONS

PIC16C55X

CLRW	Clear V	V							
Syntax:	[label]	CLRW							
Operands:	None								
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$								
Status Affected:	Z								
Encoding:	00	0001	0000	0011					
Description:	W register set.	W register is cleared. Zero bit (Z) is set.							
Words:	1								
Cycles:	1								
Example	CLRW								
	Before In	structio	n						
	W	W = 0x5A							
	After Inst	After Instruction							
	W = 0x00								
	7	_	1						

COMF	Complement f							
Syntax:	[label]	COMF	f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$							
Operation:	$(\overline{f}) \rightarrow (des$	st)						
Status Affected:	Z							
Encoding:	00	1001	dfff	ffff				
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example	COMF	REG1,()					
	Before In	struction	1					
	REG1 = 0x13							
	After Inst	ruction						
	REG	1 =	0x13					
	W	=	0xEC					

CLRWDI	Clear watchdog Timer								
Syntax:	[label]	[label] CLRWDT							
Operands:	None								
Operation:	$\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WDT \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$							
Status Affected:	TO, PD	TO, PD							
Encoding:	00	0000	0110	0100					
Description:	CLRWDT in Watchdog prescaler o and PD are	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.							
Words:	1								
Cycles:	1								
Example	CLRWDT								
	Before Ins WDT After Instr	struction counter ruction	=	?					
	WDT	counter	=	0x00					
	WDT	prescale	er =	0					
	TO		=	1					
	PD		=	1					

....

DECF	Decrement f						
Syntax:	[label] DECF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(f) - 1 \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00 0011 dfff ffff						
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	DECF CNT, 1						
	Before Instruction						
	CNT = 0x01						
	Z = 0						
	After Instruction						
	CNT = 0x00						
	Z = 1						

PIC16C55X

RETFIE	Return from Interrupt							
Syntax:	[label]	RETFIE	1					
Operands:	None	None						
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$							
Status Affected:	None							
Encoding:	00	0000	0000	1001				
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.							
Words:	1							
Cycles:	2							
Example	RETFIE							
	After Interrupt							
	PC	= T	OS					
	GIE	= 1						

RETURN	Return from Subroutine						
Syntax:	[label]	RETUR	N				
Operands:	None						
Operation:	$TOS\toPC$						
Status Affected:	None						
Encoding:	00 0000 0000 1000						
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example	RETURN						
	After Inte PC	errupt = T	OS				

RETLW	Return with Literal in W				
Syntax:	[<i>label</i>] RETLW k S				
Operands:	$0 \le k \le 255$ O				
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC O				
Status Affected:	None S				
Encoding:	11 01xx kkkk kkkk E				
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.				
Words:	1				
Cycles:	2				
Example	CALL TABLE;W contains table ;offset value C • ;W now has table value E				
TABLE	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ; End of table				
	Before Instruction				
	W = 0x07				
	After Instruction				
	vv = value of ko				

RLF	Rotate Left f through Carry								
/ntax:	[<i>label</i>] RLF f,d								
perands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
peration:	See description below								
atus Affected:	С								
ncoding:	00	1101	dff	f	ffff				
escription:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.								
ords:	1								
ycles:	1								
xample	RLF	REG1,	0						
	Before In	structior	٦						
	REG	1 = 1	110	011	. 0				
	С	= 0)						
	After Inst	ruction							
	REG	1 = 1	.110	011	.0				
	W	= 1	100	110	0				
	С	= 1	_						

NOTES:

10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

DC Cha	racterist	ics	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial and $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Vdd	Supply Voltage					
D001		16LC55X	3.0 2.5	—	5.5 5.5	V	XT and RC osc configuration LP osc configuration
D001 D001A		16C55X	3.0 4.5		5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*		V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	-	Vss	-	V	See Section 6.4, Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 6.4, Power-on Reset for details
	IDD	Supply Current ⁽²⁾					
D010		16LC55X	_	1.4	2.5	mA	XT and RC osc configuration Fosc = 2.0 MHz, VDD = 3.0V, WDT disabled ⁽⁴⁾
D010A				26	53	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D010		16C55X	_	1.8	3.3	mA	XT and RC osc configuration Fosc = 4 MHz, VDD = 5.5V, WDT disabled ⁽⁴⁾
D010A			_	35	70	μΑ	LP osc configuration, PIC16C55X-04 only Fosc = 32 kHz, VDD = 4.0V, WDT disabled
D013			—	9.0	20	mA	HS osc configuration Fosc = 20 MHz , VDD = 5.5V , WDT disabled

These parameters are characterized but not tested.

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

<u>OSC1</u> = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

10.2 DC Characteristics: PIC16C55X (Commercial, Industrial, Extended) PIC16LC55X(Commercial, Industrial, Extended) (Continued)

DC Cha	racteris	tics	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym	Characteristic	Min Typ† Max Unit Conditions					
			Vdd-0.7	_	—	V	Iон=-2.5 mA, Vdd=4.5V, +125°С	
D092		OSC2/CLKOUT	Vdd-0.7	_	—	V	IOH=-1.3 mA, VDD=4.5V, -40° to +85°С	
		(RC only)	Vdd-0.7	_	—	V	IOH=-1.0 mA, VDD=4.5V, +125°С	
*	Vod	Open-Drain High Voltage			10*	V	RA4 pin	
		Capacitive Loading Specs on	Output Pins					
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.	
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C55X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

© 1996-2013 Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	6
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013

Drawing No. C04-052

INDEX

A

ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	9
Assembler	
MPASM Assembler	67

В

BCF Instruction	
Block Diagram	
TIMER0	47
TMR0/WDT PRESCALER	50
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	57

С

CALL Instruction	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	57
CLRW Instruction	
CLRWDT Instruction	
Code Protection	
COMF Instruction	
Configuration Bits	31

D

Data Memory Organization1	13
DECF Instruction	58
DECFSZ Instruction	59
Development Support6	37

Ε

rrata	3
xternal Crystal Oscillator Circuit	4

G

General purpose Register File	13
GOTO Instruction	59

I

	~~
I/O Ports	23
I/O Programming Considerations	28
ICEPIC In-Circuit Emulator	68
ID Locations	46
INCF Instruction	59
INCFSZ Instruction	60
In-Circuit Serial Programming	46
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	55
ADDWF	55
ANDLW	55
ANDWF	55
BCF	56
BSF	56
BTFSC	56
BTFSS	57
CALL	57
CLRF	57

CLRW	58
CLRWDT	58
COMF	58
DECF	58
DECFSZ	59
GOTO	59
INCF	59
INCFSZ	60
IORLW	60
IORWF	60
MOVF	61
MOVLW	60
MOVWF	61
NOP	61
OPTION	61
RETFIE	62
RETLW	62
RETURN	62
RLF	62
RRF	63
SLEEP	63
SUBLW	63
SUBWF	64
SWAPF	64
TRIS	64
XORLW	65
XORWF	65
Instruction Set Summary	53
INT Interrupt	42
INTCON Register	19
Interrupts	41
IORLW Instruction	60
IORWF Instruction	60

Κ

Μ

MOVF Instruction
MOVLW Instruction
MOVWF Instruction
MPLAB C17 and MPLAB C18 C Compilers 67
MPLAB ICD In-Circuit Debugger 69
MPLAB ICE High Performance Universal In-Circuit Emulator
with MPLAB IDE
MPLAB Integrated Development Environment Software 67
MPLINK Object Linker/MPLIB Object Librarian 68

Ν

0

One-Time-Programmable (OTP) Devices	7
OPTION Instruction	61
OPTION Register	
Oscillator Configurations	
Oscillator Start-up Timer (OST)	36

Ρ

PCL and PCLATH	21
PCON Register	20
PICDEM 1 Low Cost PIC MCU Demonstration Board	69
PICDEM 17 Demonstration Board	70
PICDEM 2 Low Cost PIC16CXX Demonstration Board	69
PICDEM 3 Low Cost PIC16CXXX Demonstration Board	70