

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc558t-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

bit 5

4.2.2.2 OPTION Register

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note 1: To achieve a 1:1 prescaler assignment fo					
TMR0, assign the prescaler to the WDT					
(PSA = 1).					

REGISTER 4-2:	OPTION REGISTER	(ADDRESS 81H)
---------------	------------------------	---------------

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
bit7							bit0

- bit 7 **RBPU**: PORTB Pull-up Enable bit
 - 1 = PORTB pull-ups are disabled
 - 0 = PORTB pull-ups are enabled by individual port latch values

bit 6 **INTEDG**: Interrupt Edge Select bit

- 1 = Interrupt on rising edge of RB0/INT pin
- 0 = Interrupt on falling edge of RB0/INT pin
- TOCS: TMR0 Clock Source Select bit
 - 1 = Transition on RA4/T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)
- bit 4 TOSE: TMR0 Source Edge Select bit
 - 1 = Increment on high-to-low transition on RA4/T0CKI pin
 - 0 = Increment on low-to-high transition on RA4/T0CKI pin

bit 3 **PSA**: Prescaler Assignment bit

- 1 = Prescaler is assigned to the WDT
- 0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1 : 256	1 : 128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

Reading PORTB register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- Any read or write of PORTB (this will end the mismatch condition)
- Clear flag bit RBIF

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

The interrupt on mismatch feature, together with software configurable pull-ups on these four pins, allows easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552 in the Microchip *Embedded Control Handbook*.)

Note 1: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 5-3: BLOCK DIAGRAM OF RB7:RB4 PINS

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16C55X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Interrupts
- 7. Watchdog Timer (WDT)
- 8. SLEEP
- 9. Code protection
- 10. ID Locations
- 11. In-circuit serial programming[™]

The PIC16C55X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), which is intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two functions onchip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

6.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

6.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 6-1 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 6-1:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

EXAMPLE 6-1: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to TEMP ;register, could be in
		;either bank
SWAPF	STATUS,W	;swap STATUS to be
		;saved into W
BCF	STATUS, RPO	;change to bank0
		;regardless of
		;current bank
MOVWF	STATUS_TEMP	;save STATUS to bank0
		;register
:		
:		
:		
SWAPF	STATUS_TEMP, W	i;swap STATUS_TEMP
		;register into W, sets
		;bank to original state
MOVWF	STATUS	;move W into STATUS
		;register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

6.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET. If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 6.1).

6.7.1 WDT PERIOD

The WDT has a nominal timeout period of 18 ms, (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part-to-part (see DC specs). If longer timeout periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer timeout.

6.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT timeout occurs.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
2007h	Config. bits		Reserved	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0		
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

6.9 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip	does	not	recommend	code
	protecting	windov	ved d	evices.	

6.10 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify.

6.11 In-Circuit Serial Programming™

The PIC16C55X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After RESET, to place the device into Programming/ Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

A typical in-circuit serial programming connection is shown in Figure 6-15.

FIGURE 6-15: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to WDT. Lines 5-7 are required only if the desired postscaler rate is 1:1 (PS<2:0> = 000) or 1:2 (PS<2:0> = 001).

EXAMPLE 7-1:	CHANGING PRESCALER
	(TIMER0→WDT)

	•	/
BCF	STATUS, RPO	;Skip if already in
		;Bank 0 CLRWDT Clear WDT
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	'00101111 <i>'</i> b	;These 3 lines (5, 6, 7)
MOVWF	OPTION	;Are required only if
		;Desired PS<2:0> are
		;CLRWDT 000 or 001
MOVLW	'00101xxx'b	;Set Postscaler to
MOVWF	OPTION	;Desired WDT rate
BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module use the sequence shown in Example 7-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 7-2: CHANGING PRESCALER (WDT→TIMER0)

	•	
CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
MOVWF	OPTION	
BCF	STATUS, RPO	

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0 m	odule's registe	r						xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	Reserved	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0',

Note 1: Shaded bits are not used by TMR0 module.

CLRW	Clear V	V		
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	00	0001	0000	0011
Description:	W register set.	is clear	ed. Zero bit	(Z) is
Words:	1			
Cycles:	1			
Example	CLRW			
	Before In	structio	n	
	W	=	0x5A	
	W	=	0x00	
	7	_	1	

COMF	Complement f					
Syntax:	[label] COMF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(\overline{f}) \rightarrow (des$	st)				
Status Affected:	Z					
Encoding:	00	1001	dfff	ffff		
Description:	The conten compleme stored in V stored bac	nts of reg nted. If 'd V. If 'd' is k in regis	ister 'f' are ' is 0 the re 1 the resul ter 'f'.	esult is t is		
Words:	1					
Cycles:	1					
Example	COMF	REG1,()			
	Before In	struction	1			
	REG	1 =	0x13			
	After Inst	ruction				
	REG	1 =	0x13			
	W	=	0xEC			

CLRWDI Clear Watchdog Timer								
Syntax:	[label] CLRWD	[label] CLRWDT						
Operands:	None							
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{W}DT \text{ prescaler,} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$							
Status Affected:	TO, PD							
Encoding:	00 0000	0110	0100					
Description:	CLRWDT instruction r Watchdog Timer. It a prescaler of the WD and PD are set.	esets the Ilso resets T. Status I	s the bits TO					
Words:	1							
Cycles:	1							
Example	CLRWDT							
	Before Instruction WDT counter After Instruction	= ?						
	WDT counter	= 0	×00					
	WDT prescale	er = 0						
	TO	= 1						
	PD	= 1						

.....

DECF	Decrement f				
Syntax:	[label] DECF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - 1 \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0011 dfff ffff				
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	DECF CNT, 1				
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1				

INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$0 \le f \le 127$ d \in [0,1]
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	None	Status Affected:	Z
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.	Description: Words: Cycles:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. 1
Words:	1	Example	IORWF RESULT, 0
Cycles: Example	1(2) HERE INCESS CNT, 1		Before Instruction RESULT = 0x13 W = 0x91
	CONTINUE • • •		After Instruction RESULT = 0x13 W = 0x93
	Before Instruction		Z = 1
	PC = address HERE After Instruction CNT = CNT + 1 if CNT = 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE +1		

IORLW	Inclusive OR Literal with W						
Syntax:	[label]	IORLW	' k				
Operands:	$0 \le k \le 2$	55					
Operation:	(W) .OR.	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z						
Encoding:	11	1000	kkkk	kkkk			
Description:	The conte OR'ed with result is pl	nts of the h the eigh aced in t	W register nt bit literal he W regist	r is 'k'. The ter.			
Words:	1						
Cycles:	1						
Example	IORLW	0x35					
	Before In	structio	า				
	W	= 0)x9A				
	After Instruction						
	W	= ()xBF				
	Z	= 1	l				

MOVLW	Move Literal to W						
Syntax:	[<i>label</i>] MOVLW k						
Operands:	$0 \le k \le 255$						
Operation:	$k \rightarrow (W)$						
Status Affected:	None						
Encoding:	11	00xx	kkkk	kkkk			
Description:	The eight register. Th as 0's.	bit literal ' he don't c	k' is loaded ares will as	d into W ssemble			
Words:	1						
Cycles:	1						
Example	MOVLW	0x5A					
	After Instruction						
	W	= 0	x5A				

RETFIE	Return from Interrupt						
Syntax:	[label] RETFIE						
Operands:	None	None					
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$						
Status Affected:	None						
Encoding:	00	0000	0000	1001			
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example	RETFIE						
	After Interrupt						
	PC	= T	OS				
	GIE	= 1					

RETURN	Return from Subroutine				
Syntax:	[label]	RETUR	N		
Operands:	None				
Operation:	$TOS \to F$	РС			
Status Affected:	None				
Encoding:	00	0000	0000	1000	
Description:	Return fro POPed an is loaded i This is a ty	m subrou id the top nto the pr wo-cycle i	tine. The s of the stack ogram counstruction.	tack is k (TOS) ınter.	
Words:	1				
Cycles:	2				
Example	RETURN				
	After Inte PC	errupt = T	OS		

RETLW	Return with Literal in W				
Syntax:	[<i>label</i>] RETLW k	S			
Operands:	$0 \le k \le 255$	0			
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	0			
Status Affected:	None	S			
Encoding:	11 01xx kkkk kkkk	Е			
Description:	The W register is loaded with the eight [bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.				
Words:	1				
Cycles:	2				
Example	CALL TABLE;W contains table ;offset value . ;W now has table value	C E			
TABLE	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW kn ; End of table				
	Before Instruction				
	W = 0x07				
	After Instruction W = value of k8				

RLF	Rotate Left f through Carry	
yntax:	[<i>label</i>] RLF f,d	
perands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
peration:	See description below	
atus Affected:	C	
ncoding:	00 1101 dfff ffff	
escription:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.	
/ords:	1	
ycles:	1	
xample	RLF REG1,0	
	Before Instruction	
	REG1 = 1110 0110	
	$\mathbf{C} = 0$	
	After Instruction	
	REG1 = 1110 0110	
	W = 1100 1100	
	C = 1	

SUBWF	Subtract W from f					
Syntax:	[<i>label</i>] SUBWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - (W) \rightarrow (dest)					
Status Affected:	C, DC, Z					
Encoding:	00 0010 dfff ffff					
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example 1:	SUBWF REG1,1					
	Before Instruction					
	REG1 = 3					
	W = 2					
	C = ?					
	After Instruction					
	REG1 = 1					
	W = 2					
Example 2	C = 1; result is positive					
Example 2:	Before Instruction					
	REG1 = 2					
	VV = 2 C = 2					
	After Instruction					
	REG1 = 0					
	W = 2					
	C = 1; result is zero					
Example 3:	Before Instruction					
·	REG1 = 1					
	W = 2					
	C = ?					
	After Instruction					
	REG1 = 0xFF					
	W = 2					
	C = 0; result is negative					

SWAPF	Swap N	libbles i	n f				
Syntax:	[label]	SWAPF	f,d				
Operands:	$0 \le f \le 12$	$0 \le f \le 127$					
	d ∈ [0,1]						
Operation:	(f<3:0>) - (f<7:4>) -	\rightarrow (dest< \rightarrow (dest<	7:4>), 3:0>)				
Status Affected:	None						
Encoding:	00	1110	dfff	ffff			
Description:	The upper register 'f' the result i is 1 the res	and lowe are excha is placed i sult is place	r nibbles c anged. If 'c in W regist ced in regis	of d' is 0 :er. If 'd' ster 'f'.			
Words:	1						
Cycles:	1						
Example	SWAPF	REG,	0				
	Before In	struction					
	RE	G1 =	0xA5				
	After Inst	ruction					
	RE	G1 =	0xA5				
	W	=	0x5A				
TRIS	Load TF	RIS Regi	ster				
Syntax:	[label]	TRIS	f				
Operands:	$5 \leq f \leq 7$						
Operation:	$(W) \rightarrow TF$	RIS regis	ter f;				
Status Affected:	None						
Encoding:	00	0000	0110	Offf			
Description:	The instru- compatibil products. readable a directly ad	ction is suity with th Since TR and writab	pported for e PIC16C IS register le, the use m.	or code 5X er s are er can			
Words:	1						
Cycles:	1						
Example							
	To mainta	in upwar	d compat	ibility			

To maintain upward compatibility with future PIC MCU products, do not use this instruction.

9.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC MCUs and can be used to develop for this and other PIC microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial ProgrammingTM protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

9.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in Stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In Stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode.

9.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

9.11 PICDEM 1 Low Cost PIC MCU Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A). PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

9.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I^2C^{TM} bus and separate headers for connection to an LCD module and a keypad.

TABLE 9-1: DEVELOPMENT TOOLS FROM MICROCHIP

		SIG	PICI	PIC16	ЫСІ	ЫС	ЫС	PIC	PIC16	91C16	FICIT	71)Iq	PIC18	BIC18	630 520 540	ыс	мскғ	WCP2
MPLAB [®] Integrated Development Environment		> >		>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 C Compiler											~	~						
MPLAB [®] C18 C Compiler													~	~				
MPASM TM Assembler/ MPLINK TM Object Linker	、	> >	>	>	>	>	>	>	>	>	>	>	>	>	>	~		
MPLAB [®] ICE In-Circuit Emulator		` `	>	>	**`	>	>	~	~	>	>	>	~	>				
ICEPIC TM In-Circuit Emulator		``	>	>		>	>	>		>								
8 MPLAB® ICD In-Circuit Debugger			>	*		*>			>					>				
PICSTART® Plus Entry Level	、 、	> >	`	>	**>	>	>	>	`	>	>	>	>	>				
PRO MATE® II Universal Device Programmer		> >	>	>	**/	>	>	>	^	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board		>		>		*		>			>							
PICDEM TM 2 Demonstration Board			`>	+		≁							>	>				
PICDEM TM 3 Demonstration Board										>								
PICDEM TM 14A Demonstration Board		>																
PICDEM TM 17 Demonstration Board												>						
KEELoo [®] Evaluation Kit																>		
KεεLoα [®] Transponder Kit																~		
microID TM Programmer's Kit																	>	
125 kHz microlD™ Developer's Kit																	>	
125 kHz Anticollision microlD TM Developer's Kit																	>	
13.56 MHz Anticollision microlD TM Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		>

 $\ensuremath{\textcircled{}^{\circ}}$ 1996-2013 Microchip Technology Inc.

^{© 1996-2013} Microchip Technology Inc.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	6
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revised. Three different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16C55X devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON status register is added with a Power-on Reset (POR) status bit.
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16C55X, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

APPENDIX C: REVISION HISTORY

Revision E (January 2013)

Added a note to each package outline drawing.

NOTES:

INDEX

A

ADDLW Instruction	
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	9
Assembler	
MPASM Assembler	67

В

BCF Instruction	
Block Diagram	
TIMER0	47
TMR0/WDT PRESCALER	50
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	57

С

CALL Instruction	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	57
CLRW Instruction	
CLRWDT Instruction	
Code Protection	
COMF Instruction	
Configuration Bits	31

D

Data Memory Organization1	13
DECF Instruction	58
DECFSZ Instruction	59
Development Support6	37

Ε

rrata	3
xternal Crystal Oscillator Circuit	4

G

General purpose Register File	13
GOTO Instruction	59

I

	~~
I/O Ports	23
I/O Programming Considerations	28
ICEPIC In-Circuit Emulator	68
ID Locations	46
INCF Instruction	59
INCFSZ Instruction	60
In-Circuit Serial Programming	46
Indirect Addressing, INDF and FSR Registers	21
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	55
ADDWF	55
ANDLW	55
ANDWF	55
BCF	56
BSF	56
BTFSC	56
BTFSS	57
CALL	57
CLRF	57

CLRW	58
CLRWDT	58
COMF	58
DECF	58
DECFSZ	59
GOTO	59
INCF	59
INCFSZ	60
IORLW	60
IORWF	60
MOVF	61
MOVLW	60
MOVWF	61
NOP	61
OPTION	61
RETFIE	62
RETLW	62
RETURN	62
RLF	62
RRF	63
SLEEP	63
SUBLW	63
SUBWF	64
SWAPF	64
TRIS	64
XORLW	65
XORWF	65
Instruction Set Summary	53
INT Interrupt	42
INTCON Register	19
Interrupts	41
IORLW Instruction	60
IORWF Instruction	60

Κ

Μ

MOVF Instruction
MOVLW Instruction 60
MOVWF Instruction
MPLAB C17 and MPLAB C18 C Compilers 67
MPLAB ICD In-Circuit Debugger 69
MPLAB ICE High Performance Universal In-Circuit Emulator
with MPLAB IDE 68
MPLAB Integrated Development Environment Software 67
MPLINK Object Linker/MPLIB Object Librarian 68

Ν

0

One-Time-Programmable (OTP) Devices	7
OPTION Instruction	61
OPTION Register	
Oscillator Configurations	33
Oscillator Start-up Timer (OST)	36

Ρ

PCL and PCLATH	21
PCON Register	20
PICDEM 1 Low Cost PIC MCU Demonstration Board	69
PICDEM 17 Demonstration Board	70
PICDEM 2 Low Cost PIC16CXX Demonstration Board	69
PICDEM 3 Low Cost PIC16CXXX Demonstration Board	70

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support