E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 1x8b, 1x11b, 1x12b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c26233-24pvxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Getting Started in the PSoC World!

The award winning PSoC Designer software and PSoC silicon are an integrated unit. The quickest path to understanding the PSoC silicon is through the PSoC Designer software GUI. This data sheet is useful for understanding the details of the PSOC integrated circuit, but is not a good starting point for a new PSoC developer seeking to get a general overview of this new technology.

PSoC developers are NOT required to build their own ADCs, DACs, and other peripherals. Embedded in the PSoC Designer software are the individual data sheets, performance graphs, and PSoC User Modules (graphically selected code packets) for the peripherals, such as the incremental ADCs, DACs, LCD controllers, op amps, low-pass filters, etc. With simple GUI-based selection, placement, and connection, the basic architecture of a design may be developed within PSoC Designer software without ever writing a single line of code.

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store also contains development kits, C compilers, and all accessories for PSoC development. Go to the Cypress Online Store web site at http://www.cypress.com, click the Online Store shopping cart icon at the bottom of the web page, and click *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Free PSoC technical training is available for beginners and is taught by a marketing or application engineer over the phone. PSoC training classes cover designing, debugging, advanced analog, as well as application-specific classes covering topics such as PSoC and the LIN bus. Go to http://www.cypress.com, click on Design Support located on the left side of the web page, and select Technical Training for more details.

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to http://www.cypress.com, click on Design Support located on the left side of the web page, and select CYPros Consultants.

PSoC application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support/login.cfm.

Cypress Semiconductor 2700 162nd Street SW, Building D Lynnwood, WA 98037 Phone: 425.787.4400 Fax: 425.787.4641 Application Support Hotline: 425.787.4814

Note the following details of the Flash code protection features on Cypress Semiconductor PSoC devices.

Cypress Semiconductor products meet the specifications contained in their particular Cypress Semiconductor Data Sheets. Cypress Semiconductor believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress Semiconductor, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress Semiconductor nor any other semiconductor ranufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Cypress Semiconductor is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress Semiconductor are committed to continuously improving the code protection features of our products.

[©] Cypress Semiconductor Corporation. 2000-2005. All rights reserved. PSoC[™], PSoC Designer[™], and Programmable System-on-Chip[™] are PSoCrelated trademarks of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

The information contained herein is subject to change without notice. Cypress Semiconductor assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. Cypress Semiconductor products are not warranted nor intended to be used for medical, life-support, life-saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress Semiconductor.

This page has intentionally been left blank.

Table 46: Interrupt Vector Deviator	10
Table 40. Interrupt vector Register	40
Table 47. Digital Basic Type A/ Communications Type A block xx Function Register	50
Table 40. Digital Basic Type A / Communications Type A block XX input Register	
Table 49. Digital Punction Data Input Deminions	
Table 50: Digital Basic Type A / Communications Type A Block XX Output Register	53
Table 51: Digital Function Outputs	54
Table 52: Digital Basic Type A / Communications Type A Block XX Data Register 0,1,2	54
Table 53: R/W Variations per User Module Selection	55
Table 54: Digital Basic Type A / Communications Type A Block xx Control Register 0	55
Table 55: Digital Basic Type A/Communications Type A Block XX Control Register U	56
Table 56: Digital Communications Type A Block xx Control Register 0	57
Table 57: Digital Communications Type A Block xx Control Register 0	58
Table 58: Digital Communications Type A Block xx Control Register 0	59
Table 59: Global Input Assignments	60
Table 60: Global Output Assignments	60
Table 61: Analog System Clocking Signals	72
Table 62: AGND, RefHI, RefLO Operating Parameters	74
Table 63: Analog Reference Control Register	75
Table 64: Analog Column Clock Select Register	76
Table 65: Analog Clock Select Register	77
Table 66: Analog Continuous Time Block xx Control 0 Register	82
Table 67: Analog Continuous Time Block xx Control 1 Register	83
Table 68: Analog Continuous Time Type A Block xx Control 2 Register	84
Table 69: Analog Switch Cap Type A Block xx Control 0 Register	88
Table 70: Analog Switch Cap Type A Block xx Control 1 Register	90
Table 71: Analog Switch Cap Type A Block xx Control 2 Register	92
Table 72: Analog Switch Cap Type A Block xx Control 3 Register	93
Table 73: Analog Switch Cap Type B Block xx Control 0 Register	95
Table 74: Analog Switch Cap Type B Block xx Control 1 Register	97
Table 75: Analog Switch Cap Type B Block xx Control 2 Register	99
Table 76: Analog Switch Cap Type B Block xx Control 3 Register	100
Table 77: Analog Comparator Control Register	101
Table 78: Analog Frequency Relationships	102
Table 79: Analog Synchronization Control Register	102
Table 80: Analog Input Select Register	104
Table 81: Analog Output Buffer Control Register	106
Table 82: Analog Modulator Control Register	107
Table 83: Multiply Input X Register.	110
Table 84: Multiply Input Y Register	110
Table 85: Multiply Result High Register	111
Table 86: Multiply Result Low Register	111
Table 87: Accumulator Result 1 / Multiply/Accumulator Input X Register	111
Table 88: Accumulator Result 0 / Multiply/Accumulator Input Y Register	111
Table 89: Accumulator Result 3 / Multiply/Accumulator Clear 0 Register	112
Table 90: Accumulator Result 2 / Multiply/Accumulator Clear 1 Register	112
Table 91: Decimator/Incremental Control Register	113
Table 92: Decimator Data High Register	113
Table 93: Decimator Data Low Register	113
Table 94: Processor Status and Control Register	114
Table 95: Reset WDT Register	116
Table 96: Voltage Monitor Control Register	118
Table 97: Bandran Trim Register	120
Table 98: CY8C25122 CY8C26233 CY8C26443 CY8C26643 (256 Buttee of SRAM)	121
Table 99: Table Read for Supervisory Call Functions	122
Table Ve. Table Read for Supervisory Call Functions	122

Table 100: Flash Program Memory Protection	.122
Table 101: Programmer Requirements	.122
Table 102: Absolute Maximum Ratings	.127
Table 103: Temperature Specifications	.128
Table 104: DC Operating Specifications	.129
Table 105: 5V DC Operational Amplifier Specifications	.130
Table 106: 3.3V DC Operational Amplifier Specifications	.131
Table 107: DC Analog Input Pin with Multiplexer Specifications	.132
Table 108: DC Analog Input Pin to SC Block Specifications	.132
Table 109: 5V DC Analog Output Buffer Specifications	.132
Table 110: 3.3V DC Analog Output Buffer Specifications	.133
Table 111: DC Switch Mode Pump Specifications	.134
Table 112: 5V DC Analog Reference Specifications	.135
Table 113: 3.3V DC Analog Reference Specifications	.136
Table 114: DC Analog PSoC Block Specifications	.136
Table 115: DC Programming Specifications	.137
Table 116: AC Operating Specifications	.138
Table 117: 5V AC Operational Amplifier Specifications	.139
Table 118: 3.3V AC Operational Amplifier Specifications	.140
Table 119: 5V AC Analog Output Buffer Specifications	.141
Table 120: 3.3V AC Analog Output Buffer Specifications	.142
Table 121: AC Programming Specifications	.142
Table 122: Thermal Impedances	.148
Table 123: Ordering Guide (Leaded)	.149
Table 124: Ordering Guide (Pb-Free Denoted with an "X" in Ordering Code)	.149
Table 125: Document Revision History	.150

List of Figures

Figure 1: Block Diagram	13
Figure 2: CY8C25122	15
Figure 3: CY8C26233	15
Figure 4: 26443 PDIP/SOIC/SSOP	16
Figure 5: 26643 TQFP	17
Figure 6: 26643 PDIP/SSOP	18
Figure 7: General Purpose I/O Pins	30
Figure 8: External Crystal Oscillator Connections	37
Figure 9: PSoC MCU Clock Tree of Signals	39
Figure 10: Interrupts Overview	43
Figure 11: GPIO Interrupt Enable Diagram	47
Figure 12: Digital Basic and Digital Communications PSoC Blocks	49
Figure 13: Polynomial LFSR	65
Figure 14: Polynomial PRS	65
Figure 15: SPI Waveforms	68
Figure 16: Array of Analog PSoC Blocks	72
Figure 17: Analog Reference Control Schematic	73
Figure 18: NMux Connections	78
Figure 19: PMux Connections	79
Figure 20: RBotMux Connections	79
Figure 21: Analog Continuous Time PSoC Blocks	81
Figure 22: Analog Switch Cap Type A PSoC Blocks	86
Figure 23: AMux Connections	87
Figure 24: CMux Connections	87
Figure 25: BMuxSCA/SCB Connections	88
Figure 26: Analog Switch Cap Type B PSoC Blocks	95
Figure 27: Analog Input Muxing	103
Figure 28: Analog Output Buffers	105
Figure 29: Multiply/Accumulate Block Diagram	110
Figure 30: Decimator Coefficients	112
Figure 31: Execution Reset	115
Figure 32: Three Sleep States	117
Figure 33: Switch Mode Pump	119
Figure 34: Programming Wave Forms	124
Figure 35: PSoC Designer Functional Flow	125
Figure 36: CY8C25xxx/CY8C26xxx Voltage Frequency Graph	127
Figure 37: 44-Lead Thin Plastic Quad Flat Pack A44	143
Figure 38: 20-Pin Shrunk Small Outline Package O20	144
Figure 39: 28-Lead (210-Mil) Shrunk Small Outline Package O28	145
Figure 40: 48-Lead Shrunk Small Outline Package O48	145
Figure 41: 20-Lead (300-Mil) Molded DIP P5	146
Figure 42: 28-Lead (300-Mil) Molded DIP P21	146
Figure 43: 48-Lead (600-Mil) Molded DIP P25	147
Figure 44: 20-Lead (300-Mil) Molded SOIC S5	147
Figure 45: 28-Lead (300-Mil) Molded SOIC S21	148

Figure 46: 8-Lead (300-Mil) Molded DIF	·	14	8
--	---	----	---

6.0 I/O Registers

6.1 **Port Data Registers**

Table 28:Port Data Registers

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/Write	RW							
Bit Name	Data [7]	Data [6]	Data [5]	Data [4]	Data [3]	Data [2]	Data [1]	Data [0]

Bit [7:0]: Data [7:0] When written is the bits for output on port pins. When read is the state of the port pins

Port 0 Data Register (PRT0DR, Address = Bank 0, 00h) Port 1 Data Register (PRT1DR, Address = Bank 0, 04h) Port 2 Data Register (PRT2DR, Address = Bank 0, 08h) Port 3 Data Register (PRT3DR, Address = Bank 0, 0Ch) Port 4 Data Register (PRT4DR, Address = Bank 0, 10h) Port 5 Data Register (PRT5DR, Address = Bank 0, 14h) **Note**: Port 5 is 4-bits wide, Bit [3:0]

6.2 Port Interrupt Enable Registers

Table 29: Port Interrupt Enable Registers

Bit #	7	6	5	4	3	2	1	0	
POR	0	0	0	0	0	0	0	0	
Read/Write	W	W	W	W	W	W	W	W	
Bit Name	Int En [7]	Int En [6]	Int En [5]	Int En [4]	Int En [3]	Int En [2]	Int En [1]	Int En [0]	
Bit [7:0] : <u>Int En [7:0]</u> When written sets the pin interrupt state 0 = Interrupt disabled for pin									

1 = Interrupt enabled for pin

Port 0 Interrupt Enable Register (PRT0IE, Address = Bank 0, 01h) Port 1 Interrupt Enable Register (PRT1IE, Address = Bank 0, 05h) Port 2 Interrupt Enable Register (PRT2IE, Address = Bank 0, 09h) Port 3 Interrupt Enable Register (PRT3IE, Address = Bank 0, 0Dh) Port 4 Interrupt Enable Register (PRT4IE, Address = Bank 0, 11h) Port 5 Interrupt Enable Register (PRT5IE, Address = Bank 0, 15h) **Note**: Port 5 is 4-bits wide

6.3.4 Port Interrupt Control 1 Registers

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write	W	W	W	W	W	W	W	W
Bit Name	IC1 [7]	IC1 [6]	IC1 [5]	IC1 [4]	IC1 [3]	IC1 [2]	IC1 [1]	IC1 [0]

Table 34: Port Interrupt Control 1 Registers

Bit [7:0]: IC1 [7:0] See truth table for Port Interrupt Control 0 Registers, above

Port 0 Interrupt Control 1 Register (PRT0IC1, Address = Bank 1, 03h)

Port 1 Interrupt Control 1 Register (PRT1IC1, Address = Bank 1, 07h)

Port 2 Interrupt Control 1 Register (PRT2IC1, Address = Bank 1, 0Bh)

Port 3 Interrupt Control 1 Register (PRT3IC1, Address = Bank 1, 0Fh)

Port 4 Interrupt Control 1 Register (PRT4IC1, Address = Bank 1, 13h)

Port 5 Interrupt Control 1 Register (PRT5IC1, Address = Bank 1, 17h) Note: Port 5 is 4-bits wide

Digital Communications Type A Block 06 Data Register 2 Digital Communications Type A Block 07 Data Register 0 Digital Communications Type A Block 07 Data Register 1 Digital Communications Type A Block 07 Data Register 2 (DCA06DR2, Address = Bank 0, 3Ah) (DCA07DR0, Address = Bank 0, 3Ch) (DCA07DR1, Address = Bank 0, 3Dh) (DCA07DR2, Address = Bank 0, 3Eh)

Function	DR0	R/W	DR1	R/W	DR2	R/W
Timer	Count	R ¹	Period Value	W	Capture Value	RW
Counter	Count	R ¹	Period Value	W	Compare Value	RW
CRC	Current Value/CRC Residue	R ¹	Polynomial Mask Value	W	Seed Value	RW
PRS	Current Value	R ¹	Polynomial Mask Value	W	Seed Value	RW
Deadband	Count	R ¹	Period Value	W	Not Used	RW
RX UART	Shifter	NA	Not Used	NA	Data Register	R
TX UART	Shifter	NA	Data Register	W	Not Used	NA
SPI	Shifter	NA	TX Data Register		RX Data Register	R

Table 53: R/W Variations per User Module Selection

1. Each time the register is read, its value is written to the DR2 register.

9.3.2 Digital Basic Type A / Communications Type A Block xx Control Register 0

Table 54: Digital Basic Type A / Communications Type A Block xx Control Register 0

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/Write	VF ¹							
Bit Name	Data [7]	Data [6]	Data [5]	Data [4]	Data [3]	Data [2]	Data [1]	Data [0]
Bit [7:0]: Data [7:0]								

1. Varies by function.

(DBA00CR0, Address = Bank 0, 23h) (DBA01CR0, Address = Bank 0, 27h) (DBA02CR0, Address = Bank 0, 2Bh) (DBA03CR0, Address = Bank 0, 2Fh) (DCA04CR0, Address = Bank 0, 33h) (DCA05CR0, Address = Bank 0, 37h) (DCA06CR0, Address = Bank 0, 3Bh) (DCA07CR0, Address = Bank 0, 3Fh)

9.3.3 Digital Basic Type A/Communications Type A Block xx Control Register 0 When Used as Timer, Counter, CRC, and Deadband

Note that the data in this register, as well as the following three registers, are a mapping of the functions of the

variables selected in the associated Digital Basic Type A/ Communications Type A Block xx Control Register 0.

Table 55: Digital Bas	ic Type A/Co	ommunications	Type A B	lock xx Co	ntrol Register 0.	
-----------------------	--------------	---------------	----------	------------	-------------------	--

POR								-
Deed Alatic								0
Read/write								RW
Bit Name	Reserved	Enable						
Bit 7: Reserved Bit 6: Reserved Bit 5: Reserved Bit 4: Reserved Bit 3: Reserved Bit 2: Reserved Bit 1: Reserved Bit 0: <u>Enable</u> 0 = Function Disa	abled							

Digital Basic Type A Block 00 Control Register 0 (DBA00CR0, Address = Bank 0, 23h) Digital Basic Type A Block 01 Control Register 0 (DBA01CR0, Address = Bank 0, 27h) Digital Basic Type A Block 02 Control Register 0 (DBA02CR0, Address = Bank 0, 2Bh) Digital Basic Type A Block 03 Control Register 0 (DBA03CR0, Address = Bank 0, 2Fh) Digital Communications Type A Block 04 Control Register 0 (DCA04CR0, Address = Bank 0, 33h) Digital Communications Type A Block 05 Control Register 0 (DCA05CR0, Address = Bank 0, 37h) Digital Communications Type A Block 06 Control Register 0 (DCA06CR0, Address = Bank 0, 3Bh) Digital Communications Type A Block 07 Control Register 0 (DCA07CR0, Address = Bank 0, 3Fh)

9.3.4 Digital Communications Type A Block xx Control Register 0 When Used as UART Transmitter

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write			R	R		RW	RW	RW
Bit Name	Reserved	Reserved	TX Complete	TX Reg Empty	Reserved	Parity Type	Parity Enable	Enable

Table 56: Digital Communications Type A Block xx Control Register 0...

Bit 7: Reserved

Bit 6: Reserved

Bit 5: TX Complete

0 = Indicates that if a transmission has been initiated, it is still in progress 1 = Indicates that the current transmission is complete (including framing bits) Optional interrupt source for TX UART. Reset when this register is read.

Bit 4: TX Reg Empty

0 = Indicates TX Data register is not available to accept another byte (writing to register will cause data to be lost) 1 = Indicates TX Data register is available to accept another byte

Note that the interrupt does not occur until at least 1 byte has been previously written to the TX Data Register Default interrupt source for TX UART. Reset when the TX Data Register (Data Register 1) is written.

Bit 3: Reserved

Bit 2: Parity Type

- 0 = Even
- 1 = Odd

Bit 1: Parity Enable

0 = Parity Disabled

1 = Parity Enabled

Bit 0: Enable

- 0 = Function Disabled
- 1 = Function Enabled

Digital Communications Type A Block 04 Control Register 0 Digital Communications Type A Block 05 Control Register 0 Digital Communications Type A Block 06 Control Register 0 Digital Communications Type A Block 07 Control Register 0 (DCA04CR0, Address = Bank 0, 33h) (DCA05CR0, Address = Bank 0, 37h) (DCA06CR0, Address = Bank 0, 3Bh) (DCA07CR0, Address = Bank 0, 3Fh)

10.4 Analog Reference Control

The reference generator establishes a set of three internally fixed reference voltages for the whole chip, AGND, RefHi and RefLo. The 8C26xxx is a single supply part, with no negative voltage available or applicable. Analog ground (AGND) is constructed near mid-supply. This ground is routed to all analog blocks and separately buffered within each block. There may be a small offset voltage between buffered analog grounds, as indicated in the AC/DC Characteristics section. RefHi and RefLo signals are generated, buffered and routed to the analog blocks. RefHi is used to set the conversion range (i.e., span) of analog to digital (ADC) and digital to analog (DAC) converters. RefHi and RefLo can be used to set thresholds in comparators.

Figure 17: Analog Reference Control Schematic

10.4.1 Bandgap Test

BGT Bandgap Test is used for factory testing of the internal reference voltage testing.

10.4.2 Bias Level

HBE Controls the bias level for all analog functions. It operates with the power setting in each block to set the parameters of that block. Most applications will benefit most from the low bias level. At high bias, the analog block op-amps have faster slew rate but slightly less voltage swing and higher noise.

10.4.3 AGND, RefHI, RefLO

REF Sets Analog Array Reference Control, selecting specific combinations of voltage for analog ground and references. Many of these reference voltages are based on the precision internal reference, a Silicon band gap operating at 1.300 Volts. This reference has good thermal stability and power supply rejection.

Alternatively, the power supply can be scaled to provide analog ground and references; this is particularly useful for signals, which are ratiometric to the power supply voltage.

User supplied external precision references can be connected to Port 2 inputs (available on 28 pin and larger parts). This is useful in setting reference for specific customer applications such as a +/-1.000 V (from AGND) ADC scale. References derived from Port 2 inputs are limited to the same output voltage range as the op-amps in the analog blocks.

10.8 Analog Switch Cap Type A PSoC Blocks

10.8.1 Introduction

The Analog Switch Cap Type A PSoC blocks are built around an operational amplifier. There are several analog muxes that are controlled by register-bit settings in the control registers that determine the signal topology inside the block. There are also four arrays of unit value capacitors that are located in the feedback path for the op-amp, and are switched by two phase clocks, PHI1 and PHI2. These four capacitor arrays are labeled A Cap Array, B Cap Array, C Cap Array, and F Cap Array. There is also an analog comparator connected to the output OUT, which converts analog comparisons into digital signals.

There are three discrete outputs from this block. These outputs are:

- 1. The analog output bus (ABUS), which is an analog bus resource that is shared by all of the analog blocks in the analog column for that block.
- 2. The comparator bus (CBUS), which is a digital bus that is a resource that is shared by all of the analog blocks in a column for that block.
- 3. The output bus (OUT), which is an analog bus resource that is shared by all of the analog blocks in a column and connects to one of the analog output buffers, to send a signal externally to the device.

SC Integrator Block A supports Delta-Sigma, Successive Approximation and Incremental A/D Conversion, Capacitor DACs, and SC filters. It has three input arrays of binarily-weighted switched capacitors, allowing user programmability of the capacitor weights. This provides summing capability of two (CDAC) scaled inputs, and a non-switched capacitor input. Since the input of SC Block A has this additional switched capacitor, it is configured for the input stage of such a switched capacitor biquad filter. When followed by an SC Block B Integrator, this combination of blocks can be used to provide a full Switched Capacitor Biquad.

10.12.4 Analog Output Buffer Control Register

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write	W	W	W	W	W	W		W
Bit Name	ACol1Mux	ACol2Mux	ABUF1EN	ABUF2EN	ABUF0EN	ABUF3EN	Reserved	PWR
Bit 7: <u>ACol1Mux</u> 0 = Set column 1 input to column 1 input mux output 1 = Set column 1 input to column 0 input mux output								
Bit 6: <u>ACol2</u> 0 = Set colu 1 = Set colu	2Mux mn 2 input to mn 2 input to	column 2 inp column 3 inp	out mux outpu out mux outpu	ut ut				
Bit 5: <u>ABUF</u> 0 = Disable 1 = Enable a	1EN Enables analog outpu analog output	s the analog o t buffer buffer	output buffer f	for Analog Co	lumn 1 (Pin F	PO[5])		
Bit 4: <u>ABUF</u> 0 = Disable 1 = Enable a	2EN Enables analog outpu analog output	s the analog o t buffer buffer	output buffer f	for Analog Co	lumn 2 (Pin F	P0[4])		
Bit 3: <u>ABUF</u> 0 = Disable 1 = Enable a	DEN Enables analog outpu analog output	s the analog o t buffer buffer	output buffer f	for Analog Co	lumn 0 (Pin F	20[3])		
Bit 2 : <u>ABUF</u> 0 = Disable 1 = Enable a	Bit 2 : <u>ABUF3EN</u> Enables the analog output buffer for Analog Column 3 (Pin P0[2]) 0 = Disable analog output buffer 1 = Enable analog output buffer							
Bit [1]: Res	Bit [1]: Reserved Must be left as 0							
Bit [0]: <u>PWF</u> 0 = Low out 1 = High out	2 Determines put power tput power	power level of	of all output b	ouffers				

Table 81: Analog Output Buffer Control Register

Analog Output Buffer Control Register (ABF_CR, Address = Bank 1, 62h)

10.13 Analog Modulator

The user has the capability to use the Analog Switch Cap Type A PSoC Blocks in Columns 0 and 2 as amplitude modulators. The Analog Modulator Control Register (AMD_CR) allows the user to select the appropriate modulating signal. When the modulating signal is low, the polarity follows the setting of the ASign bit set in the Analog Switch Cap Type A Control 0 Register (ASAxxCR0). When this signal is high, the normal gain polarity of the PSoC block is inverted.

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/Write	RW							
Bit Name	Data [7]	Data [6]	Data [5]	Data [4]	Data [3]	Data [2]	Data [1]	Data [0]
Bit [7:0]: Data [7:0] 8-bit data value when read is the highest order result of the multiply/accumulate function Any 8-bit data value when written will cause all four Accumulator result registers to clear								

 Table 89:
 Accumulator Result 3 / Multiply/Accumulator Clear 0 Register

Accumulator Result 3 / Multiply/Accumulator Clear 0 Register (ACC_DR3 / MAC_CL0, Address = Bank 0, EEh)

Table 90: Accumulator Result 2 / Multiply/Accumulator Clear 1 Register

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/Write	RW							
Bit Name	Data [7]	Data [6]	Data [5]	Data [4]	Data [3]	Data [2]	Data [1]	Data [0]
Bit [7:0]: Data [7:0] 8-bit data value when read is next to highest order result of the multiply/accumulate function Any 8-bit data value when written will cause all four Accumulator result registers to clear								

Accumulator Result 2 / Multiply/Accumulator Clear 1 Register (ACC_DR2 / MAC_CL1, Address = Bank 0, EFh)

11.2 Decimator

The output of a Δ - Σ modulator is a high-speed, single bit A/D converter. A single bit A/D converter is of little use to anyone and must be converted to a lower speed multiple bit output. Converting this high-speed single bit data stream to a lower speed multiple bit data stream requires a data decimator.

A "divide by n" decimator is a digital filter that takes the single bit data at a fast rate and outputs multiple bits at one nth the speed. For a single stage Δ – Σ converter, the optimal filter has a sinc² response. This filter can be implemented as a finite impulse response (FIR) filter and for a "divide by n" implementation should have the following coefficients:

Figure 30: Decimator Coefficients

11.8.1 Additional Function for Table Read Supervisory Call

The Table Read supervisory operation will return the Version ID in the Accumulator. The value in the Accumulator is divided into a high and low nibble, indicating major and minor revisions, respectively. **Note**: The value in the X register is modified during the Table Read Supervisory Call, and must be saved and restored if needed after the call completes.

- A[7:4]: Major silicon revisions.
- A[3:0]: Minor silicon revisions.

Table ID	Function	TV(0)	TV(1)	TV(2)	TV(3)	TV(4)	TV(5)	TV(6)	TV(7)
00 ¹	Produc- tion Sili- con ID	Silicon ID 1	Silicon ID 0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
01	Provides trim value for Inter- nal Main Oscillator and Inter- nal Volt- age Refer- ence	Internal Voltage Refer- ence trim value for 3.3V	Internal Main Oscillator trim value for 3.3V	Reserved	Reserved	Internal Voltage Refer- ence trim value for 5.0V	Internal Main Oscilla- tor trim value for 5.0V	Reserved	Reserved

 Table 99:
 Table Read for Supervisory Call Functions

1. Determines silicon revision values in Accumulator and X registers.

11.9 Flash Program Memory Protection

The user has the option to define the access to the Flash memory. A flexible system allows the user to select one of four protection modes for each 64-byte block within the Flash, based on the particular application. The protection mechanism is implemented by a device programmer using the System Supervisor Call. When this command is executed, two bits within the data programmed into the Flash will select the protection mode. It is not intended that the protection byte will be modified by the user's code. The following table lists the available protection options:

Table 100:	Flash Program Memory Protection
------------	---------------------------------

Mode Bits	Mode Name	External Read	External Write	Internal Write
00	Unprotected	Enabled	Enabled	Enabled
01	Factory Upgrade	Disabled	Enabled	Enabled
10	Field Upgrade	Disabled	Disabled	Enabled
11	Full Protection	Disabled	Disabled	Disabled

Note: Mode 10 is the default.

11.10 Programming Requirements and Step Descriptions

The pins in the following table are critical for the programmer:

Table 101: Programmer Requirements

Pin Name	Function	Programmer HW Pin Requirements
SDATA	Serial Data In/Out	Drive TTL Levels, Read TTL, High Z
SCLK	Serial Clock	Drive TTL levEl Clock Signal
V _{ss}	Power Supply Ground Connec- tion	Low Resistance Ground Connection
V _{cc}	Power Supply Positive Voltage	0V, 3.0V, 5V, & 5.4V. 0.1V Accuracy. 20mA Current Capability

11.10.1 Data File Read

The user's data file should be read into the programmer. The checksum should be calculated by the programmer for each record and compared to the record checksum stored in the file for each record. If there is an error, a message should be sent to the user explaining that the file has a checksum error and the programming should not be allowed to continue.

11.10.2 Programmer Flow

The following sequence (with descriptions) is the main flow used to program the devices: (Note that failure at any step will result in termination of the flow and an error message to the device programmer's operator.)

11.10.2.1 Verify Silicon ID

The silicon ID is read and verified against the expected value. If it is not the expected value, then the device is failed and an error message is sent to the device programmer's operator.

This test will detect a bad connection to the programmer or an incorrect device selection on the programmer.

The silicon ID test is required to be first in the flow and cannot be bypassed. The sequence is as follows:

```
Set Vcc=0V
Set SDATA=HighZ
Set SCLK=VILP
Set Vcc=Vccp
Start the programmer's SCLK driver
"free running"
WAIT-AND-POLL
ID-SETUP
WAIT-AND-POLL
READ-ID-WORD
```

Notes: See "DC Specifications" table in section 13 for value of Vccp and VILP. See "AC Specifications" table in section 13 for value of frequency for the SCLK driver (Fsclk).

11.10.2.2 Erase

The Flash memory is erased. This is accomplished by the following sequence:

SET-CLK-FREQ(num MHz times 5)

Erase All WAIT-AND-POLL

11.10.2.3 Program

The Flash is programmed with the contents of the user's programming file. This is accomplished by the following sequence:

```
For num_block = 0 to max_data_block
For address =0 to 63
WRITE-BYTE(address,data):
End for address loop
SET-CLK-FREQ(num_MHz_times_5)
SET-BLOCK-NUM(num_block)
PROGRAM-BLOCK
WAIT-AND-POLL
End for num block loop
```

11.10.2.4 Verify (at Low Vcc and High Vcc)

The device data is read out to compare to the data in the user's programming file. This is accomplished by the following sequence:

```
For num_block = 0 to max_data_block
SET-BLOCK-NUM (num_block)
VERIFY-SETUP
Wait & POLL the SDATA for a high to
low transition
For address =0 to max_byte_per_block
READ-BYTE(address,data)
End for address loop
End for num_block loop
```

Note: This should be done 2 times; once at Vcc=Vcclv and once at Vcc=Vcchv.

11.10.2.5 Set Security

The security operation protects certain blocks from being read or changed. This is done at the end of the flow so that the security does not interfere with the verify step. Security is set with the following sequence:

```
For address =0 to 63
WRITE-SECURITY-BYTE(address,data):
End for address loop
SET-CLK-FREQ(num_MHz_times_5)
SECURE
WAIT-AND-POLL
```

Note: This sequence is done at Vcc=Vccp.

13.0 DC and AC Characteristics

Specifications are valid for -40 °C </= T_A </= 85 °C and T_J </= 100 °C as specified, except where noted. Specifications for devices running at 24 MHz are valid at -40 °C </= T_A </= 70°C and T_J </= 82 °C.

Figure 36: CY8C25xxx/CY8C26xxx Voltage Frequency Graph

13.1 Absolute Maximum Ratings

Table 102: Absolute Maximum Ratings

Symbol	Absolute Maximum Ratings	Minimum	Typical	Maximum	Unit
	Storage Temperature	-65	-	+100 ¹	°C
	Ambient Temperature with Power Applied	-40	-	+85	°C
	Supply Voltage on V_{cc} Relative to V_{ss}	-0.5	-	+6.0	V
	DC Input Voltage	-0.5	-	V _{cc} +0.5	V
	DC Voltage Applied to Tri-state	V _{ss} -0.5	-	V _{cc} +0.5	V
	Maximum Current into any Port Pin	-25	-	+50	mA
	Maximum Current into any Port Pin Config- ured as Analog Driver	-50	-	+50	mA
	Junction Temperature up to 12 MHz	-	-	100 ²	°C
	Junction Temperature at 24 MHz	-	-	82	°C
	Static Discharge Voltage	2000	-	-	V
	Latch-up Current	200	-	-	mA

1. Higher storage temperatures will reduce data retention time.

13.2.6 DC Analog Reference Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges, 5V +/- 5% and $-40^{\circ}C <= TA <= 85^{\circ}C$. The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The bias levels for AGND refer to the bias of the Analog Continuous Time PSoC block. The bias levels for RefHi and RefLo refer to the Analog Reference Control Register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Typical parameters apply to 5V at 25C and are for design guidance only. (3.3V replaces 5V for the 3.3V DC Analog Reference Specifications.)

Symbol	5V DC Analog Reference Specifications	Minimum	Typical	Maximum	Unit
	AGND = Vcc/2 ¹ CT Block Bias = High	V _{cc} /2 - 0.010	V _{cc} /2 - 0.004	V _{cc} /2 + 0.003	V
	AGND = 2*BandGap ¹ CT Block Bias = High	2*BG - 0.043	2*BG - 0.010	2*BG + 0.024	v
	AGND = P2[4] (P2[4] = Vcc/2) ¹ CT Block Bias = High	P24 - 0.013	P24 0.001	P24 + 0.014	V
	AGND Column to Column Variation (AGND=Vcc/ 2) ¹ CT Block Bias = High	-0.034	0.000	0.034	mV
	REFHI = Vcc/2 + BandGap Ref Control Bias = High	V _{CC} /2+BG - 0.140	V _{CC} /2+BG - 0.018	V _{CC} /2+BG + 0.103	v
	REFHI = 3*BandGap Ref Control Bias = High	3*BG - 0.112	3*BG - 0.018	3*BG + 0.076	v
	REFHI = 2*BandGap + P2[6] (P2[6] = 1.3V) Ref Control Bias = High	2*BG+P2[6] - 0.113	2*BG+P2[6] - 0.018	2*BG+P2[6]+ 0.077	v
	REFHI = P2[4] + BandGap (P2[4] = Vcc/2) Ref Control Bias = High	P2[4]+BG - 0.130	P2[4]+BG - 0.016	P2[4]+BG + 0.098	v
	REFHI = P2[4] + P2[6] (P2[4] = Vcc/2, P2[6] = 1.3V) Ref Control Bias = High	P2[4]+P2[6] - 0.133	P2[4]+P2[6] - 0.016	P2[4]+P2[6]+ 0.100	<
	REFLO = Vcc/2 – BandGap Ref Control Bias = High	V _{CC} /2-BG - 0.051	V _{CC} /2-BG + 0.024	V _{CC} /2-BG + 0.098	v
	REFLO = BandGap Ref Control Bias = High	BG - 0.082	BG + 0.023	BG + 0.129	V
	REFLO = 2*BandGap - P2[6] (P2[6] = 1.3V) Ref Control Bias = High	2*BG-P2[6] - 0.084	2*BG-P2[6] + 0.025	2*BG-P2[6] + 0.134	v
	REFLO = P2[4] – BandGap (P2[4] = Vcc/2) Ref Control Bias = High	P2[4]-BG - 0.056	P2[4]-BG + 0.026	P2[4]-BG + 0.107	V
	REFLO = P2[4]-P2[6] (P2[4] = Vcc/2, P2[6] = 1.3V) Ref Control Bias = High	P2[4]-P2[6] - 0.057	P24-P26 + 0.026	P2[4]-P2[6] + 0.110	v

 Table 112:
 5V DC Analog Reference Specifications

Figure 46: 8-Lead (300-Mil) Molded DIP