

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 1x8b, 1x11b, 1x12b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c26443-24sxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 40: Interrupt Visitor Deviator	40
Table 46: Interrupt Vector Register	
Table 47: Digital Basic Type A/ Communications Type A Block xx Function Register	
Table 48: Digital Basic Type A / Communications Type A Block xx Input Register	
Table 49: Digital Function Data Input Definitions	
Table 50: Digital Basic Type A / Communications Type A Block xx Output Register	
Table 51: Digital Function Outputs	
Table 52: Digital Basic Type A / Communications Type A Block xx Data Register 0,1,2	
Table 53: R/W Variations per User Module Selection	
Table 54: Digital Basic Type A / Communications Type A Block xx Control Register 0	
Table 55: Digital Basic Type A/Communications Type A Block xx Control Register 0	
Table 56: Digital Communications Type A Block xx Control Register 0	
Table 57: Digital Communications Type A Block xx Control Register 0	
Table 58: Digital Communications Type A Block xx Control Register 0	
Table 59: Global Input Assignments	
Table 60: Global Output Assignments	
Table 61: Analog System Clocking Signals	
Table 62: AGND, RefHI, RefLO Operating Parameters	
Table 63: Analog Reference Control Register	
Table 64: Analog Column Clock Select Register	
Table 65: Analog Clock Select Register	
Table 66: Analog Continuous Time Block xx Control 0 Register	
Table 67: Analog Continuous Time Block xx Control 1 Register	
Table 68: Analog Continuous Time Type A Block xx Control 2 Register	
Table 69: Analog Switch Cap Type A Block xx Control 0 Register	88
Table 70: Analog Switch Cap Type A Block xx Control 1 Register	90
Table 71: Analog Switch Cap Type A Block xx Control 2 Register	92
Table 72: Analog Switch Cap Type A Block xx Control 3 Register	93
Table 73: Analog Switch Cap Type B Block xx Control 0 Register	95
Table 74: Analog Switch Cap Type B Block xx Control 1 Register	97
Table 75: Analog Switch Cap Type B Block xx Control 2 Register	99
Table 76: Analog Switch Cap Type B Block xx Control 3 Register	
Table 77: Analog Comparator Control Register	
Table 78: Analog Frequency Relationships	
Table 79: Analog Synchronization Control Register	
Table 80: Analog Input Select Register	
Table 81: Analog Output Buffer Control Register	
Table 82: Analog Modulator Control Register	
Table 83: Multiply Input X Register	
Table 84: Multiply Input Y Register	
Table 85: Multiply Result High Register	
Table 86: Multiply Result Low Register	
Table 87: Accumulator Result 1 / Multiply/Accumulator Input X Register	
Table 88: Accumulator Result 0 / Multiply/Accumulator Input Y Register	
Table 89: Accumulator Result 3 / Multiply/Accumulator Clear 0 Register	
Table 90: Accumulator Result 2 / Multiply/Accumulator Clear 1 Register	
Table 91: Decimator/Incremental Control Register	
Table 92: Decimator Data High Register	
Table 93: Decimator Data Low Register	
Table 94: Processor Status and Control Register	114
Table 95: Reset WDT Register	
Table 96: Voltage Monitor Control Register	
Table 97: Bandgap Trim Register	
Table 98: CY8C25122, CY8C26233, CY8C26443, CY8C26643 (256 Bytes of SRAM)	
Table 99: Table Read for Supervisory Call Functions	
rable ve. rable read for oupervisory can r unchoria	122

1.2 Pin-out Descriptions

Table 2:Pin-out 8 Pin

Name	I/O	Pin	Description
P0[7]	I/O	1	Port 0[7] (Analog Input)
P0[5]	I/O	2	Port 0[5] (Analog Input/Output)
P1[1]	I/O	3	Port 1[1] / Xtalln / SCLK
Vss	Power	4	Ground
P1[0]	I/O	5	Port 1[0] / XtalOut / SDATA
P0[2]	I/O	6	Port 0[2] (Analog Input/Output)
P0[4]	I/O	7	Port 0[4] (Analog Input/Output)
Vcc	Power	8	Supply Voltage

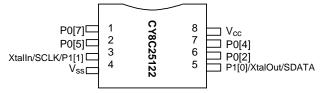


Figure 2: CY8C25122

Name	I/O	Pin	Description		
P0[7]	I/O	1	Port 0[7] (Analog Input)		
P0[5]	[5] I/O 2 Port 0[5] (Analog Input/				
P0[3]	I/O	3	Port 0[3] (Analog Input/Output)		
P0[1]	I/O	4	Port 0[1] (Analog Input)		
SMP	0	5	Switch Mode Pump		
P1[7]	I/O	6	Port 1[7]		
P1[5]	I/O	7	Port 1[5]		
P1[3]	3] I/O 8 Port 1[3]				
P1[1]	P1[1] I/O		Port 1[1] / Xtalln / SCLK		
Vss	Power	10	Ground		
P1[0]	I/O	11	Port 1[0] / XtalOut / SDATA		
P1[2]	I/O	12	Port 1[2]		
P1[4]	I/O	13	Port 1[4]		

Pin-out 20 Pin

Table 3:

P1[6]

XRES

P0[0]

P0[2]

P0[4]

P0[6]

Vcc

I/O

I/O

I/O

I/O

I/O

Power

L

14

15

16

17

18

19

20

Port 1[6]

External Reset

Supply Voltage

Port 0[0] (Analog Input)

Port 0[6] (Analog Input)

Port 0[2] (Analog Input/Output)

Port 0[4] (Analog Input/Output)

Figure 3: CY8C26233

Examples:

ADD	A,	7	;In this case, the immediate ;value of 7 is added with the ;Accumulator, and the result ;is placed in the ;Accumulator.
MOV	X,	8	;In this case, the immediate ;value of 8 is moved to the X ;register.
AND	F,	9	;In this case, the immediate ;value of 9 is logically ;ANDed with the F register ;and the result is placed in ;the F register.

2.3.2 Source Direct

The result of an instruction using this addressing mode is placed in either the A register or the X register, which is specified as part of the instruction opcode. Operand 1 is an address that points to a location in either the RAM memory space or the register space that is the source for the instruction. Arithmetic instructions require two sources, the second source is the A register or X register specified in the opcode. Instructions using this addressing mode are two bytes in length.

Table 14: Source Direct

Opcode	Operand 1
Instruction	Source Address

Examples:

ADD	Α,	[7]	;In this case, the ;value in the RAM ;memory location at ;address 7 is added ;with the Accumulator, ;and the result is ;placed in the ;Accumulator.
MOV	X,	REG [8]	;In this case, the ;value in the register ;space at address 8 is ;moved to the X ;register.

2.3.3 Source Indexed

The result of an instruction using this addressing mode is placed in either the A register or the X register, which is specified as part of the instruction opcode. Operand 1 is added to the X register forming an address that points to a location in either the RAM memory space or the register space that is the source for the instruction. Arithmetic instructions require two sources, the second source is the A register or X register specified in the opcode. Instructions using this addressing mode are two bytes.

Table 15: Source Indexed

Opcode	Operand 1
Instruction	Source Index

Examples:

ADD	A,	[X+7]	;In this case, the ;value in the memory ;location at address ;X + 7 is added with ;the Accumulator, and ;the result is placed ;in the Accumulator.
MOV	Х,	REG [X+8]	;In this case, the ;value in the ;register space at ;address X + 8 is ;moved to the X ;register.

2.3.4 Destination Direct

The result of an instruction using this addressing mode is placed within either the RAM memory space or the register space. Operand 1 is an address that points to the location of the result. The source for the instruction is either the A register or the X register, which is specified as part of the instruction opcode. Arithmetic instructions require two sources, the second source is the location specified by Operand 1. Instructions using this addressing mode are two bytes in length.

Opcode	Operand 1
Instruction	Destination Address

4.2 Register Bank 0 Map

Table 26: Bank 0

Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access
			-			et			-		RW	7	C0h	et	
PRT0DR PRT0IE	00h 01h	31 31	RW W		40h 41h			ASA10CR0 ASA10CR1	81h	88 90	RW		C0n C1h		
PRTOGS	02h	32	Ŵ		42h			ASA10CR2	82h	92	RW		C2h		
Reserved	03h				43h			ASA10CR3		93	RW		C3h		
PRT1DR	04h	31	RW		44h				84h	95	RW		C4h		
PRT1IE PRT1GS	05h 06h	31 32	W W		45h 46h			ASB11CR1 ASB11CR2	85h 86h	97 99	RW RW		C5h C6h		
	07h	32	VV		4011 47h				87h	100	RW		Con C7h		
PRT2DR	08h	31	RW		48h				88h	88	RW		C8h		
PRT2IE	09h	31	W		49h				89h	90	RW		C9h		
PRT2GS	0Ah	32	W		4Ah			ASA12CR2	8Ah	92	RW		CAh		
	0Bh 0Ch	21	RW		4Bh 4Ch				8Bh 8Ch	93 95	RW RW		CBh CCh		
PRT3IE	0Dh		W		40h				8Dh	95 97	RW		CDh		
PRT3GS	0Eh		Ŵ	ম	4Eh			ASB13CR2		99	RW	7	CEh		
	0Fh	_		Reserved	4Fh			ASB13CR3		100	RW	Reserved	CFh		
PRT4DR	10h	31	RW	erv.	50h			ASB20CR0		95	RW	erv.	D0h		
PRT4IE	11h	31	W	ed	51h			ASB20CR1	91h	97	RW	e d	D1h		
PRT4GS Reserved	12h 13h	32	W		52h 53h			ASB20CR2 ASB20CR3	92h 03h	99 100	RW RW		D2h D3h		
PRT5DR	14h	31	RW		54h				94h	88	RW		D4h		
PRT5IE	15h	31	W		55h			ASA21CR1	95h	90	RW		D5h		
PRT5GS	16h	32	W		56h			ASA21CR2	96h	92	RW		D6h		
	17h				57h			ASA21CR3	97h	93	RW		D7h		
-	18h 19h				58h 59h			ASB22CR0 ASB22CR1	98h 99h	95 97	RW RW		D8h D9h		
Re .	1Ah				5Ah			ASB22CR1		99	RW	-	DAh		
se .	1Bh				5Bh			ASB22CR3	9Bh	100	RW		DBh		
Reserved	1Ch				5Ch			ASA23CR0		88	RW		DCh		
ă	1Dh				5Dh			ASA23CR1	9Dh	90	RW		DDh		
	1Eh				5Eh			ASA23CR2	9Eh	92	RW		DEh		
DBA00DR0	1Fh 20h	54	1	AMX_IN	5Fh 60h	104	RW	ASA23CR3	9Fh A0h	93	RW	INT_MSK0	DFh E0h	45	RW
	21h	54	1		61h	104	1		A1h		-	INT_MSK1	E1h	46	RW
DBA00DR2	22h	54	1	Reserved	62h				A2h			INT_VC	E2h	46	RW
	23h	55	1	ARF_CR	63h	73	RW		A3h			RES_WDT	E3h	116	RW
	24h	54	1	CMP_CR	64h	101	1		A4h			DEC_DH/DEC_CL	E4h	113	RW
	25h 26h	54 54	1	ASY_CR	65h 66h	102	1		A5h A6h		-	DEC_DL DEC_CR	E5h E6h	113 113	R RW
	27h	55	1		67h				A7h		-	Reserved	E7h	115	1
	28h	54	1		68h				A8h			MUL_X	E8h	110	W
	29h	54	1	ਸ਼	69h				A9h			MUL_Y	E9h	110	W
	2Ah	54	1	les	6Ah				AAh			MUL_DH	EAh	111	R
DBA02CR0		55	1	ez	6Bh				ABh		_	MUL_DL	EBh	111	R
DBA03DR0 DBA03DR1	2Ch 2Dh		1	Reserved	6Ch 6Dh		_		ACh ADh		-	ACC_DR1/MAC_X ACC_DR0/MAC_Y	ECh EDh	111 111	RW RW
DBA03DR2			1		6Eh			72	AEh		-	ACC_DR3/MAC_CL0			RW
DBA03CR0	2Fh	55	1		6Fh			eserved	AFh			ACC_DR2/MAC_CL1			RW
DCA04DR0			1		70h			Ne Ve	B0h				F0h		
DCA04DR1			1	ACA00CR0			RW	ed	B1h		L		F1h		
DCA04DR2 DCA04CR0			1	ACA00CR1 ACA00CR2			RW RW		B2h B3h				F2h F3h		
DCA04CR0 DCA05DR0			1	Reserved	73n 74h	04	NVV		B4h		-		F3n F4h		
DCA05DR1			1	ACA01CR0		82	RW		B5h				F5h		
DCA05DR2	36h	54	1	ACA01CR1	76h	83	RW		B6h			Reserved	F6h		
DCA05CR0			1	ACA01CR2	77h	84	RW		B7h			, er	F7h		
DCA06DR0			1	Reserved	78h	02	DIA		B8h			vec	F8h		
DCA06DR1 DCA06DR2			1	ACA02CR0 ACA02CR1			RW RW		B9h BAh		-	<u> </u>	F9h FAh		
DCA06DR2 DCA06CR0			1	ACA02CR1			RW		BBh		-		FBh		
DCA07DR0			1	Reserved	7Ch				BCh				FCh		
DCA07DR1	3Dh	54	1	ACA03CR0		82	RW		BDh				FDh		
DCA07DR2	3Eh	54	1	ACA03CR1			RW		BEh				FEh		
DCA07CR0	3Fh	55	1	ACA03CR2	/Fh	84	RW		BFh			CPU_SCR	FFh	114	1

4.3 Register Bank 1 Map

Table 27: Bank 1

Register Name	Address	Page	Access	Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access
le	SS	e	SS	le	SS	e e	SS	ēfer	SS	e	SS	eter	SS	e	SS
PRT0DM0	00h	32	W		40h			ASA10CR0	80h	88	RW		C0h	-	
PRT0DM1	01h	33	W		41h			ASA10CR1	81h	90	RW]	C1h		
PRTOIC0	02h	33	W	-	42h			ASA10CR2	82h	92	RW		C2h		
PRT0IC1 PRT1DM0	03h 04h	34 32	W	-	43h 44h			ASA10CR3 ASB11CR0	83h 84h	93 95	RW RW		C3h C4h		
PRT1DM0	0411 05h	33	W	-	4411 45h			ASB11CR1	85h	97	RW		C5h		
PRT1IC0	06h	33	Ŵ	-	46h			ASB11CR2	86h	99	RW		C6h		\vdash
PRT1IC1	07h	34	Ŵ		47h			ASB11CR3	87h	100	RW		C7h		
PRT2DM0	08h	32	W		48h			ASA12CR0	88h	88	RW		C8h		
PRT2DM1	09h	33	W]	49h			ASA12CR1	89h	90	RW		C9h		
PRT2IC0	0Ah	33	W		4Ah			ASA12CR2	8Ah	92	RW		CAh		
PRT2IC1	0Bh	34	W	-	4Bh			ASA12CR3	8Bh	93	RW		CBh		
PRT3DM0 PRT3DM1	0Ch 0Dh	32 33	W	-	4Ch 4Dh			ASB13CR0 ASB13CR1	8Ch 8Dh	95 97	RW RW		CCh CDh		
PRT3IC0	0Eh	33	W	7	4Eh			ASB13CR2	8Eh	99	RW	7	CEh		
PRT3IC1	0Fh	34	Ŵ	Reserved	4Fh			ASB13CR3	8Fh	100	RW	Reserved	CFh		\vdash
PRT4DM0	10h	32	Ŵ	er	50h			ASB20CR0	90h	95	RW	er	D0h		
PRT4DM1	11h	33	W	è	51h			ASB20CR1	91h	97	RW	è	D1h		
PRT4IC0	12h	33	W		52h			ASB20CR2	92h	99	RW		D2h		
PRT4IC1	13h	34	W		53h			ASB20CR3	93h	100	RW		D3h		
PRT5DM0	14h	32	W		54h			ASA21CR0	94h	88	RW		D4h		
PRT5DM1	15h	33 33	W		55h			ASA21CR1	95h	90 92	RW RW		D5h		
PRT5IC0 PRT5IC1	16h 17h	33	W	-	56h 57h			ASA21CR2 ASA21CR3	96h 97h	92	RW		D6h D7h		
	18h	54		1	58h			ASB22CR0	98h	95	RW		D8h		\vdash
	19h		-		59h			ASB22CR1	99h	97	RW	-	D9h		
7	1Ah				5Ah			ASB22CR2	9Ah	99	RW		DAh		
ese	1Bh			1	5Bh			ASB22CR3	9Bh	100	RW		DBh		
Reserved	1Ch				5Ch			ASA23CR0	9Ch	88	RW]	DCh		
ed	1Dh			-	5Dh			ASA23CR1	9Dh	90	RW		DDh		
	1Eh 1Fh		-	-	5Eh 5Fh			ASA23CR2 ASA23CR3	9Eh 9Fh	92 93	RW RW		DEh DFh		
DBA00FN	20h	50	RW	CLK_CR0	60h	76	RW	ASAZSURS	A0h	93	RVV	OSC_CR0	E0h	40	RW
DBA00IN	21h	51	RW	CLK_CR1	61h	77	RW	-	A1h			OSC_CR1	E1h	40	RW
DBA00OU	22h	53	RW	ABF_CR	62h	106	W	-	A2h			Reserved	E2h	10	<u> </u>
Reserved	23h			AMD_CR	63h	107	RW	1	A3h			VLT_CR	E3h	118	RW
DBA01FN	24h	50	RW		64h				A4h			Reserved	E4h		
DBA01IN	25h	51	RW		65h				A5h			Reserved	E5h		
DBA01OU	26h	53	RW	-	66h			-	A6h			Reserved	E6h		
Reserved DBA02FN	27h 28h	50	RW	-	67h 68h			-	A7h A8h			Reserved IMO_TR	E7h E8h	35	w
DBA02IN	2011 29h	51	RW	Re	69h			-	A9h			ILO_TR	E9h	36	W
DBA02OU	2Ah	53	RW	- ise	6Ah			-	AAh			BDG TR	EAh	120	Ŵ
Reserved	2Bh			Reserved	6Bh				ABh			ECO_TR	EBh	37	Ŵ
DBA03FN	2Ch	50	RW	ď	6Ch			-	ACh				ECh		
DBA03IN	2Dh	51	RW		6Dh				ADh				EDh		
DBA03OU	2Eh	53	RW		6Eh			Re	AEh				EEh		
Reserved	2Fh	50	DIA/	-	6Fh			Reserved	AFh				EFh		
DCA04FN DCA04IN	30h 31h	50 51	RW RW	ACA00CR0	70h 71h	82	RW	IV€	B0h B1h				F0h F1h		
DCA04IN DCA04OU	32h	53	RW	ACA00CR0	72h	o∠ 83	RW	d d	B2h				F111 F2h		
Reserved	33h	00		ACA00CR2	73h	84	RW	-	B3h			_	F3h		
DCA05FN	34h	50	RW	Reserved	74h				B4h			Reserved	F4h		
DCA05IN	35h	51	RW	ACA01CR0	75h	82	RW		B5h			sei	F5h		
DCA05OU	36h	53	RW	ACA01CR1	76h	83	RW		B6h			rve	F6h		
Reserved	37h		DUU	ACA01CR2	77h	84	RW		B7h			ä	F7h		
DCA06FN	38h	50	RW	Reserved	78h	00			B8h				F8h		
DCA06IN	39h	51	RW	ACA02CR0	79h	82	RW	-	B9h				F9h		
DCA06OU Reserved	3Ah 3Bh	53	RW	ACA02CR1 ACA02CR2	7Ah 7Bh	83 84	RW RW	-	BAh BBh				FAh FBh		
DCA07FN	3Ch	50	RW	Reserved	7Ch	04	IX V V	-	BCh				FCh		
DCA07FN DCA07IN	3Dh	50	RW	ACA03CR0	7Dh	82	RW		BDh				FDh		
DCA070U	3Eh	53	RW	ACA03CR1	7Eh	83	RW		BEh				FEh		
Reserved	3Fh			ACA03CR2	7Fh	84	RW		BFh			CPU SCR	FFh	114	1
	L														

1. Read/Write access is bit-specific or varies by function. See register.

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW
Bit Name	Reserved	Reserved	End	Mode 1	Mode 0	Function [2]	Function [1]	Function [0]
Bit 7: Reserved Bit 6: Reserved Bit 5: End 0 = PSoC block i 1 = PSoC block i				•) in block DCA07)		
Bit 4 : <u>Mode 1</u> Th Timer: The Mode 0 = Less Than of 1 = Less Than Counter: The Mode 0 = Less Than CRC/PRS: The Mode 0 = Transmit: Inte 1 = Transmit: Inte SPI: The Mode[1 0 = Master: Inter 1 = Master: Inter	ne definition of t e [1] bit signifies r Equal ode [1] bit signifi r Equal Mode [1] bit is u Mode [1] bit is u e[1] bit signifies errupt on TX_R errupt on TX Reg	he Mode [1] b the Compare tes the Compare nused in this nused in this the Interrupt eg Empty omplete e Interrupt Ty Empty, Slave	bit depe Type are Typ function function Type (T pe e: Interr	ends on the b e n Transmitter of upt on RX R	lock function nly) eg Full			
Bit 3: Mode 0 Th Timer: The Mode 0 = Terminal Cou 1 = Compare Tru Counter: The Mod 0 = Terminal Cou 1 = Compare Tru CRC/PRS: The Mode 0 = Receive 1 = Transmit SPI: The Mode [1 0 = Master 1 = Slave	e [0] bit signifies unt de ode [0] bit signifi unt Mode [0] bit is u Mode [0] bit is u e [0] bit signifies	Interrupt Typ ies Interrupt T nused in this inused in this the Direction	e ype function functio	n	lock function	selected		
Bit [2:0] : <u>Functi</u> 0 0 0 = Timer (cf 0 1 = Counter 0 1 0 = CRC/PR 0 1 1 = Reserved 1 0 0 = Deadban 1 0 1 = UART (fu 1 1 0 = SPI (func 1 1 1 = Reserved	nainable) (chainable) S (Cyclical Red d for Pulse Wid Inction only ava tion only availa	undancy Che Ith Modulator illable on DCA	cker or A type b	Pseudo Ran blocks)		n determines the b	oasic hardware co	nfiguration

Table 47:	Digital Basic Type A/ Communications Type A Block xx Function Register
-----------	--

Digital Basic Type A Block 00 Function Register(DBA00FN, Address = Bank 1, 20h)Digital Basic Type A Block 01 Function Register(DBA01FN, Address = Bank 1, 24h)Digital Basic Type A Block 02 Function Register(DBA02FN, Address = Bank 1, 24h)Digital Basic Type A Block 03 Function Register(DBA03FN, Address = Bank 1, 28h)Digital Communications Type A Block 04 Function Register(DCA04FN, Address = Bank 1, 30h)

Digital Communications Type A Block 05 Function Register Digital Communications Type A Block 06 Function Register Digital Communications Type A Block 07 Function Register (DCA05FN, Address = Bank 1, 34h) (DCA06FN, Address = Bank 1, 38h) (DCA07FN, Address = Bank 1, 3Ch)

9.2.2 Digital Basic Type A / Communications Type A Block xx Input Register

The Digital Basic Type A / Communications Type A Block xx Input Register (DBA00IN-DCA07IN) consists of 4 bits [3:0] to select the block input clock and 4 bits [7:4] to

select the primary data/enable input. The actual usage of the input data/enable is function dependent.

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW
Bit Name	Data [3]	Data [2]	Data [1]	Data [0]	Clock [3]	Clock [2]	Clock [1]	Clock [0]
			-14					
Bit [7:4]: <u>Data </u> 0 0 0 0 = Data =		able Source S	elect					
0 0 0 1 = Data =								
0 0 1 0 = Digital	Block 03							
0 0 1 1 = Chain								
0.100 = Analog								
101 = Analog								
0 1 1 0 = Analog 0 1 1 1 = Analog	0	•						
	•	•	; 00 to 03) o i	r Global Out	put[4] (for Did	gital Blocks 04 to	07)	
						gital Blocks 04 to		
1 0 1 0 = Globa	I Output[2] (for	Digital Blocks	00 to 03) o	r Global Out	put[6] (for Dig	gital Blocks 04 to	07)	
		0	,			gital Blocks 04 to	,	
						Blocks 04 to 07)		
						Blocks 04 to 07) Blocks 04 to 07)		
						Blocks 04 to 07)		
	1 - 1 - 1 (-	3	, .		. I (¹ J ¹	· · · · · · · ,		
Bit [3:0]: <u>Clock</u>		Source Select						
$0 \ 0 \ 0 \ 0 = \text{Clock}$								
			6 00 to 03) o i	r Global Out	put[0] (for Dig	gital Blocks 04 to	07)	
0 0 1 0 = Digital 0 0 1 1 = Previo			arv Output)					
0 1 0 0 = 48M	Nus Digitai i Oc		ary Output)					
0 1 0 1 = 24V1								
0 1 1 0 = 24V2								
0 1 1 1 = 32k								
		0	,			gital Blocks 04 to	,	
		0	,			gital Blocks 04 to gital Blocks 04 to	,	
						gital Blocks 04 to		
						Blocks 04 to 07)		
						Blocks 04 to 07)		
						Blocks 04 to 07)		
1 1 1 1 = Globa	I Input[3] (for E	Digital Blocks (00 to 03) or 0	Global Input	[7] (for Digital	Blocks 04 to 07)		
igital Basic Ty	ne A Block (00 Input Red	ister		(DBA00IN	I, Address = Ba	ank 1 21h)	

Digital Basic Type A Block 00 Input Register	(DBA00IN, Address = Bank 1, 21h)
Digital Basic Type A Block 01 Input Register	(DBA01IN, Address = Bank 1, 25h)
Digital Basic Type A Block 02 Input Register	(DBA02IN, Address = Bank 1, 29h)
Digital Basic Type A Block 03 Input Register	(DBA03IN, Address = Bank 1, 2Dh)
Digital Communications Type A Block 04 Input Register	(DCA04IN, Address = Bank 1, 31h)
Digital Communications Type A Block 05 Input Register	(DCA05IN, Address = Bank 1, 35h)

Digital Communications Type A Block 06 Input Register Digital Communications Type A Block 07 Input Register

The Data/Enable source select [3:0] bits select between multiple inputs to the Digital PSoC Blocks. These inputs serve as Clock Enables or Data Input depending on the Digital PSoC Block's programmed function. If "Chain Function to Previous" data input is selected for Data/ Enable then the selected Digital PSoC block receives its Data, Enable, Zero Detect, and all chaining information from the previous digital PSoC block. The data inputs that are selected from the GPIO pins (through the Global Input Bus) are synchronized to the 24 MHz clock. The following table shows the function dependent meaning of the data input.

Table 49:	Digital Function Data Input Definitions
-----------	---

Function	Data Input
Timer	Positive Edge Capture
Counter	Count Enable (Active High)
CRC	Data Input
PRS	N/A
Deadband	Kill Signal (Active High)
TX UART	N/A
RX UART	RX Data In
SPI Master	MISO (Master In/Slave Out)
SPI Slave	MOSI (Master Out/Slave In)

(DCA06IN, Address = Bank 1, 39h) (DCA07IN, Address = Bank 1, 3Dh)

The Clock[3:0] bits select multiple sources for the clock for each digital PSoC block. The sources for each digital PSoC block clock are selected from the Global Input Bus, System Clocks, and other neighboring digital PSoC blocks. As shown in the table, Digital PSoC Blocks 0-3 can interface to Global I/Os 00-03, and Digital PSoC block 04-07 can interface to Global I/Os 4-7. It is important to note that clock inputs selected from the GPIO pins (through the Global Input Bus) are not synchronized. This may cause indeterminate results if the CPU reads a block register as it is changing in response to an external clock. CPU reads must be manually synchronized, either through the block interrupt, or through a multiple read and voting scheme.

9.2.3 Digital Basic Type A / Communications Type A Block xx Output Register

The digital PSoC block's outputs can be selected to drive associated Global Output Bus signals via the Output Select bits. In addition, the output drive can be selectively enabled in this register. The SPI Slave has an auxiliary input which is also controlled by selections in this register.

	AGND		Ref	HI	Ref	LO	Notes
	Source	Voltage	Source	Voltage	Source	Voltage	
000	V _{cc} /2	2.5 V 1.65 V	V _{cc} +Vbg	3.8 V 2.95 V	V _{cc} -Vbg	1.2 V 0.35 V	5.0 V System 3.3 V System
001	P2[4]	2.2 V ¹	P2[4]+P2[6]	3.2 V ¹	P2[4]-P2[6]	1.2 V ¹	User Adjustable
010	Vcc/2	2.5 V 1.65 V	Vcc	5.0 V 3.3 V	Vss	0.0 V 0.0 V	5.0 V System 3.3 V System
011	2*Vbg	2.6 V	2*Vbg+Vbg	3.9 V	2*Vbg-Vbg	1.3 V	Not for 3.3 V Systems
100	2*Vbg	2.6 V	2*Vbg+P2[6]	3.6 V ¹	2*Vbg-P2[6]	1.6 V ¹	Not for 3.3 V Systems
101	P2[4]	2.2 V ¹	P2[4]+Vbg	3.5 V ¹	P2[4]-Vbg	0.9 V ¹	User Adjustable
110	Reserved		•				•
111	Reserved						

Table 62:	AGND, RefHI, RefLO Operating Parameters
-----------	---

1. Example shown for AGND P2[4] = 2.2 V and Ref P2[6] = 1.0 V

10.4.4 Analog Array Power Control

PWR Sets Analog Array Power Control. Analog array power is controlled through the bias circuits in the Continuous Time blocks and separate bias circuits in the Switched Capacitor blocks. Continuous Time blocks (ACAxx) can be operated to make low power comparators independent of Switched Capacitor (ASAxx and ASBxx) blocks, without their power consumption.

The reference array supplies voltage to all blocks and current to the Switched Capacitor blocks. At higher block clock rates, there is increased reference current demand; the reference power should be set equal to the highest power level of the analog blocks used.

10.5 Analog PSoC Block Clocking Options

All analog PSoC blocks in a particular Analog Column share the same clock signal. Choosing the clocking for an analog PSoC block is a two-step process.

 First, if the user wants to use the ACLK0 and ACLK1 system-clocking signals, the digital PSoC blocks that serve as the source for these signals must be selected. This selection is made in the Analog Clock Select Register (CLK_CR1).

10.5.1 Analog Column Clock Select Register

Table 64: Analog Column Clock Select Register

 Next, the user must select the source for the Acolumn0, Acolumn1, Acolumn2, and Acolumn3 system-clocking signals. The user will choose the clock for Acolumnx[1:0] bits in the Analog Column Clock Select Register (CLK_CR0). Each analog PSoC block in a particular Analog Column is clocked from the Acolumn[x] system-clocking signal for that column. (Note that the Acolumn[x] signals have a 1:4 divider on them.)

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write	RW	RW	RW	RW	RW	RW	RW	RW
Bit Name	Acolumn3 [1]	Acolumn3 [0]	Acolumn2 [1]	Acolumn2 [0]	Acolumn1 [1]	Acolumn1 [0]	Acolumn0 [1]	Acolumn0 [0]
0 0 = 24V1 0 1 = 24V2 1 0 = ACLK0 1 1 = ACLK1 Bit [5:4]: <u>AC</u> 0 0 = 24V1 0 1 = 24V2 1 0 = ACLK0 1 1 = ACLK1	1 :olumn2 [1:0)	1						
0 = 24V1 0 = 24V2 1 = 24V2 1 = ACLK0 1 = ACLK0)	-						
Bit [1:0] : <u>Ac</u> 0 0 = 24V1 0 1 = 24V2 1 0 = ACLK0 1 1 = ACLK2		1						

10.7.2.2 Analog Continuous Time Block xx Control 1 Register

The PMux bits control the multiplexing of inputs to the non-inverting input of the op-amp. There are physically only 7 inputs.

The 8th code (111) will leave the input floating. This is not desirable, and should be avoided.

The NMux bits control the multiplexing of inputs to the inverting input of the op-amp. There are physically only 7 inputs.

CompBus controls a tri-state buffer that drives the comparator logic. If no PSoC block in the analog column is driving the comparator bus, it will be driven low externally to the blocks.

AnalogBus controls the analog output bus. A CMOS switch connects the op-amp output to the analog bus.

Table 67:	Analog Continuous Time Block xx Control 1 Register	
-----------	--	--

Bit #	7	6	5	4	3	2	1	0				
POR	0	0	0	0	0	0	0	0				
Read/ Write	RW	RW	RW	RW	RW	RW	RW	RW				
Bit Name	AnalogBus	CompBus	NMux2	NMux1	NMux0	PMux2	PMux1	PMux0				
0 = Disable 1 = Enable a Bit 6 : <u>Comp</u> 0 = Disable	 Bit 7: <u>AnalogBus</u> Enable output to the analog bus 0 = Disable analog bus driven by this block 1 = Enable analog bus driven by this block Bit 6: <u>CompBus</u> Enable output to the comparator bus 0 = Disable comparator bus driven by this block 1 = Enable comparator bus driven by this block 											
ыт [э:э]. м												
$0 \ 0 \ 1 = \\ 0 \ 1 \ 0 = \\ 0 \ 1 \ 1 = \\ 1 \ 0 \ 0^{1} = \\ 1 \ 0 \ 1 = \\ 1 \ 0 \ 1 = \\ 1 \ 0 \ 1 = \\ 1 \ 0 = $	ACA00 ACA01 AGND REFLO REFHI ACA00 ASA10 ASB11 Reserved	ACA00 AGND REFLO REFHI ACA01 ASB11 ASA10 Reserved	ACA02 ACA03 AGND REFLO REFHI ACA02 ASA12 ASB13 Reserved	ACA03 ACA02 AGND REFLO REFHI ACA03 ASB13 ASA12 Reserved								
Bit [2:0]: PM	Mux [2:0] End	coding for pos	sitive input se	lect								
0 0 1 = 0 1 0 = 0 1 1 = 1 0 0 = 1 0 1 = 1 1 0 =	ACA00 REFLO Port Inputs ACA01 AGND ASA10 ASB11 ABUS0 Reserved	ACA02 Port Inputs ACA00 AGND ASB11 ASA10 ABUS1 Reserved	ACA02 ACA01 Port Inputs ACA03 AGND ASA12 ASB13 ABUS2 Reserved	ACA03 REFLO Port Inputs ACA02 AGND ASB13 ASA12 ABUS3 Reserved								

1. This in fact is the feedback input of the MUX.

Analog Continuous Time Block 00 Control 1 Register (ACA00CR1, Address = Bank 0/1, 72h) Analog Continuous Time Block 01 Control 1 Register (ACA01CR1, Address = Bank 0/1, 76h) Analog Continuous Time Block 02 Control 1 Register (ACA02CR1, Address = Bank 0/1, 7Ah) Analog Continuous Time Block 03 Control 1 Register (ACA03CR1, Address = Bank 0/1, 7Eh)

10.9 Analog Switch Cap Type B PSoC Blocks

10.9.1 Introduction

The Analog Switch Cap Type B PSoC blocks are built around an operational amplifier. There are several analog muxes that are controlled by register-bit settings in the control registers that determine the signal topology inside the block. There are also four arrays of unit value capacitors that are located in the feedback path for the op-amp, and are switched by two phase clocks, PHI1 and PHI2. These four capacitor arrays are labeled A Cap Array, B Cap Array, C Cap Array, and F Cap Array. There is also an analog comparator connected to the output OUT, which converts analog comparisons into digital signals.

There are three discrete outputs from this block. These outputs are:

- 1. The analog output bus (ABUS), which is an analog bus resource that is shared by all of the analog blocks in the analog column for that block.
- 2. The comparator bus (CBUS), which is a digital bus that is a resource that is shared by all of the analog blocks in a column for that block.
- 3. The output bus (OUT), which is an analog bus resource that is shared by all of the analog blocks in a column and connects to one of the analog output buffers, to send a signal externally to the device.

The SCB block also supports Delta-Sigma, Successive Approximation and Incremental A/D Conversion, Capacitor DACs, and SC filters. It has two input arrays of switched capacitors, and a Non-Switched capacitor feedback array from the output. When preceded by an SC Block A Integrator, the combination can be used to provide a full Switched Capacitor Biquad.

10.10 Analog Comparator Bus

Each analog column has a dedicated comparator bus associated with it. Every analog PSoC block has a comparator output that can drive out on this bus, but the comparator output from only one analog block in a column can be actively driving the comparator bus for that column at any one time. The output on the comparator bus can drive into the digital blocks, and is also available to be read in the Analog Comparator Control Register (CMP_CR, Address = Bank 0,64H).

The comparator bus is latched before it is available to either drive the digital blocks, or be read in the Analog Comparator Control Register. The latch for each comparator bus is transparent (the output tracks the input) during the high period of PHI2. During the low period of PHI2 the latch retains the value on the comparator bus during the high to low transition of PHI2.

The output from the analog block that is actively driving the bus may also be latched internal to the analog block itself.

In the Continuous Time analog blocks, the CPhase and CLatch bits inside the Analog Continuous Time Type A Block xx Control Register 2 determine whether the output signal on the comparator bus is latched inside the block, and if it is, which clock phase it is latched on.

In the Switched Capacitor analog blocks, the output on the comparator bus is always latched. The ClockPhase bit in the Analog SwitchCap Type A Block xx Control Register 0 or the Analog SwitchCap Type B Block xx Control Register 0 determines the phase on which this data is latched and available.

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write	R	R	R	R	RW	RW	RW	RW
Bit Name	COMP 3	COMP 2	COMP 1	COMP 0	AINT 3	AINT 2	AINT 1	AINT 0

Table 77: **Analog Comparator Control Register**

Bit 7: COMP 3 COMP 3 bit [0] indicates the state of the analog comparator bus for the Analog Column x Bit 6: COMP 2 COMP 2 bit [0] indicates the state of the analog comparator bus for the Analog Column x Bit 5: COMP 1 COMP 1 bit [0] indicates the state of the analog comparator bus for the Analog Column x Bit 4: COMP 0 COMP 0 bit [0] indicates the state of the analog comparator bus for the Analog Column x

Bit 3: AINT 3 AINT 3 bit [0] or [1] (as defined below) selects the Analog Interrupt Source for the Analog Column x Bit 2: AINT 2 AINT 2 bit [0] or [1] (as defined below) selects the Analog Interrupt Source for the Analog Column x Bit 1: AINT 1 AINT 1 bit [0] or [1] (as defined below) selects the Analog Interrupt Source for the Analog Column x Bit 0: AINT 0 AINT 0 bit [0] or [1] (as defined below) selects the Analog Interrupt Source for the Analog Column x

0 = Comparator bus

1 = PHI2 (Falling edge of PHI2 causes an interrupt)

Analog Comparator Control Register (CMP_CR, Address = Bank 0, 64h)

10.11 Analog Synchronization

For high precision analog operation, it may be necessary to precisely time when updated register values are available to the analog PSOC blocks. The optimum time to update values in Switch Cap registers is at the beginning of the PHI1 active period. The SYNCEN bit in the Analog Synchronization Control Register is designed to address this. (The AINT bits of the Analog Comparator Register

(CMP_CR) are another way to address it with interrupts.) When the SYNCEN bit is set, a subsequent write instruction to any register in a Switch Cap block will cause the CPU to stall until the rising edge of PHI1. This mode is in effect until the SYNCEN bit is cleared.

10.12.3 Analog Output Buffers

The user has the option to output up to four analog signals on the pins of the device. This is done by enabling the analog output buffers associated with each Analog Column. The enable bits for the analog output buffers are contained in the Analog Output Buffer Control Register (ABF_CR).

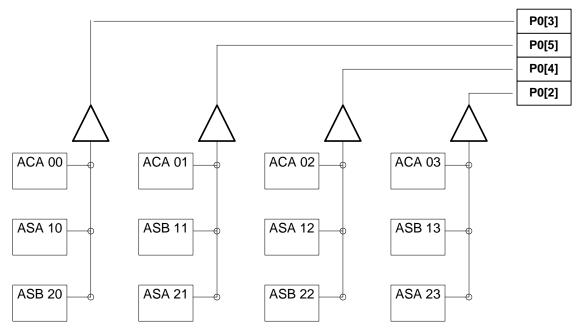


Figure 28: Analog Output Buffers

10.12.4 Analog Output Buffer Control Register

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write	W	W	W	W	W	W		W
Bit Name	ACol1Mux	ACol2Mux	ABUF1EN	ABUF2EN	ABUF0EN	ABUF3EN	Reserved	PWR
1 = Set colu Bit 6: <u>ACol</u> 0 = Set colu 1 = Set colu Bit 5: <u>ABUI</u> 0 = Disable 1 = Enable Bit 4: <u>ABUI</u> 0 = Disable 1 = Enable Bit 2: <u>ABUI</u> 0 = Disable 1 = Enable	ımn 1 input to ımn 1 input to	column 0 inp column 2 inp column 3 inp s the analog of t buffer buffer t buffer t buffer t buffer t buffer t buffer t buffer t buffer t buffer t buffer t buffer	out mux outpu out mux outpu out mux outpu output buffer f	ut ut for Analog Co for Analog Co for Analog Co	olumn 2 (Pin F Olumn 0 (Pin F	P0[4]) P0[3])		
Bit [0] : <u>PW</u> 0 = Low out	<u>R</u> Determines	power level	of all output b	ouffers				

Table 81: Analog Output Buffer Control Register

Analog Output Buffer Control Register (ABF_CR, Address = Bank 1, 62h)

10.13 Analog Modulator

The user has the capability to use the Analog Switch Cap Type A PSoC Blocks in Columns 0 and 2 as amplitude modulators. The Analog Modulator Control Register (AMD_CR) allows the user to select the appropriate modulating signal. When the modulating signal is low, the polarity follows the setting of the ASign bit set in the Analog Switch Cap Type A Control 0 Register (ASAxxCR0). When this signal is high, the normal gain polarity of the PSoC block is inverted.

Bit #	7	6	5	4	3	2	1	0				
POR	0	0	0	0	0	0	0	0				
Read/ Write												
Bit Name	Reserved	Reserved	Reserved	Reserved	AMOD2[1]	AMOD2[0]	AMOD0[1]	AMOD0[0]				
Bit 7: Reserved Bit 6: Reserved Bit 5: Reserved Bit 4: Reserved Bit [3:2]: AMOD2[1]. AMOD2[0] Selects the modulation signal for Analog Column 2 0 0 = No Modulation 0 1 = Global Output [0] 1 0 = Global Output [4] 1 1 = Digital Basic Type A Block 03 Bit [1:0]: AMOD0[1]. AMOD0[0] Selects the modulation signal for Analog Column 0 0 0 = No Modulation 0 0 1 1 = Digital Basic Type A Block 03 Bit [1:0]: AMOD0[1]. AMOD0[0] Selects the modulation signal for Analog Column 0 0 0 = No Modulation 0 1 = Global Output [4] 1 1 = Digital Basic Type A Block 03												

Table 82: Analog Modulator Control Register

Analog Modulator Control Register (AMD_CR, Address = Bank 1, 63h)

10.14 Analog PSoC Block Functionality

The analog PSoC blocks can be used to implement a wide range of functions, limited only by the designer's imagination. The following functions operate within the capability of the analog PSoC blocks using one analog PSoC block, multiple analog blocks, a combination of more than one *type* of analog block, or a combination of analog and digital PSoC blocks. Most of these functions are currently available as User Modules in PSoC Designer. Others will be added in the future.

- Delta-Sigma A/D Converters
- Successive Approximation A/D Converters
- Incremental A/D Converters
- Programmable Gain/Loss Stage
- Analog Comparators
- Zero-Crossing Detectors
- Low-Pass Filter
- Band-Pass Filter
- Notch Filter

- Amplitude Modulators
- Amplitude Demodulators
- Sine-Wave Generators
- Sine-Wave Detectors
- Sideband Detection
- Sideband Stripping
- Audio Output Drive
- DTMF Generator
- FSK Modulator

By modifying registers, as described in this Data Sheet, users can configure PSoC blocks to perform these functions and more.

11.3 Reset

11.3.1 Overview

The microcontroller supports two types of resets. When reset is initiated, all registers are restored to their default states and all interrupts are disabled.

Reset Types: Power On Reset (POR), External Reset (X_{res}), and Watchdog Reset (WDR).

The occurrence of a reset is recorded in the Status and Control Register (CPU_SCR). Bits within this register record the occurrence of POR and WDR Reset respectively. The firmware can interrogate these bits to determine the cause of a reset.

The microcontroller resumes execution from ROM address 0x0000 after a reset. The internal clocking mode is active after a reset, until changed by user firmware. In addition, the Sleep / Watchdog Timer is reset to its minimum interval count.

Important: The CPU clock defaults to divide by 8 mode at POR to guarantee operation at the low Vcc that might be present during the supply ramp.

Table 94: Processor Status and Control Register

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	1	0	0	0	0
Read/ Write	R		R/C ¹	R/C ¹	RW			RW
Bit Name	IES	Reserved	WDRS	PORS	Sleep	Reserved	Reserved	Stop

Bit 7: IES Global interrupt enable status from CPU Flag register

0 = Global interrupts disabled

1 = Global interrupts enabled

Bit 6: Reserved

Bit 5: WDRS

WDRS is set by the CPU to indicate that a Watchdog Reset event has occurred. The user can read this bit to determine the type of reset that has occurred. The user can clear but not set this bit

0 = No WDR

1 = A WDR event has occurred

Bit 4: PORS

PORS is set by the CPU to indicate that a Power On Reset event has occurred. The user can read this bit to determine the type of reset that has occurred. The user can clear but not set this bit

0 = No POR

1 = A POR event has occurred. (Note that WDR events will not occur until this bit is cleared)

Bit 3: <u>Sleep</u> Set by the user to enable CPU sleep state. CPU will remain in sleep mode until any interrupt is pending 0 = Normal operation

1 = Sleep

Bit 2: Reserved

Bit 1: Reserved

Bit 0: <u>Stop</u> Set by the user to halt the CPU. The CPU will remain halted until a reset (WDR or POR) has taken place 0 = Normal CPU operation

1 = CPU is halted (not recommended)

1. C = Clear

Status and Control Register (CPU_SCR, Address = Bank 0/1, FFh)

11.6 Switch Mode Pump

This feature is available on the CY8C26xxx versions within this family. During the time Vcc is ramping from 0 Volts to POR V_{trip} (2.2V +/- 12%), IC operation is held off by the POR circuit and the Switch Mode Pump is enabled. The pump is realized by connecting an external inductor between the battery voltage and SMP, with an external diode pointing from SMP to the V_{cc} pin (which must have a bypass capacitance of at least 0.1uF connected to V_{cc}). This circuitry will pump Vcc to the Switch Mode Pump value specified in the Voltage Monitor Control Register (VLT_CR), shown above. Battery voltage values down to 0.9 V during operation are supported, but this circuitry is not guaranteed to start for battery voltage below 1.2 V. Once the IC is enabled after its power

up and boot sequence, firmware can disable the SMP function by writing Voltage Monitor Control Register (VLT_CR) bit 7 to a 1.

When the IC is put into sleep mode, the power supply pump will remain running to maintain voltage. This may result in higher than specification sleep current depending upon application. If the user desires, the pump may be disabled during precision measurements (such as A/ D conversions) and then re-enabled (writing B7 to 1 and then back to 0 again). The user, however, is responsible for making the operation happen quickly enough to guarantee supply holdup (by the bypass capacitor) sufficient for continued operation.

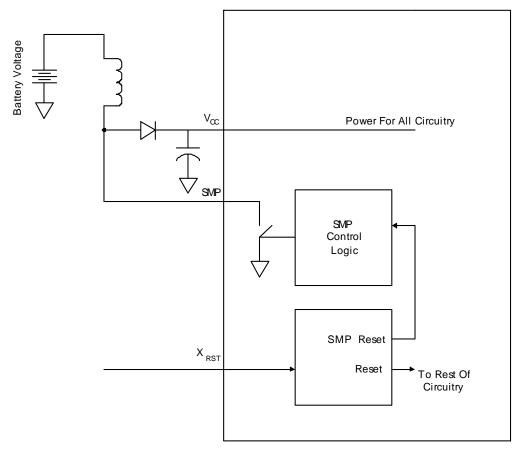


Figure 33: Switch Mode Pump

11.7 Internal Voltage Reference

An internal bandgap voltage reference source is provided on-chip. This reference is used for the Supply Voltage Monitor, and can also be accessed by the user as a reference voltage for analog operations. There is a Bandgap Oscillator Trim Register (BDG_TR) used to calibrate this reference into specified tolerance. Factoryprogrammed trim values are available for 5.0V and 3.3V operation. The 5.0V value is loaded in the BDG_TR register upon reset. This register must be adjusted when operating voltage outside the range for which factory calibration was set. Changing the factory-programmed trim value is done using the Table Read Supervisor Call routine, and is documented in 11.8.

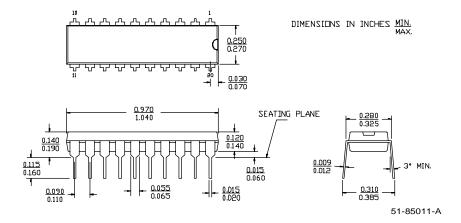
Bit #	7	6	5	4	3	2	1	0	
POR	FS ¹								
Read/Write	W	W	W	W	W	W	W	W	
Bit Name	FMRD	BGT[2]	BGT[1]	BGT[0]	BGO[3]	BGO[2]	BGO[1]	BGO[0]	
 Bit 7: <u>FMRD</u> 0 = Enable voltage divider between BG and Flash (User must not use other than this setting) 1 = Disable voltage divider between BG and Flash (Test purposes only) Bit [6:4]: <u>BGT [2:0]</u> Provides Temperature Curve compensation 									

Table 97: Bandgap Trim Register

Bit [3:0]: BGO [3:0] Provides +/- 5% Offset Trim to center Vbg to 1.30V

1. FS = Factory set trim value

Bandgap Trim Register (BDG_TR, Address = Bank 1, EAh)


11.8 Supervisor ROM/System Supervisor Call Instruction

The parts in this family have a Supervisor ROM to manage the programming, erasure, and protection of the onchip Flash user program space. The Supervisor ROM also gives the user the capability to read the internal product ID, access factory trim values, as well as calculate checksums on blocks of the Flash memory space.

The System Supervisor Call instruction (SSC, opcode/ byte 00h) provides the method for the user to access the pre-existing routines in the Supervisor ROM to implement these functions. This instruction sets the Flags Register (CPU_F) bit 3 to 1 and performs an interrupt to address 0000 into the Supervisory ROM. The flag and old PC are pushed onto the Stack. The fact that the flag pushed has F[3] = 1 is irrelevant as the RETI instruction always clears F[3]. The Supervisory code at 0000 does a JACC table lookup based on the Accumulator value, which is effectively another level of instruction encoding. This service table implements the vectors to the various supervisory functions. The user must set several parameters when utilizing these functions. The parameters are written to 5 bytes of an 8-byte block near the top of RAM memory space.

Access to these functions must be through the Flash APIs provided in PSoC Designer and described in Application Note AN2015.

The following table documents each function, as well as the required parameter values:

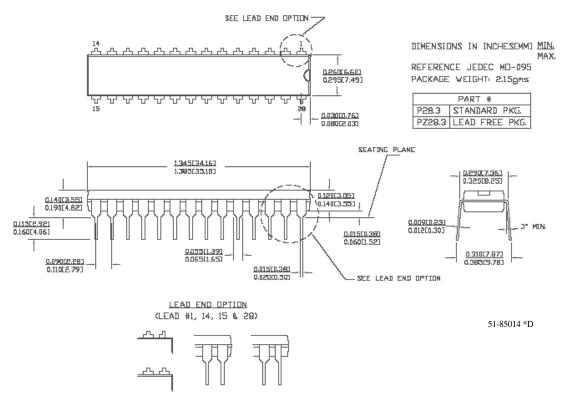


Figure 42: 28-Lead (300-Mil) Molded DIP P21