

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc558-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations

Note: For additional information on enhancements, see Appendix A

CMOS Technology:

- Low power, high speed CMOS EPROM technology
- Fully static design
- Wide operating voltage range
 2.5V to 5.5V
- Commercial, Industrial and Extended temperature range
- Low power consumption
 - < 2.0 mA @ 5.0V, 4.0 MHz
 - 15 μA typical 3.0V, 32 kHz
 - < 1.0 μA typical standby current @ 3.0V

Device Differences

Device	Voltage Range	Oscillator
PIC16C554	2.5 - 5.5	(Note 1)
PIC16C557	2.5 - 5.5	(Note 1)
PIC16C558	2.5 - 5.5	(Note 1)

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

Table of Contents

	_
.0 General Description	. 5
.0 PIC16C55X Device Varieties	. 7
.0 General Description	. 9
.0 Memory Organization	13
0.0 Special Features of the CPU	31
.0 Timer0 Module	
0 Instruction Set Summary	53
.0 Development Support	67
0.0 Electrical Specifications	73
1.0 Packaging Information	87
vppendix A: Enhancements	97
ppendix B: Compatibility	97
ndex	99
Dn-Line Support 1	01
Systems Information and Upgrade Hot Line	01
Dn-Line Support	02
Product Identification System	03

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C55X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C55X uses a Harvard architecture in which program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently from 8-bit wide data words. Instruction opcodes are 14-bit wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a singlecycle (200 ns @ 20 MHz) except for program branches. The table below lists the memory (EPROM and RAM).

Device	Program Memory (EPROM)	Data Memor (RAM)	
PIC16C554	512	80	
PIC16C557	2 K	128	
PIC16C558	2 K	128	

The PIC16C554 addresses 512 x 14 on-chip program memory. The PIC16C557 and PIC16C558 addresses 2 K x 14 program memory. All program memory is internal.

The PIC16C55X can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped into the data memory. The PIC16C55X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C55X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C55X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

4.2.2.1 STATUS Register

The STATUS register, shown in Figure 4-2, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as the destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uu1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect any status bits. For other instructions, not affecting any status bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C55X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit</u> Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit7							bit0
bit 7	1 = Bank 2, 3 0 = Bank 0, 1	r Bank Select b 3 (100h - 1FFh) (00h - FFh) 5 reserved on th	·			clear		
bit 6-5	11 = Bank 3 10 = Bank 2 01 = Bank 1 00 = Bank 0	```	,		0,	۲, always main	tain this bit cle	ear.
bit 4		bit /er-up, CLRWDT meout occurred		or sleep inst	truction			
bit 3	PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction							
bit 2	 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero 							
bit 1	reversed) 1 = A carry-o	rry/borrow bit (ut from the 4th out from the 4tl	low order bit	of the result	occurred	instructions) (for borrow the	e polarity is
bit 0	1 = A carry-o	ow bit (ADDWF , ut from the Mos out from the Mo	st Significant	bit of the res	ult occurred			
Note 1:		e polarity is reve otate (RRF, RL r.						
	Legend:							
	R = Readable	ə bit	W = Wri	itable bit	U = Unim	plemented bit,	read as '0'	

- n = Value at POR reset

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

5.3 PORTC and TRISC Registers⁽¹⁾

PORTC is a 8-bit wide latch. All pins have data direction bits (TRIS registers) which can configure these pins as input or output.

A '1' in the TRISC register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISC register puts the contents of the output latch on the selected pin(s).

Reading the PORTC register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch

FIGURE 5-5: BLOCK DIAGRAM OF

PORT PINS RC<7:0> Data Bus D Q Vdd WR PORT ск 🔪 Q P Data Latch Q Ν D I/O pin WR T<u>RISC</u> Q ∘ск҇∢_ Vss Vss TRIS Latch TTL Input Buffer RD TRISC Q D FN. **RD PORTC**

Name	Bit #	Buffer Type	Function
RC0	Bit 0	TTL	Bi-directional I/O port.
RC1	Bit 1	TTL	Bi-directional I/O port.
RC2	Bit 2	TTL	Bi-directional I/O port.
RC3	Bit 3	TTL	Bi-directional I/O port.
RC4	Bit 4	TTL	Bi-directional I/O port.
RC5	Bit 5	TTL	Bi-directional I/O port.
RC6	Bit 6	TTL	Bi-directional I/O port.
RC7	Bit 7	TTL	Bi-directional I/O port.

Legend: ST = Schmitt Trigger, TTL = TTL input

TABLE 5-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC AND TRISC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged Note 1: PIC16C557 ONLY.

6.2 Oscillator Configurations

6.2.1 OSCILLATOR TYPES

The PIC16C55X can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

6.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 6-1). The PIC16C55X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 6-2).

FIGURE 6-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

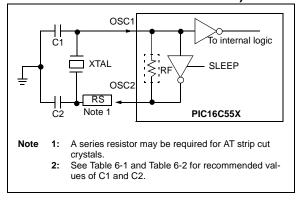
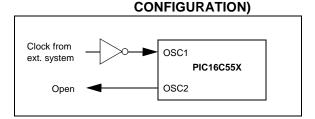



FIGURE 6-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 6-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS (PRELIMINARY)

Ranges				
Mode	Freq	OSC1(C1)	OSC2(C2)	
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	22 - 100 pF 15 - 68 pF 15 - 68 pF	
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF	
Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design				

of the oscillator but also increases the
start-up time. These values are for design
guidance only. Since each resonator has
its own characteristics, the user should
consult with the resonator manufacturer for
appropriate values of external compo-
nents.

TABLE 6-2:	CAPACITOR SELECTION FOR
	CRYSTAL OSCILLATOR
	(PRELIMINARY)

Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 30 pF	15 - 30 pF
XT	100 kHz	68 - 150 pF	150 - 200 pF
	2 MHz	15 - 30 pF	15 - 30 pF
	4 MHz	15 - 30 pF	15 - 30 pF
HS	8 MHz	15 - 30 pF	15 - 30 pF
	10 MHz	15 - 30 pF	15 - 30 pF
	20 MHz	15 - 30 pF	15 - 30 pF
Note 1:	of the oscillar start-up time guidance onl mode as wel driving crysta cation. Since characteristic with the cryst	citance increase tor but also incr . These values a y. Rs may be re I as XT mode to als with low-driv e each crystal ha cs, the user sho tal manufacture e external compo	eases the are for design equired in HS o avoid over- e level specifi- as its own uld consult r for appropri-

6.5.1 RB0/INT INTERRUPT

An external interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 6.8 for details on SLEEP and Figure 6-14 for timing of wakeup from SLEEP through RB0/INT interrupt.

6.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 7.0.

6.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may get set.

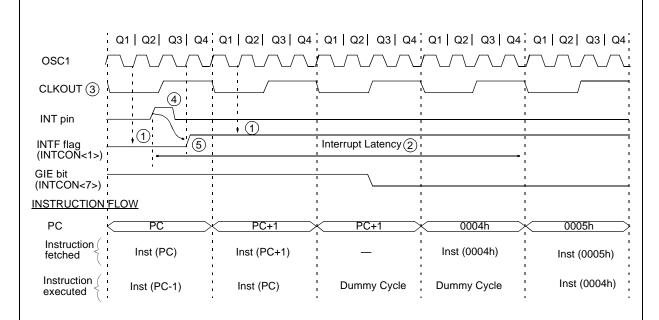
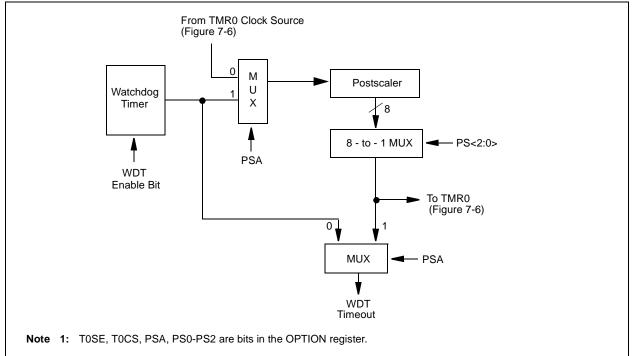



FIGURE 6-12: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4 TCY where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in RC Oscillator mode.
- 4: For minimum width of INT pulse, refer to AC specs.
- 5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
2007h	Config. bits	_	Reserved	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0		
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

PIC16C55X

BCF	Bit Clea	ar f		
Syntax:	[label]	BCF 1	f,b	
Operands:	$0 \le f \le 1$ $0 \le b \le 1$			
Operation:	$0 \rightarrow (f < $	b>)		
Status Affected:	None			
Encoding:	01	00bb	bfff	ffff
Description:	Bit 'b' in re	gister 'f' is	s cleared.	
Words:	1			
Cycles:	1			
Example	BCF	FLAG_F	REG, 7	
	After Inst	G_REG		C7 47

	Bit	Set	f
--	-----	-----	---

BSF

Syntax:	[label] B	SF f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	7		
Operation:	$1 \rightarrow (f < b;$	>)		
Status Affected:	None			
Encoding:	01	01bb	bfff	ffff
Description:	Bit 'b' in re	gister 'f' is	s set.	
Words:	1			
Cycles:	1			
Example	BSF	FLAG_F	REG, 7	,
	Before In FLA After Inst	G_REG		0A
	FLAG	G_REG	= 0x	8A

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Encoding:	01 10bb bfff ffff
Description:	If bit 'b' in register 'f' is '0' then the next instruction is skipped. If bit 'b' is '0' then the next instruction fetched during the current instruction execution is dis- carded, and a NOP is executed instead, making this a two-cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • •
	Before Instruction
	PC = address HERE
	After Instruction if FLAG<1> = 0, PC = address TRUE if FLAG<1> = 1, PC = address TRUE
	PC = address FALSE

PIC16C55X

CLRW	Clear W	V		
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	00	0001	0000	0011
Description:	W register set.	is clear	ed. Zero bit	(Z) is
Words:	1			
Cycles:	1			
Example	CLRW			
	Before In	structio	n	
	W	=	0x5A	
	After Inst	ruction		
	W	=	0x00	
	Z	=	1	

COMF	Comple	ement f		
Syntax:	[label]	COMF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7		
Operation:	$(\overline{f}) \rightarrow (des$	st)		
Status Affected:	Z			
Encoding:	00	1001	dfff	ffff
Description:	The conter compleme stored in V stored bac	nted. If 'd V. If 'd' is	' is 0 the re 1 the resul	
Words:	1			
Cycles:	1			
Example	COMF	REG1,0)	
	Before In	struction		
	REG	1 =	0x13	
	After Inst	ruction		
	REG	1 =	0x13	
	W	=	0xEC	

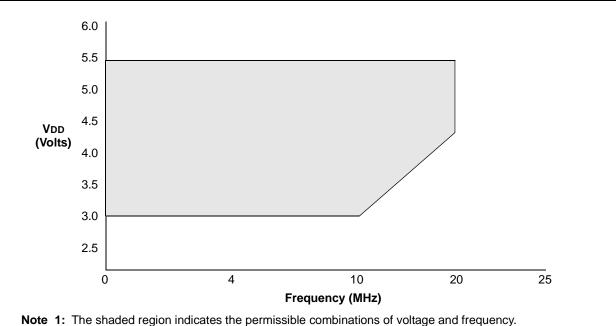
Clear Watchdog Timer
[label] CLRWDT
None
$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
TO, PD
00 0000 0110 0100
CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.
1
1
CLRWDT
Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1

.....

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0011 dfff ffff
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	DECF CNT, 1
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1

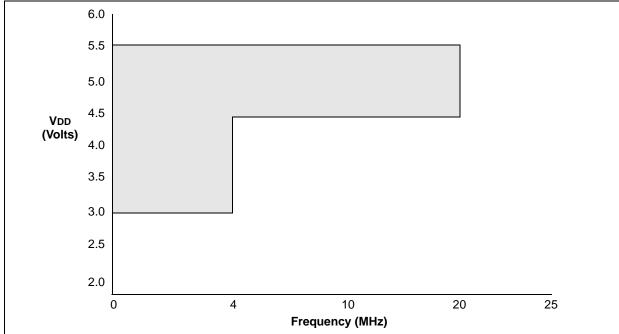
NOTES:

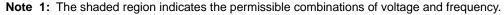
TABLE 9-1: DEVELOPMENT TOOLS FROM MICROCHIP

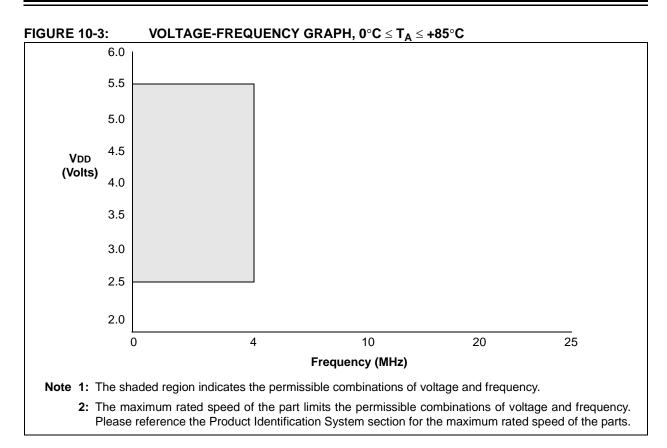

		PIC14000	PIC16C5X	PIC16C6X	PIC16CXX	PIC16F62)	X7381319	(X7OðfOld	78281519	PIC16F8X	VX6D81DI9	X4JTrJI9	(X70710I9	PIC18CXX	PIC18FXXX	83CXX 52CXX\ 54CXX\	ХХХЗЭН	МСКЕХХХ	MCP2510
MPLAB [®] Integrated Development Environment	-	> >	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 C Compiler												>	~						
MPLAB [®] C18 C Compiler														>	~				
MPASM™ Assembler/ MPLINK™ Object Linker		`````	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	ator	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
ICEPICTM In-Circuit Emulator		>	>	>	>		>	>	>		>								
eb MPLAB® ICD In-Circuit Debugger				*>			*>			>					>				
PICSTART [®] Plus Entry Level Development Programmer		` `	>	>	>	**^	>	>	`	`	>	>	>	>	>				
PRO MATE® II Universal Device Programmer		> >	>	>	>	**/	>	>	>	>	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board			>		>		÷,		>			>							
PICDEM TM 2 Demonstration Board				≁			^ +							>	>				
PICDEM TM 3 Demonstration Board											>								
PICDEM TM 14A Demonstration Board	5	>																	
PICDEM TM 17 Demonstration Board													>						
KEELoq [®] Evaluation Kit																	>		
KEELoq [®] Transponder Kit																	>		
microlD TM Programmer's Kit																		~	
125 kHz microlD™ Developer's Kit																		>	
125 kHz Anticollision microlD™ Developer's Kit	MTO																	>	
13.56 MHz Anticollision microlD™ Developer's Kit																		>	
MCP2510 CAN Developer's Kit	Cit																		~

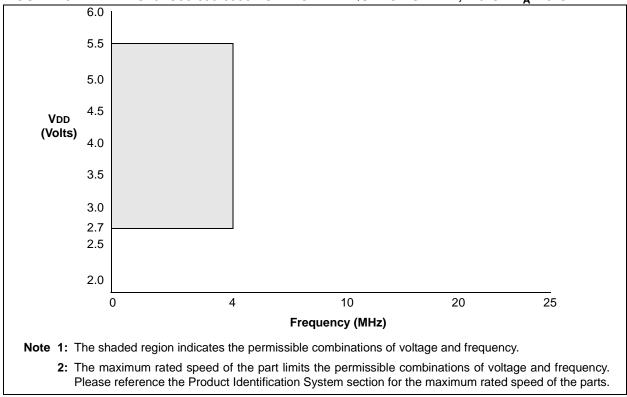
 $\ensuremath{\textcircled{}^{\circ}}$ 1996-2013 Microchip Technology Inc.

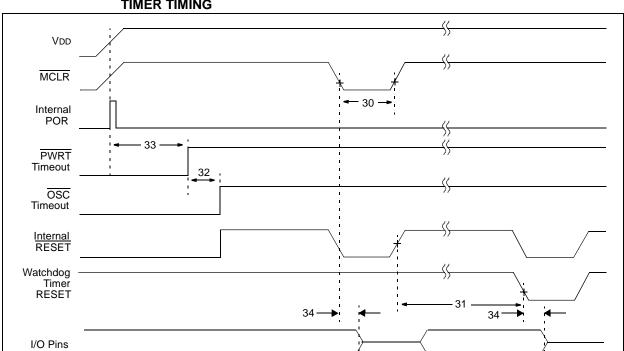
NOTES:


PIC16C55X




2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

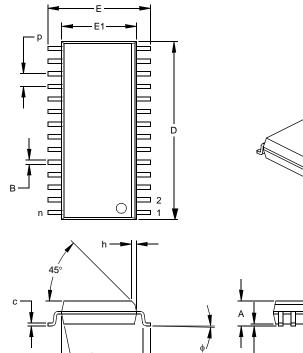


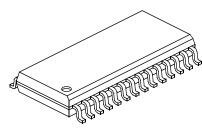

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

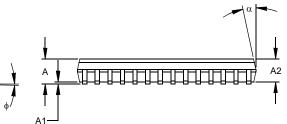
^{© 1996-2013} Microchip Technology Inc.

FIGURE 10-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 10-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS


Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
30	TmcL	MCLR Pulse Width (low)	2000	_		ns	-40° to +85°C	
31	Twdt	Watchdog Timer Timeout Period (No Prescaler)	7*	18	33*	ms	VDD = 5.0V, -40° to +85°C	
32	Tost	Oscillation Start-up Timer Period	-	1024 Tosc	_	_	Tosc = OSC1 period	
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	$VDD = 5.0V, -40^{\circ} \text{ to } +85^{\circ}C$	
34	Tioz	I/O hi-impedance from MCLR low		—	2.0*	μS		
*	* These parameters are characterized but not tested							


These parameters are characterized but not tested.


Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

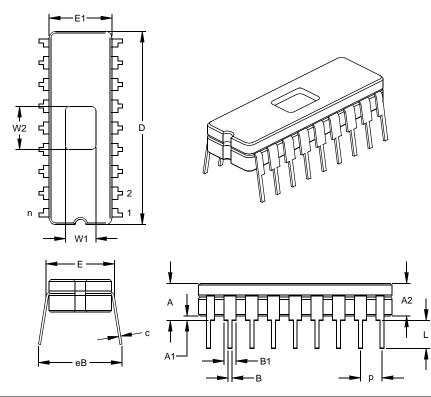
28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				MILLIMETERS		
Dimension L		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	ø	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15
* O sustan Illin a Deansastan							

* Controlling Parameter § Significant Characteristic

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013

Drawing No. C04-052

18-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units				MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.190	.200	.210	4.83	5.08	5.33

Significant Characteristic JEDEC Equivalent: MO-036 Drawing No. C04-010

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1996-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769737

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.