

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc558-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

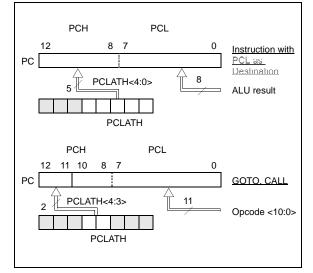
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations

Note: For additional information on enhancements, see Appendix A

CMOS Technology:

- Low power, high speed CMOS EPROM technology
- Fully static design
- Wide operating voltage range
 2.5V to 5.5V
- Commercial, Industrial and Extended temperature range
- Low power consumption
 - < 2.0 mA @ 5.0V, 4.0 MHz
 - 15 μA typical 3.0V, 32 kHz
 - < 1.0 μA typical standby current @ 3.0V

Device Differences


Device	Voltage Range	Oscillator
PIC16C554	2.5 - 5.5	(Note 1)
PIC16C557	2.5 - 5.5	(Note 1)
PIC16C558	2.5 - 5.5	(Note 1)

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high bits (PC<12:8>) are not directly readable or writable and come from PCLATH. On any RESET, the PC is cleared. Figure 4-6 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 4-6 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-6: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16C55X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-1 and Figure 4-2). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RET-FIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or vectoring to an interrupt address.

4.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the file select register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a nooperation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-7. However, IRP is not used in the PIC16C55X.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMP	LE 4-1:	INDIR	ECT ADDRESSING
NEXT	movlw movwf clrf incf btfss goto	0x20 FSR INDF FSR FSR,4 NEXT	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next ;yes continue</pre>

CONTINUE:

5.4 I/O Programming Considerations

5.4.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit 0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-1 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}$, ${\tt BSF}$, etc.) on an I/O port.

A pin actively outputting a low or high should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16C55X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Interrupts
- 7. Watchdog Timer (WDT)
- 8. SLEEP
- 9. Code protection
- 10. ID Locations
- 11. In-circuit serial programming[™]

The PIC16C55X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), which is intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two functions onchip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

6.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

REGISTER 6-1: CONFIGURATION WORD

	CP1	CP0	CP1	CP0	CP1	CP0	—	Reserved	CP1	CP0	PWRTE	WDTE	F0SC1	F0SC0
	bit 13													bit 0
				(4)										
bit 13-8			protection	bits ⁽¹⁾ de protect	ion off									
bit 5-4	10 = 04 01 = 02	00h - 07f 200h - 07f	Fh code	protected protected protected										
bit 7	Unimpl	emented	I: Read as	s '1'										
bit 6	Reserv	ed: Do no	ot use											
bit 3	1 = PW	: Power- RT disab RT enabl	led	Enable bi	t									
bit 2	WDTE:	Watchdo	g Timer E	nable bit										
		T enable T disable	-											
bit 1-0	FOSC1	:FOSC0:	Oscillator	r Selectior	n bits									
		C oscillato												
		S oscillato F oscillato												
	00 = LF	oscillato	or											
	Note	1: All c	of the CP1	I:CP0 pair	s have to	be given	the same	value to ena	ble the o	code pro	tection sche	eme listed.		
	Legend	1:												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	s '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

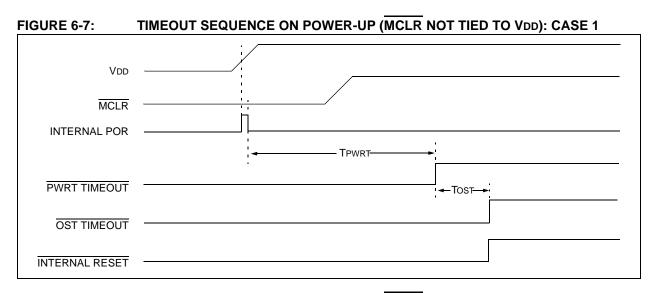
TABLE 6-5:INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0-
MCLR Reset during normal operation	000h	000u uuuu	u-
MCLR Reset during SLEEP	000h	0001 0uuu	u-
WDT Reset	000h	0000 uuuu	u-
WDT Wake-up	PC + 1	uuu0 0uuu	u-
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	u-

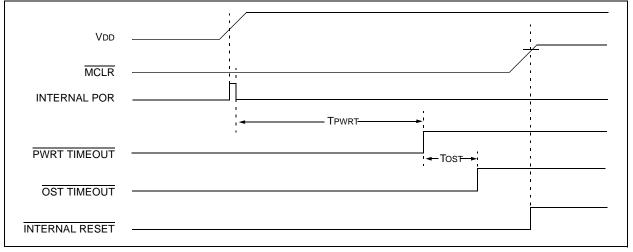
Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. **Note 1:** When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset	Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT timeout
W	—	XXXX XXXX	uuuu uuuu	uuuu uuuu
INDF	00h	_	_	_
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	03h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC ⁽⁴⁾	06h	xxxx xxxx	uuuu uuuu	นนนน นนนน
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
OPTION	81h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
TRISC ⁽⁴⁾	86h	1111 1111	1111 1111	uuuu uuuu
PCON	8Eh	0-	u-	u-

TABLE 6-6: INITIALIZATION CONDITION FOR REGISTERS


Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: One or more bits in INTCON will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 6-5 for RESET value for specific condition.

4: PIC16C557 only.

6.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 6-1 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 6-1:

- Stores the W register
- Stores the STATUS register in Bank 0
- · Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

EXAMPLE 6-1: SAVING THE STATUS AND W REGISTERS IN RAM

	117	
MOVWF	W_TEMP	;copy W to TEMP ;register, could be in
		-
		;either bank
SWAPF	STATUS,W	;swap STATUS to be
		;saved into W
BCF	STATUS, RPO	;change to bank0
		;regardless of
		;current bank
MOVWF	STATUS_TEMP	;save STATUS to bank0
		;register
:		
:		
:		
SWAPF	STATUS_TEMP, W	1;swap STATUS_TEMP
		;register into W, sets
		;bank to original state
MOVWF	STATUS	;move W into STATUS
		;register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

6.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET. If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 6.1).

6.7.1 WDT PERIOD

The WDT has a nominal timeout period of 18 ms, (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part-to-part (see DC specs). If longer timeout periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer timeout.

6.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT timeout occurs.

TABLE 8-2: PIC16C55X INSTRUCTION SET

Mnemo	onic,	Description			14-Bit	Opcode)	Status	Neter
Opera		Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	STER OF	PERAT	IONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000		ffff	z	1,2
MOVWF	f	Move W to f	1	00	0000		ffff	_	- ,=
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00		dfff		С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff		Č	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff		C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110		ffff	0,20,2	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110		ffff	Z	1,2
		BIT-ORIENTED FILE REGIST		RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1(2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1(2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	,	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11		kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11		kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11		kkkk		C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11		kkkk		0,00,2 Z	
			-					<u>ک</u>	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16C55X

RETFIE	Return from Interrupt			
Syntax:	[label] RETFIE			
Operands:	None			
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$			
Status Affected:	None			
Encoding:	00 0000 0000 1001			
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.			
Words:	1			
Cycles:	2			
Example	RETFIE			
	After Interrupt PC = TOS GIE = 1			

RETURN	Return from Subroutine				
Syntax:	[label]	RETUR	N		
Operands:	None				
Operation:	$TOS\toF$	ъС			
Status Affected:	None				
Encoding:	00	0000	0000	1000	
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.				
Words:	1				
Cycles:	2				
Example	RETURN				
	After Inte PC	rrupt = T	OS		

RETLW	Return with Literal in W	I
Syntax:	[<i>label</i>] RETLW k	S
Operands:	$0 \le k \le 255$	0
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$	0
Status Affected:	None	St
Encoding:	11 01xx kkkk kkkk	E
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	D
Words:	1	
Cycles:	2	
Example	CALL TABLE;W contains table ;offset value • ;W now has table value •	W C <u>y</u> Ex
TABLE	<pre>ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>	
	Before Instruction	
	W = 0x07	
	After Instruction	
	W = value of k8	

RLF	Rotate Left f through Carry						
yntax:	[<i>label</i>] RLF f,d						
perands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
peration:	See description below						
tatus Affected:	С						
ncoding:	00 1101 dfff ffff						
escription:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.						
/ords:	1						
ycles:	1						
xample	RLF REG1,0						
	Before Instruction						
	REG1 = 1110 0110						
	C = 0						
	After Instruction						
	REG1 = 1110 0110						
	W = 1100 1100						
	C = 1						

XORLW	Exclusive OR Literal with W						
Syntax:	[<i>label</i>] XORLW k						
Operands:	$0 \le k \le 25$	5					
Operation:	(W) .XOR	k . k → (λ	N)				
Status Affected:	Z						
Encoding:	11	1010	kkkk	kkkk			
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.						
Words:	1						
Cycles:	1						
Example:	XORLW	0xAF					
	Before Instruction						
	W	=	0xB5				
	After Instruction						
	W	=	0x1A				

XORWF	Exclusive OR W with f					
Syntax:	[<i>label</i>] XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 0110 dfff ffff					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	XORWF REG 1					
	Before Instruction					
	REG = 0xAF W = 0xB5					
	After Instruction					
	REG = 0x1A					
	W = 0xB5					

 \odot 1996-2013 Microchip Technology Inc.

10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

DC Cha	racteristi	cs	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic Min Typ† Max Units Conditions					
D020	IPD	Power-Down Current ⁽³⁾					
		16LC55X	_	0.7	2	μA	VDD = 3.0V, WDT disabled
		16C55X	—	1.0	2.5 15	μΑ μΑ	VDD = 4.0V, WDT disabled (+85°C to +125°C)
	ΔI WDT	DT WDT Current ⁽⁵⁾					
		16LC55X	_	6.0	15	μΑ	VDD = 3.0V
		16C55X	_	6.0	20	μΑ	VDD = 4.0V (+85°C to +125°C)

* These parameters are characterized but not tested.

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

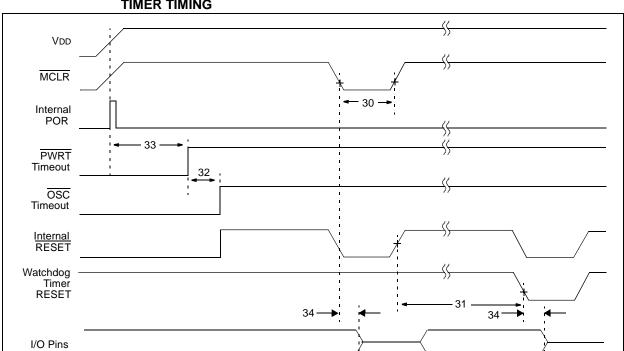
The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD,

- $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or VSS.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

10.2 DC Characteristics: PIC16C55X (Commercial, Industrial, Extended) PIC16LC55X(Commercial, Industrial, Extended)

DC Cha	racteris	tics	Standard Ope Operating tem	-	re -40°C ≤ T 0°C ≤ 1	A ≤ +8 īA ≤ +7	s otherwise stated) 5°C for industrial and 70°C for commercial and 25°C for automotive
		1	Operating volt	age Vo	D range as de	scribed	d in DC spec Table 10-1
Param. No.	Sym	Characteristic	Min	Тур†	Max	Unit	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	_	0.8V 0.15 Vdd	V	VDD = 4.5V to 5.5V otherwise
D031		with Schmitt Trigger input	Vss		0.2 Vdd	V	
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	_	0.2 VDD	V	(Note1)
D033		OSC1 (in XT* and HS)	Vss	—	0.3 Vdd	V	
		OSC1 (in LP*)	Vss	—	0.6 Vdd-1.0	V	
	Vін	Input High Voltage					
		I/O ports		—			
D040		with TTL buffer	2.0V 0.8 + 0.25 VDD	_	Vdd Vdd	V V	VDD = 4.5V to 5.5V otherwise
D041		with Schmitt Trigger input	0.8V		Vdd		
D042		MCLR RA4/T0CKI	0.8 Vdd	—	Vdd	V	
D043 D043A		OSC1 (XT*, HS and LP*) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	—	Vdd	V	(Note1)
D070	Ipurb	PORTB weak pull-up current	50	200	400	μΑ	VDD = 5.0V, VPIN = VSS
	١L	Input Leakage Current ⁽²⁾⁽³⁾					
		I/O ports (Except PORTA)			±1.0	μΑ	$Vss \le VPIN \le VDD, \text{ pin at hi-impedance}$
D060		PORTA	—	—	±0.5	μA	$Vss \le VPIN \le VDD, pin at hi-impedance$
D061		RA4/T0CKI	—	—	±1.0	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1, MCLR	—	—	±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	IOL=8.5 mA, VDD=4.5V, -40° to +85°C
			—	—	0.6	V	IOL=7.0 mA, VDD=4.5V, +125°C
D083		OSC2/CLKOUT	_	—	0.6	V	IOL=1.6 mA, VDD=4.5V, -40° to +85°C
		(RC only)	—	—	0.6	V	IOL=1.2 mA, VDD=4.5V, +125°C
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports (Except RA4)	VDD-0.7	—		V	IOH=-3.0 mA, VDD=4.5V, -40° to +85°C


These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C55X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

FIGURE 10-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 10-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000		—	ns	-40° to +85°C
31	Twdt	Watchdog Timer Timeout Period (No Prescaler)	7*	18	33*	ms	VDD = 5.0V, -40° to +85°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	—	—	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5.0V, -40° to +85°C
34	Tioz	I/O hi-impedance from MCLR low		—	2.0*	μS	
*	These na	arameters are characterized but not	tested				

These parameters are characterized but not tested.

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

INDEX

A

ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	9
Assembler	
MPASM Assembler	67

В

BCF Instruction	
Block Diagram	
TIMER0	47
TMR0/WDT PRESCALER	50
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	57

С

CALL Instruction	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	57
CLRW Instruction	
CLRWDT Instruction	
Code Protection	
COMF Instruction	
Configuration Bits	31

D

Data Memory Organization	
DECF Instruction	58
DECFSZ Instruction	59
Development Support	67

Ε

Errata3	
External Crystal Oscillator Circuit	

G

General purpose Register File13	
GOTO Instruction	

I

	~~
I/O Ports	
I/O Programming Considerations	28
ICEPIC In-Circuit Emulator	
ID Locations	46
INCF Instruction	
INCFSZ Instruction	
In-Circuit Serial Programming	46
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	55
ADDWF	55
ANDLW	55
ANDWF	55
BCF	56
BSF	56
BTFSC	56
BTFSS	67
B1F33	57
CALL	

CLRW	58
CLRWDT	58
COMF	58
DECF	58
DECFSZ	59
GOTO	59
INCF	59
INCFSZ	60
IORLW	60
IORWF	60
MOVF	61
MOVLW	60
MOVWF	61
NOP	61
OPTION	61
RETFIE	62
RETLW	62
RETURN	62
RLF	62
RRF	63
SLEEP	63
SUBLW	63
SUBWF	64
SWAPF	64
TRIS	64
XORLW	65
XORWF	65
Instruction Set Summary	53
INT Interrupt	42
INTCON Register	19
Interrupts	41
IORLW Instruction	60
IORWF Instruction	60

Κ

Μ

MOVF Instruction
MOVLW Instruction
MOVWF Instruction
MPLAB C17 and MPLAB C18 C Compilers 67
MPLAB ICD In-Circuit Debugger 69
MPLAB ICE High Performance Universal In-Circuit Emulator
with MPLAB IDE 68
MPLAB Integrated Development Environment Software 67
MPLINK Object Linker/MPLIB Object Librarian 68

Ν

NOP Instruction	61
	01

0

One-Time-Programmable (OTP) Devices	7
OPTION Instruction	61
OPTION Register	
Oscillator Configurations	33
Oscillator Start-up Timer (OST)	36

Ρ

)
)
)
)
)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	x <u>xx</u> xxx	Examples:
Device To	emperature Package Pattern Range	a) PIC17C756–16L Commercial Temp., PLCC package, 16 MHz, normal VDD limits
Device	PIC17C756: Standard VDD range PIC17C756T: (Tape and Reel) PIC17LC756: Extended VDD range	 b) PIC17LC756–08/PT Commercial Temp., TQFP package, 8MHz, extended VDD limits c) PIC17C756–33I/PT Industrial Temp.,
Temperature Range	$\begin{array}{rcl} - & = & 0^{\circ}C \text{ to } +70^{\circ}C \\ I & = & -40^{\circ}C \text{ to } +85^{\circ}C \end{array}$	TQFP package, 33 MHz, normal VDD limits
Package	CL = Windowed LCC PT = TQFP L = PLCC	
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)