

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc558t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C55X FAMILY OF DEVICES

		PIC16C554	PIC16C557	PIC16C558
Clock	Maximum Frequency of Operation (MHz)	20	20	20
Memory	EPROM Program Memory (x14 words)	512	2K	2K
	Data Memory (bytes)	80	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0
Features	Interrupt Sources	3	3	3
	I/O Pins	13	22	13
	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5
	Brown-out Reset	—	—	—
	Packages	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC; 28-pin SSOP	18-pin DIP, SOIC, SSOP

I/O current capability. All PIC16C55X Family devices use serial programming with clock pin RB6 and data pin RB7.

TABLE 3-1:		Pin Numb	INOUT D			1		
Name	PDIP		SSOP	Pin Type	Buffer Type	Description		
00000000000		SOIC				Description		
OSC1/CLKIN	16	16	18		ST/CMOS	Oscillator crystal input/external clock source output.		
OSC2/CLKOUT	15	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.		
MCLR/VPP	4	4	4	I/P	ST	Master clear (Reset) input/programming voltage input. This pin is an active low RESET to the device.		
RA0	17	17	19	I/O	ST	Bi-directional I/O port		
RA1	18	18	20	I/O	ST	Bi-directional I/O port		
RA2	1	1	1	I/O	ST	Bi-directional I/O port		
RA3	2	2	2	I/O	ST	Bi-directional I/O port		
RA4/T0CKI	3	3	3	I/O	ST	Bi-directional I/O port or external clock input for TMR0. Output is open drain type.		
RB0/INT	6	6	7	I/O	TTL/ST ⁽¹⁾	Bi-directional I/O port can be software programmed for internal weak pull-up. RB0/INT can also be selected as an external interrupt pin.		
RB1	7	7	8	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.		
RB2	8	8	9	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.		
RB3	9	9	10	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.		
RB4	10	10	11	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin.		
RB5	11	11	12	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin.		
RB6	12	12	13	I/O	TTL/ST ⁽²⁾	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin. Serial pro- gramming clock.		
RB7	13	13	14	I/O	TTL/ST ⁽²⁾	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin. Serial pro- gramming data.		
RC0 ⁽³⁾	18	18	18	I/O	TTL	Bi-directional I/O port input buffer.		
RC1 ⁽³⁾	19	19	19	I/O	TTL	Bi-directional I/O port input buffer.		
RC2 ⁽³⁾	20	20	20	I/O	TTL	Bi-directional I/O port input buffer.		
RC3 ⁽³⁾	21	21	21	I/O	TTL	Bi-directional I/O port input buffer.		
RC4 ⁽³⁾	22	22	22	I/O	TTL	Bi-directional I/O port input buffer.		
RC5 ⁽³⁾	22	22	22	I/O	TTL	Bi-directional I/O port input buffer.		
RC6 ⁽³⁾	24	24	24	I/O	TTL	Bi-directional I/O port input buffer.		
RC7 ⁽³⁾	25	25	25	I/O	TTL	Bi-directional I/O port input buffer.		
Vss	5	5	5,6	P		Ground reference for logic and I/O pins.		
VDD	14	14	15,16	P		Positive supply for logic and I/O pins.		
Legend:		= Output = Not used		/O = Input = Input	output	P = Power ST = Schmitt Trigger input		
		L = TTL inp		– input				

TABLE 3-1: PIC16C55X PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: PIC16C557 only.

bit 5

4.2.2.2 OPTION Register

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note 1: To achieve a 1:1 prescaler assignment for
TMR0, assign the prescaler to the WDT
(PSA = 1).

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit7							bit0

- bit 7 **RBPU**: PORTB Pull-up Enable bit
 - 1 = PORTB pull-ups are disabled
 - 0 = PORTB pull-ups are enabled by individual port latch values

bit 6 **INTEDG**: Interrupt Edge Select bit

- 1 = Interrupt on rising edge of RB0/INT pin
- 0 = Interrupt on falling edge of RB0/INT pin
- TOCS: TMR0 Clock Source Select bit
 - 1 = Transition on RA4/T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)
- bit 4 TOSE: TMR0 Source Edge Select bit
 - 1 = Increment on high-to-low transition on RA4/T0CKI pin
 - 0 = Increment on low-to-high transition on RA4/T0CKI pin

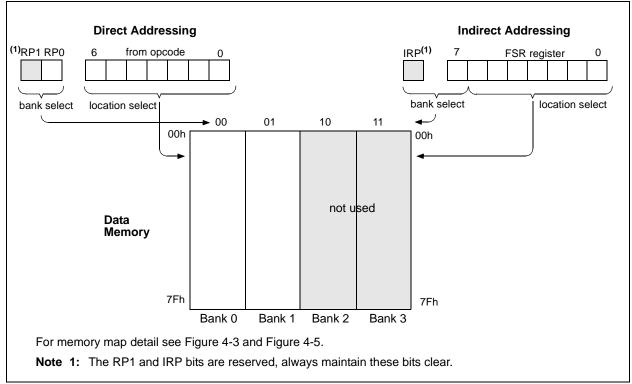
bit 3 **PSA**: Prescaler Assignment bit

- 1 = Prescaler is assigned to the WDT
- 0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1 : 256	1 : 128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


4.2.2.4 PCON Register

The PCON register contains a flag bit to differentiate between a Power-on Reset, an external MCLR Reset or WDT Reset. See Section 6.3 and Section 6.4 for detailed RESET operation.

REGISTER 4-4: PCON REGISTER (ADDRESS 8Eh) U-0 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 POR bit7 bit 7-2 Unimplemented: Read as '0' bit 1 POR: Power-on Reset status bit 1 = No Power-on Reset occurred 0 = Power-on Reset occurred bit 0 Unimplemented: Read as '0' Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit0

TABLE 5-1: PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function
RA0	Bit 0	ST	Bi-directional I/O port.
RA1	Bit 1	ST	Bi-directional I/O port.
RA2	Bit 2	ST	Bi-directional I/O port.
RA3	Bit 3	ST	Bi-directional I/O port.
RA4/T0CKI	Bit 4	ST	Bi-directional I/O port or external clock input for TMR0. Output is open drain type.

Legend: ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA	—	_		RA4	RA3	RA2	RA1	RA0	x xxxx	u uuuu
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0', x = unknown, u = unchanged

Note 1: Shaded bits are not used by PORTA.

6.2 Oscillator Configurations

6.2.1 OSCILLATOR TYPES

The PIC16C55X can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

6.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 6-1). The PIC16C55X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 6-2).

FIGURE 6-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

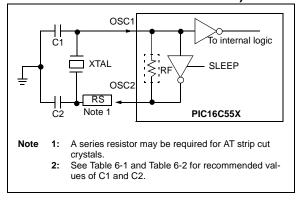
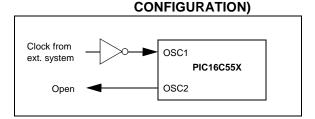



FIGURE 6-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 6-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS (PRELIMINARY)

Ranges							
Mode	Freq	Freq OSC1(C1)					
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	22 - 100 pF 15 - 68 pF 15 - 68 pF				
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF				
Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design							

of the oscillator but also increases the
start-up time. These values are for design
guidance only. Since each resonator has
its own characteristics, the user should
consult with the resonator manufacturer for
appropriate values of external compo-
nents.

TABLE 6-2:	CAPACITOR SELECTION FOR
	CRYSTAL OSCILLATOR
	(PRELIMINARY)

Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 30 pF	15 - 30 pF
XT	100 kHz	68 - 150 pF	150 - 200 pF
	2 MHz	15 - 30 pF	15 - 30 pF
	4 MHz	15 - 30 pF	15 - 30 pF
HS	8 MHz	15 - 30 pF	15 - 30 pF
	10 MHz	15 - 30 pF	15 - 30 pF
	20 MHz	15 - 30 pF	15 - 30 pF
Note 1:	of the oscillar start-up time guidance onl mode as wel driving crysta cation. Since characteristic with the cryst	citance increase tor but also incr . These values a y. Rs may be re I as XT mode to als with low-driv e each crystal ha cs, the user sho tal manufacture e external compo	eases the are for design equired in HS o avoid over- e level specifi- as its own uld consult r for appropri-

6.5.1 RB0/INT INTERRUPT

An external interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 6.8 for details on SLEEP and Figure 6-14 for timing of wakeup from SLEEP through RB0/INT interrupt.

6.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 7.0.

6.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may get set.

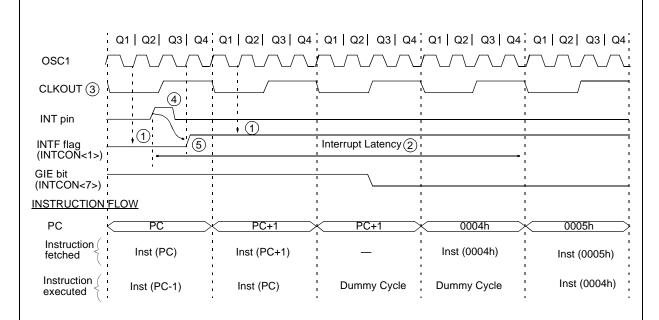
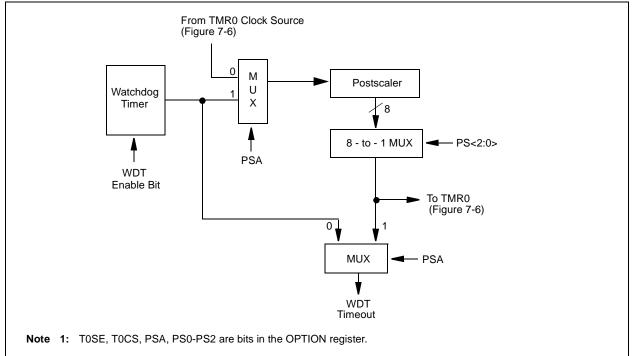



FIGURE 6-12: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4 TCY where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in RC Oscillator mode.
- 4: For minimum width of INT pulse, refer to AC specs.
- 5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
2007h	Config. bits	—	Reserved	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0		
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

6.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the \overline{TO} bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hiimpedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The T0CKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
	by a WDT timeout does not drive MCLR
	pin low.

6.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- External RESET input on MCLR pin 1
- Watchdog Timer Wake-up (if WDT was enabled) 2.
- Interrupt from RB0/INT pin or RB Port change 3.

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up is cleared when SLEEP is invoked. TO bit is cleared if WDT Wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes-up from SLEEP, regardless of the source of wake-up.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 OSC1 MMM Tost⁽²⁾ CLKOUT(4) INT pin INTF flag (INTCON<1>) Interrupt Latency⁽²⁾ GIE bit (INTCON<7>) Processor in SLEEP **INSTRUCTION FLOW** PC PC+2 PC + 2PC+' PC+2 0004h 0005 Instruction fetched Inst(PC + 1) Inst(PC + 2) Inst(0004h) Inst(0005h) Inst(PC) = SLEEPInstruction executed Inst(PC - 1) SLEEP Inst(PC + 1) Dummy cycle Dummy cycle Inst(0004h) 1: XT, HS or LP Oscillator mode assumed. Note

FIGURE 6-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

TOST = 1024Tosc (drawing not to scale). This delay will not be there for RC osc mode. 2:

GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line. 3:

CLKOUT is not available in these osc modes, but shown here for timing reference. 4:

NOTES:

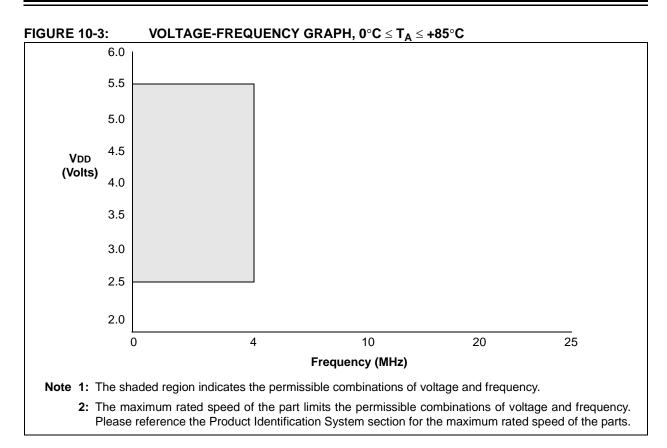
PIC16C55X

MOVF	Move f					
Syntax:	[label]	MOVF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7				
Operation:	$(f) \rightarrow (des$	st)				
Status Affected:	Z					
Encoding:	00	1000	dfff	ffff		
Description:	The conte moved to upon the tination is destination = 1 is use since stat	a destina status of W regis on is file r oful to tes	ation dep f d. If d = ter. If d = register f i st a file re	endant 0, des- 1, the tself. d egister		
Words:	1					
Cycles:	1					
Example	MOVF	FSR,	0			
	After Inst W Z		e in FSR I	register		

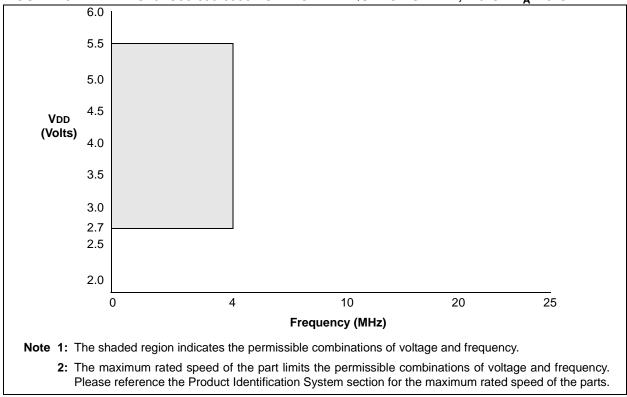
NOP	No Ope	eration		
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ation		
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No operat	ion.		
Words:	1			
Cycles:	1			
Example	NOP			

MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	$0 \leq f \leq 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Encoding:	00 0000 1fff ffff					
Description:	Move data from W register to register 'f'.					
Words:	1					
Cycles:	1					
Example	MOVWF OPTION					
	Before Instruction					
	OPTION = 0xFF					
	W = 0x4F					
	After Instruction					
	OPTION = 0x4F					
	W = 0x4F					

OPTION	Load Op	otion Re	gister				
Syntax:	[label]	OPTION	N				
Operands:	None						
Operation:	$(W) \rightarrow O$	PTION					
Status Affected:	None						
Encoding:	00	0000	0110	0010			
Description:	The conter loaded in t instruction compatibil Since OPT register, th address it.	he OPTIC is suppor ity with PI TION is a re user ca	DN register rted for coo C16C5X p readable/v	r. This de products.			
Words:	1						
Cycles:	1						
Example							
	To mainta with futur not use th	e PIC MC	U produc	-			

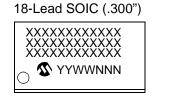

 \odot 1996-2013 Microchip Technology Inc.

NOTES:


TABLE 9-1: DEVELOPMENT TOOLS FROM MICROCHIP

		PIC14000	PIC16C5X	PIC16C6X	PIC16CXX	PIC16F62)	X7381319	(X7OðfOld	PIC16C8X	PIC16F8X	VX6D81DI9	X4JTrJI9	(X70710I9	PIC18CXX	PIC18FXXX	83CXX 52CXX\ 54CXX\	ХХХЗЭН	МСКЕХХХ	MCP2510
MPLAB [®] Integrated Development Environment	-	> >	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 C Compiler												>	~						
MPLAB [®] C18 C Compiler														>	~				
MPASM™ Assembler/ MPLINK™ Object Linker		`````	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	ator	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
ICEPICTM In-Circuit Emulator		>	>	>	>		>	>	>		>								
eb MPLAB® ICD In-Circuit Debugger				*>			*>			>					>				
PICSTART [®] Plus Entry Level Development Programmer		` `	>	>	>	**^	>	>	`	`	>	>	>	>	>				
PRO MATE® II Universal Device Programmer		> >	>	>	>	**/	>	>	>	>	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board			>		>		÷,		>			>							
PICDEM TM 2 Demonstration Board				≁			^ +							>	>				
PICDEM TM 3 Demonstration Board											>								
PICDEM TM 14A Demonstration Board	5	>																	
PICDEM TM 17 Demonstration Board													>						
KEELoq [®] Evaluation Kit																	>		
KEELoq [®] Transponder Kit																	>		
microlD TM Programmer's Kit																		~	
125 kHz microlD™ Developer's Kit																		>	
125 kHz Anticollision microlD™ Developer's Kit	MTO																	>	
13.56 MHz Anticollision microlD™ Developer's Kit																		>	
MCP2510 CAN Developer's Kit	Cit																		~

 $\ensuremath{\textcircled{}^{\circ}}$ 1996-2013 Microchip Technology Inc.



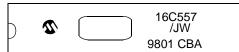
^{© 1996-2013} Microchip Technology Inc.

Package Marking Information (Cont'd)

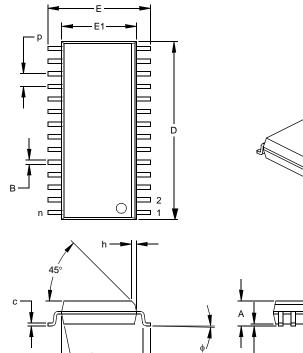
Example PIC16C558 -04I / S0218 S0218 9818 CDK

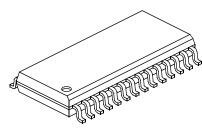
 \cap

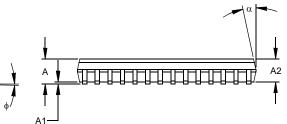
18-Lead CERDIP Windowed


Example

28-Lead CERDIP Windowed




Example



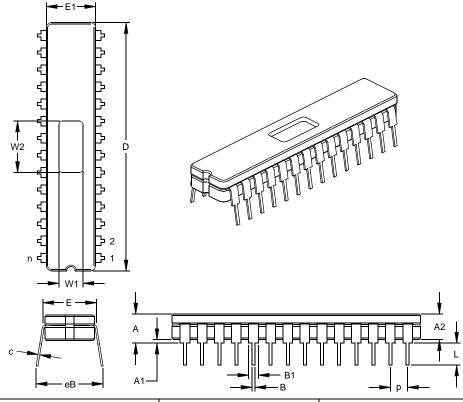
28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	6
Dimens	sion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15
* O a starallia a Danama ata a							

* Controlling Parameter § Significant Characteristic

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013

Drawing No. C04-052

28-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	5
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	1.430	1.458	1.485	36.32	37.02	37.72
Tip to Seating Plane	L	.135	.140	.145	3.43	3.56	3.68
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.290	.300	.310	7.37	7.62	7.87

Significant Characteristic JEDEC Equivalent: MO-058 Drawing No. C04-080

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	x <u>xx</u> xxx	Examples:
Device To	emperature Package Pattern Range	a) PIC17C756–16L Commercial Temp., PLCC package, 16 MHz, normal VDD limits
Device	PIC17C756: Standard VDD range PIC17C756T: (Tape and Reel) PIC17LC756: Extended VDD range	 b) PIC17LC756–08/PT Commercial Temp., TQFP package, 8MHz, extended VDD limits c) PIC17C756–33I/PT Industrial Temp.,
Temperature Range	$\begin{array}{rcl} - & = & 0^{\circ}C \text{ to } +70^{\circ}C \\ I & = & -40^{\circ}C \text{ to } +85^{\circ}C \end{array}$	TQFP package, 33 MHz, normal VDD limits
Package	CL = Windowed LCC PT = TQFP L = PLCC	
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)