

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 1x8b, 1x11b, 1x12b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c26643-24axi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Getting Started in the PSoC World!

The award winning PSoC Designer software and PSoC silicon are an integrated unit. The quickest path to understanding the PSoC silicon is through the PSoC Designer software GUI. This data sheet is useful for understanding the details of the PSOC integrated circuit, but is not a good starting point for a new PSoC developer seeking to get a general overview of this new technology.

PSoC developers are NOT required to build their own ADCs, DACs, and other peripherals. Embedded in the PSoC Designer software are the individual data sheets, performance graphs, and PSoC User Modules (graphically selected code packets) for the peripherals, such as the incremental ADCs, DACs, LCD controllers, op amps, low-pass filters, etc. With simple GUI-based selection, placement, and connection, the basic architecture of a design may be developed within PSoC Designer software without ever writing a single line of code.

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store also contains development kits, C compilers, and all accessories for PSoC development. Go to the Cypress Online Store web site at http://www.cypress.com, click the Online Store shopping cart icon at the bottom of the web page, and click *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Free PSoC technical training is available for beginners and is taught by a marketing or application engineer over the phone. PSoC training classes cover designing, debugging, advanced analog, as well as application-specific classes covering topics such as PSoC and the LIN bus. Go to http://www.cypress.com, click on Design Support located on the left side of the web page, and select Technical Training for more details.

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to http://www.cypress.com, click on Design Support located on the left side of the web page, and select CYPros Consultants.

PSoC application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support/login.cfm.

Cypress Semiconductor 2700 162nd Street SW, Building D Lynnwood, WA 98037 Phone: 425.787.4400 Fax: 425.787.4641 Application Support Hotline: 425.787.4814

Note the following details of the Flash code protection features on Cypress Semiconductor PSoC devices.

Cypress Semiconductor products meet the specifications contained in their particular Cypress Semiconductor Data Sheets. Cypress Semiconductor believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress Semiconductor, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress Semiconductor nor any other semiconductor ranufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Cypress Semiconductor is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress Semiconductor are committed to continuously improving the code protection features of our products.

[©] Cypress Semiconductor Corporation. 2000-2005. All rights reserved. PSoC[™], PSoC Designer[™], and Programmable System-on-Chip[™] are PSoCrelated trademarks of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

The information contained herein is subject to change without notice. Cypress Semiconductor assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. Cypress Semiconductor products are not warranted nor intended to be used for medical, life-support, life-saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress Semiconductor.

Figure 46: 8-Lead (300-Mil) Molded DIF)	14	8
--	---	----	---

2.2 CPU Registers

2.2.1 Flags Register

The Flags Register can only be set or reset with logical instruction.

Table 8: Flags Register

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	1	0
Read/ Write				RW	R	RW	RW	RW
Bit Name	Reserved	Reserved	Reserved	XIO	Super	Carry	Zero	Global IE

Bit 7: Reserved

Bit 6: Reserved

Bit 5: Reserved

Bit 4: XIO Set by the user to select between the register banks

0 = Bank 0

1 = Bank 1

Bit 3: Super Indicates whether the CPU is executing user code or Supervisor Code. (This code cannot be accessed directly by the user and is not displayed in the ICE debugger.)

0 = User Code

1 = Supervisor Code

Bit 2: **Carry** Set by CPU to indicate whether there has been a carry in the previous logical/arithmetic operation 0 = No Carry

1 = Carry

Bit 1: **Zero** Set by CPU to indicate whether there has been a zero result in the previous logical/arithmetic operation 0 = Not Equal to Zero

1 = Equal to Zero

Bit 0: Global IE Determines whether all interrupts are enabled or disabled

0 = Disabled

1 = Enabled

2.2.2 Accumulator Register

Table 9: Accumulator Register (CPU_A)

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/Write	System ¹							
Bit Name	Data [7]	Data [6]	Data [5]	Data [4]	Data [3]	Data [2]	Data [1]	Data [0]

Bit [7:0]: Data [7:0] 8-bit data value holds the result of any logical/arithmetic instruction that uses a source addressing mode

1. System - not directly accessible by the user

4.2 Register Bank 0 Map

Table 26: Bank 0

Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access
			-			et			-		RW	7	C0h	et	
PRT0DR PRT0IE	00h 01h	31 31	RW W		40h 41h			ASA10CR0 ASA10CR1	81h	88 90	RW		C0n C1h		
PRTOGS	02h	32	Ŵ		42h			ASA10CR2	82h	92	RW		C2h		
Reserved	03h				43h			ASA10CR3		93	RW		C3h		
PRT1DR	04h	31	RW		44h				84h	95	RW		C4h		
PRT1IE PRT1GS	05h 06h	31 32	W W		45h 46h			ASB11CR1 ASB11CR2	85h 86h	97 99	RW RW		C5h C6h		
	07h	32	VV		4011 47h				87h	100	RW		Con C7h		
PRT2DR	08h	31	RW		48h				88h	88	RW		C8h		
PRT2IE	09h	31	W		49h				89h	90	RW		C9h		
PRT2GS	0Ah	32	W		4Ah			ASA12CR2	8Ah	92	RW		CAh		
	0Bh 0Ch	21	RW		4Bh 4Ch				8Bh 8Ch	93 95	RW RW		CBh CCh		
PRT3IE	0Dh		W		40h				8Dh	95 97	RW		CDh		
PRT3GS	0Eh		Ŵ	ম	4Eh			ASB13CR2		99	RW	7	CEh		
	0Fh	_		Reserved	4Fh			ASB13CR3		100	RW	Reserved	CFh		
PRT4DR	10h	31	RW	erv.	50h			ASB20CR0		95	RW	erv.	D0h		
PRT4IE	11h	31	W	ed	51h			ASB20CR1	91h	97	RW	e d	D1h		
PRT4GS Reserved	12h 13h	32	W		52h 53h			ASB20CR2 ASB20CR3	92h 03h	99 100	RW RW		D2h D3h		
PRT5DR	14h	31	RW		54h				94h	88	RW		D4h		
PRT5IE	15h	31	W		55h			ASA21CR1	95h	90	RW		D5h		
PRT5GS	16h	32	W		56h			ASA21CR2	96h	92	RW		D6h		
	17h				57h			ASA21CR3	97h	93	RW		D7h		
-	18h 19h				58h 59h			ASB22CR0 ASB22CR1	98h 99h	95 97	RW RW		D8h D9h		
Re .	1Ah				5Ah			ASB22CR1		99	RW	-	DAh		
se .	1Bh				5Bh			ASB22CR3	9Bh	100	RW		DBh		
Reserved	1Ch				5Ch			ASA23CR0		88	RW		DCh		
ă	1Dh				5Dh			ASA23CR1	9Dh	90	RW		DDh		
	1Eh				5Eh			ASA23CR2	9Eh	92	RW		DEh		
DBA00DR0	1Fh 20h	54	1	AMX_IN	5Fh 60h	104	RW	ASA23CR3	9Fh A0h	93	RW	INT_MSK0	DFh E0h	45	RW
	21h	54	1		61h	104	1		A1h		-	INT_MSK1	E1h	46	RW
DBA00DR2	22h	54	1	Reserved	62h				A2h			INT_VC	E2h	46	RW
	23h	55	1	ARF_CR	63h	73	RW		A3h			RES_WDT	E3h	116	RW
	24h	54	1	CMP_CR	64h	101	1		A4h			DEC_DH/DEC_CL	E4h	113	RW
	25h 26h	54 54	1	ASY_CR	65h 66h	102	1		A5h A6h		-	DEC_DL DEC_CR	E5h E6h	113 113	R RW
	27h	55	1		67h				A7h		-	Reserved	E7h	115	1
	28h	54	1		68h				A8h			MUL_X	E8h	110	W
	29h	54	1	ਸ਼	69h				A9h			MUL_Y	E9h	110	W
	2Ah	54	1	les	6Ah				AAh			MUL_DH	EAh	111	R
DBA02CR0		55	1	en	6Bh				ABh		_	MUL_DL	EBh	111	R
DBA03DR0 DBA03DR1	2Ch 2Dh		1	Reserved	6Ch 6Dh		_		ACh ADh		-	ACC_DR1/MAC_X ACC_DR0/MAC_Y	ECh EDh	111 111	RW RW
DBA03DR2			1		6Eh			72	AEh		-	ACC_DR3/MAC_CL0			RW
DBA03CR0	2Fh	55	1		6Fh			eserved	AFh			ACC_DR2/MAC_CL1			RW
DCA04DR0			1		70h			Ne Ve	B0h				F0h		
DCA04DR1			1	ACA00CR0			RW	ed	B1h		L		F1h		
DCA04DR2 DCA04CR0			1	ACA00CR1 ACA00CR2			RW RW		B2h B3h				F2h F3h		
DCA04CR0 DCA05DR0			1	Reserved	73n 74h	04	NVV		B4h		-		F3n F4h		
DCA05DR1			1	ACA01CR0		82	RW		B5h				F5h		
DCA05DR2	36h	54	1	ACA01CR1	76h	83	RW		B6h			Reserved	F6h		
DCA05CR0			1	ACA01CR2	77h	84	RW		B7h			, er	F7h		
DCA06DR0			1	Reserved	78h	02	DIA		B8h			vec	F8h		
DCA06DR1 DCA06DR2			1	ACA02CR0 ACA02CR1			RW RW		B9h BAh		-	<u> </u>	F9h FAh		
DCA06DR2 DCA06CR0			1	ACA02CR1			RW		BBh		-		FBh		
DCA07DR0			1	Reserved	7Ch				BCh				FCh		
DCA07DR1	3Dh	54	1	ACA03CR0		82	RW		BDh				FDh		
DCA07DR2	3Eh	54	1	ACA03CR1			RW		BEh				FEh		
DCA07CR0	3Fh	55	1	ACA03CR2	/Fh	84	RW		BFh			CPU_SCR	FFh	114	1

4.3 Register Bank 1 Map

Table 27: Bank 1

Register Name	Address	Page	Access	Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access	Register Name	Address	Data Sheet Page	Access
le	SS	e	SS	le	SS	e e	SS	ēfer	SS	e	SS	eter	SS	e	SS
PRT0DM0	00h	32	W		40h			ASA10CR0	80h	88	RW		C0h	-	
PRT0DM1	01h	33	W		41h			ASA10CR1	81h	90	RW]	C1h		
PRTOIC0	02h	33	W	-	42h			ASA10CR2	82h	92	RW		C2h		
PRT0IC1 PRT1DM0	03h 04h	34 32	W	-	43h 44h			ASA10CR3 ASB11CR0	83h 84h	93 95	RW RW		C3h C4h		
PRT1DM0	0411 05h	33	W	-	4411 45h			ASB11CR1	85h	97	RW		C5h		
PRT1IC0	06h	33	Ŵ	-	46h			ASB11CR2	86h	99	RW		C6h		\vdash
PRT1IC1	07h	34	Ŵ		47h			ASB11CR3	87h	100	RW		C7h		
PRT2DM0	08h	32	W		48h			ASA12CR0	88h	88	RW		C8h		
PRT2DM1	09h	33	W]	49h			ASA12CR1	89h	90	RW		C9h		
PRT2IC0	0Ah	33	W		4Ah			ASA12CR2	8Ah	92	RW		CAh		
PRT2IC1	0Bh	34	W	-	4Bh			ASA12CR3	8Bh	93	RW		CBh		
PRT3DM0 PRT3DM1	0Ch 0Dh	32 33	W	-	4Ch 4Dh			ASB13CR0 ASB13CR1	8Ch 8Dh	95 97	RW RW		CCh CDh		
PRT3IC0	0Eh	33	W	7	4Eh			ASB13CR2	8Eh	99	RW	7	CEh		
PRT3IC1	0Fh	34	Ŵ	Reserved	4Fh			ASB13CR3	8Fh	100	RW	Reserved	CFh		\vdash
PRT4DM0	10h	32	Ŵ	er	50h			ASB20CR0	90h	95	RW	er	D0h		
PRT4DM1	11h	33	W	è	51h			ASB20CR1	91h	97	RW	è	D1h		
PRT4IC0	12h	33	W		52h			ASB20CR2	92h	99	RW		D2h		
PRT4IC1	13h	34	W		53h			ASB20CR3	93h	100	RW		D3h		
PRT5DM0	14h	32	W		54h			ASA21CR0	94h	88	RW		D4h		
PRT5DM1	15h	33 33	W		55h			ASA21CR1	95h	90 92	RW RW		D5h		
PRT5IC0 PRT5IC1	16h 17h	33	W	-	56h 57h			ASA21CR2 ASA21CR3	96h 97h	92	RW		D6h D7h		
	18h	54		1	58h			ASB22CR0	98h	95	RW		D8h		
	19h		-		59h			ASB22CR1	99h	97	RW	-	D9h		
7	1Ah				5Ah			ASB22CR2	9Ah	99	RW		DAh		
ese	1Bh			1	5Bh			ASB22CR3	9Bh	100	RW		DBh		
Reserved	1Ch				5Ch			ASA23CR0	9Ch	88	RW]	DCh		
ed	1Dh			-	5Dh			ASA23CR1	9Dh	90	RW		DDh		
	1Eh 1Fh		-	-	5Eh 5Fh			ASA23CR2 ASA23CR3	9Eh 9Fh	92 93	RW RW		DEh DFh		
DBA00FN	20h	50	RW	CLK_CR0	60h	76	RW	ASAZSURS	A0h	93	RVV	OSC_CR0	E0h	40	RW
DBA00IN	21h	51	RW	CLK_CR1	61h	77	RW	-	A1h			OSC_CR1	E1h	40	RW
DBA00OU	22h	53	RW	ABF_CR	62h	106	W	-	A2h			Reserved	E2h	10	<u> </u>
Reserved	23h			AMD_CR	63h	107	RW	1	A3h			VLT_CR	E3h	118	RW
DBA01FN	24h	50	RW		64h				A4h			Reserved	E4h		
DBA01IN	25h	51	RW		65h				A5h			Reserved	E5h		
DBA01OU	26h	53	RW	-	66h			-	A6h			Reserved	E6h		
Reserved DBA02FN	27h 28h	50	RW	-	67h 68h			-	A7h A8h			Reserved IMO_TR	E7h E8h	35	w
DBA02IN	2011 29h	51	RW	Re	69h			-	A9h			ILO_TR	E9h	36	W
DBA02OU	2Ah	53	RW	- ise	6Ah			-	AAh			BDG TR	EAh	120	Ŵ
Reserved	2Bh			Reserved	6Bh				ABh			ECO_TR	EBh	37	Ŵ
DBA03FN	2Ch	50	RW	ď	6Ch			-	ACh				ECh		
DBA03IN	2Dh	51	RW		6Dh				ADh				EDh		
DBA03OU	2Eh	53	RW		6Eh			Re	AEh				EEh		
Reserved	2Fh	50	DIA/	-	6Fh			Reserved	AFh				EFh		
DCA04FN DCA04IN	30h 31h	50 51	RW RW	ACA00CR0	70h 71h	82	RW	IV€	B0h B1h				F0h F1h		
DCA04IN DCA04OU	32h	53	RW	ACA00CR0	72h	o∠ 83	RW	d d	B2h				F111 F2h		
Reserved	33h	00		ACA00CR2	73h	84	RW	-	B3h			_	F3h		
DCA05FN	34h	50	RW	Reserved	74h				B4h			Reserved	F4h		
DCA05IN	35h	51	RW	ACA01CR0	75h	82	RW		B5h			sei	F5h		
DCA05OU	36h	53	RW	ACA01CR1	76h	83	RW		B6h			rve	F6h		
Reserved	37h		DUU	ACA01CR2	77h	84	RW		B7h			ä	F7h		
DCA06FN	38h	50	RW	Reserved	78h	00			B8h				F8h		
DCA06IN	39h	51	RW	ACA02CR0	79h	82	RW	-	B9h				F9h		
DCA06OU Reserved	3Ah 3Bh	53	RW	ACA02CR1 ACA02CR2	7Ah 7Bh	83 84	RW RW	-	BAh BBh				FAh FBh		
DCA07FN	3Ch	50	RW	Reserved	7Ch	04	IX V V	-	BCh				FCh		
DCA07FN DCA07IN	3Dh	50	RW	ACA03CR0	7Dh	82	RW		BDh				FDh		
DCA070U	3Eh	53	RW	ACA03CR1	7Eh	83	RW		BEh				FEh		
Reserved	3Fh			ACA03CR2	7Fh	84	RW		BFh			CPU SCR	FFh	114	1
	L														

1. Read/Write access is bit-specific or varies by function. See register.

5.0 I/O Ports

5.1 Introduction

Up to five 8-bit-wide I/O ports (P0-P4) and one 4-bit wide I/O port (P5) are implemented. The number of general purpose I/Os implemented and connected to pins depends on the individual part chosen. All port bits are independently programmable and have the following capabilities:

- General-purpose digital input readable by the CPU.
- General-purpose digital output writable by the CPU.
- Independent control of data direction for each port bit.
- Independent access for each port bit to Global Input and Global Output busses.
- Interrupt programmable to assert on rising edge, falling edge, or change from last pin state read.
- Output drive strength programmable in logic 0 and 1 states as strong, resistive (pull-up or pull-down), or high impedance.
- A slew rate controlled output mode is available.
- In high impedence, the digital input can be disabled to lower power consumption.

Port 1, Pin 0 is used in conjunction with device Test Mode and does not behave the same as other I/O ports immediately after reset. A device reset with Power On Reset (POR) will drive P1[0] high for 8 ms immediately after POR is released because there is a CPU hold-off time of approximately 64 ms before code execution begins. It will then drive P1[0] low for 8 ms. This can impact external circuits connected to Port 1, Pin 0.

In System Sleep State, GPIO Pins P2[4] and P2[6] should be held to a logic low or a false Low Voltage Detect interrupt may be triggered. The cause is in the System Sleep State, the internal Bandgap reference generator is turned off and the reference voltage is maintained on a capacitor.

The circumstances are that during sleep, the reference voltage on the capacitor is refreshed periodically at the sleep system duty cycle. Between refresh cycles, this voltage may leak slightly to either the positive supply or ground. If pins P2[4] or P2[6] are in a high state, the leak-age to the positive supply is accelerated (especially at high temperature). Since the reference voltage is compared to the supply to detect a low voltage condition, this accelerated leakage to the positive supply voltage will cause that voltage to appear lower than it actually is, leading to the generation of a false Low Voltage Detect interrupt.

Port 0 and Port 2 have additional analog input and/or analog output capability. The specific routing and multiplexing of analog signals is shown in the following diagram:

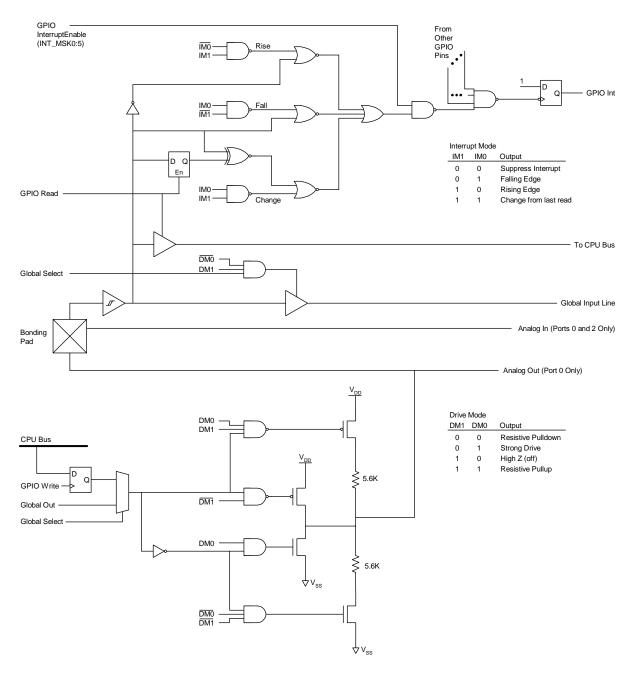


Figure 7: General Purpose I/O Pins

6.3.2 Port Drive Mode 1 Registers

Table 32:	Port Drive Mode 1 Registers
-----------	-----------------------------

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Bit Name	DM1 [7]	DM1 [6]	DM1 [5]	DM1 [4]	DM1 [3]	DM1 [2]	DM1 [1]	DM1 [0]
Bit [7:0]: DM1 [7:0] See truth table for Port Drive Mode 0 Registers, above								

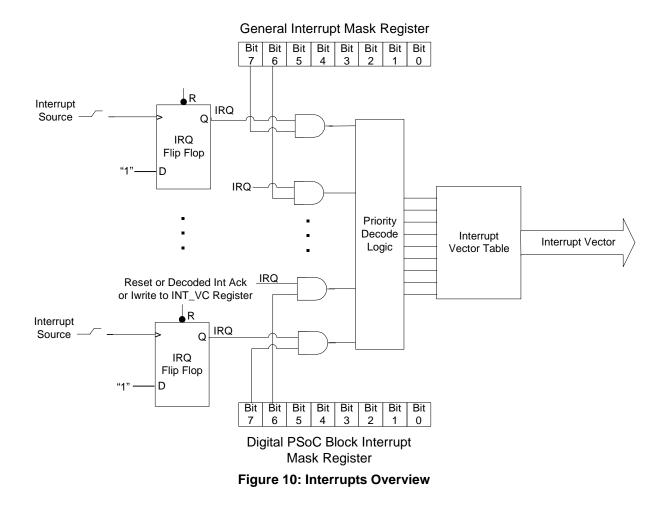
Port 0 Drive Mode 1 Register (PRT0DM1, Address = Bank 1, 01h) Port 1 Drive Mode 1 Register (PRT1DM1, Address = Bank 1, 05h) Port 2 Drive Mode 1 Register (PRT2DM1, Address = Bank 1, 09h) Port 3 Drive Mode 1 Register (PRT3DM1, Address = Bank 1, 0Dh) Port 4 Drive Mode 1 Register (PRT4DM1, Address = Bank 1, 11h) Port 5 Drive Mode 1 Register (PRT5DM1, Address = Bank 1, 15h) **Note**: Port 5 is 4-bits wide

6.3.3 Port Interrupt Control 0 Registers

Table 33: Port Interrupt Control 0 Registers

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Bit Name	IC0 [7]	IC0 [6]	IC0 [5]	IC0 [4]	IC0 [3]	IC0 [2]	IC0 [1]	IC0 [0]

Bit [7:0]: <u>IC0 [7:0]</u> The two Interrupt Control bits that control a particular port pin are treated as a pair and are decoded as follows:


IC1 [x], IC0 [x] = 0.0 = Disabled (Default)

IC1 [x], IC0 [x] = 0 1 = Falling Edge (-)

IC1 [x], IC0 [x] = 1.0 = Rising Edge(+)

IC1 [x], IC0 [x] = 1 1 = Change from Last Direct Read

Port 0 Interrupt Control 0 Register (PRT0IC0, Address = Bank 1, 02h) Port 1 Interrupt Control 0 Register (PRT1IC0, Address = Bank 1, 06h) Port 2 Interrupt Control 0 Register (PRT2IC0, Address = Bank 1, 0Ah) Port 3 Interrupt Control 0 Register (PRT3IC0, Address = Bank 1, 0Eh) Port 4 Interrupt Control 0 Register (PRT4IC0, Address = Bank 1, 12h) Port 5 Interrupt Control 0 Register (PRT5IC0, Address = Bank 1, 16h) **Note**: Port 5 is 4-bits wide

9.3.6 Digital Communications Type A Block xx Control Register 0 When Used as SPI Transceiver

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write	RW	R	R	R	R	RW	RW	RW
Bit Name	LSB First	Overrun	SPI Complete	TX Reg Empty	RX Reg Full	Clock Phase	Clock Polarity	Enable

Table 58: Digital Communications Type A Block xx Control Register 0...

Bit 7: LSB First

0 = MSB First

1 = LSB First

Bit 6: Overrun

0 = Indicates that no overrun has taken place 1 = Indicates the RX Data register was overwritten with a new byte before the previous one had been read Reset when this register is read

Bit 5: SPI Complete

0 = Indicates the byte is in process of shifting out
1 = Indicates the byte has been shifted out (reset when register is read)
Optional interrupt source for both SPI Master and SPI Slave. Reset when this register is read

Bit 4: TX Reg Empty

0 = Indicates the TX Data register is not available to accept another byte

1 = Indicates the TX Data register is available to accept another byte

Default interrupt source for SPI Master. Reset when the TX Data Register (Data Register 1) is written.

Bit 3: RX Reg Full

0 = Indicates the RX Data register is empty

1 = Indicates a byte has been loaded into the RX Data register

Default interrupt source for SPI Slave. Reset when the RX Data Register (Data Register 2) is read

Bit 2: Clock Phase

0 = Data changes on leading edge and is latched on trailing edge

1 = Data is latched on leading edge and is changed on trailing edge

Bit 1: Clock Polarity

- 0 = Non-inverted (clock idle state is low)
- 1 = Inverted (clock idle state is high)

Bit 0: Enable

- 0 = Function Disabled
- 1 = Function Enabled

Digital Communications Type A Block 04 Control Register 0 Digital Communications Type A Block 05 Control Register 0 Digital Communications Type A Block 06 Control Register 0 Digital Communications Type A Block 07 Control Register 0 (DCA04CR0, Address = Bank 0, 33h) (DCA05CR0, Address = Bank 0, 37h) (DCA06CR0, Address = Bank 0, 3Bh) (DCA07CR0, Address = Bank 0, 3Fh) except for TX Reg Empty. TX Reg Empty is automatically cleared when a byte is written to the TX Data Register (Data Register 1).

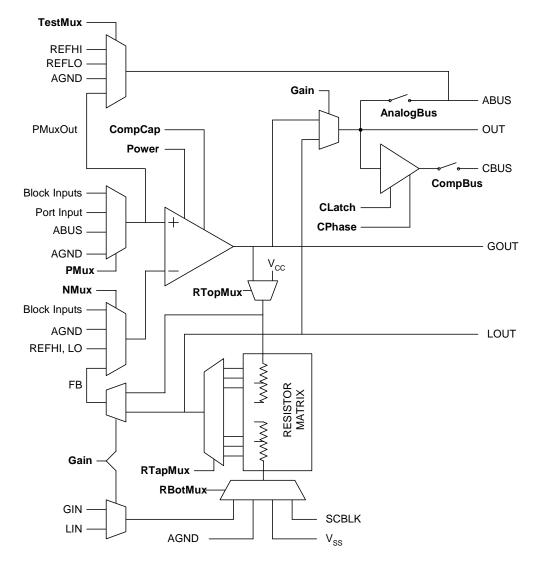
3. Using CPU Interrupts

TX Reg Empty status or optionally TX Complete status generates the block interrupt. Executing the interrupt routine does not automatically clear status. If TX Complete is selected as the interrupt source, Control Register 0 (status) must be read in the interrupt routine to clear the status. If TX Reg Empty is selected, a byte must be written to the TX Data Register (Data Register 1) to clear the status. If the status is not cleared, further interrupts will be suppressed.

9.5.8 SPI Master - Serial Peripheral Interface (SPIM)

9.5.8.1 Summary

The SPI Master function provides a full-duplex synchronous data transceiver that also generates a bit clock for the data. This function requires a Digital Communications Type PSoC block. It cannot be chained for longer data words. This Digital Communications Type PSoC block supports SPI modes for 0, 1, 2, and 3. See Figure 15: for waveforms of the Clock Phase modes.


SS_ (required for slave)
SCLK Polarity=0, Mode 0
MOSI/MISO <u>Bit7</u> Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit7
Clock Phase 1 (Mode 2, 3) Data output on the leading edge of the clock Data registered on the trailing edge of the clock
SS_ (optional for slav e)
Polarity=0, Mode 2 SCLK Polarity=1, Mode 3
MOSI/MISO Bit7 V Bit6 V Bit5 V Bit4 V Bit3 V Bit2 V Bit1 V Bit0

9.5.8.2 Registers

Data Register 0 provides a shift register for both incoming and outgoing data. Output data is written to Data Register 1 (TX Data Register). When this block is idle, a write to the TX Data Register will initiate a transmission. Input data is read from Data Register 2 (RX Data Register). When Data Register 0 is empty, its value is updated from Data Register 1, if new data is available. As data bits are shifted in, the transmit bits are shifted out. After the 8 bits are transmitted and received by Data Register 0, the received byte is transferred into Data Register 2 from where it can be read. Simultaneously, the next byte to transmit, if available, is transferred from Data Register 1 into Data Register 0. Control Register 0 (DCA04CR0-DCA07CR0) provides status information and configures the function for one of the four standard modes, which configure the interface based on clock polarity and phase with respect to data.

Clock Phase 0 (Mode 0, 1) Data registered on the leading edge of the clock Data output on the trailing edge of the clock

10.7.2 Registers

10.7.2.1 Analog Continuous Time Block xx Control 0 Register

The RTopMux and RBotMux bits control the connection of the two ends of the resistor string. The RTopMux bit controls the top end of the resistor string, which can either be connected to Vcc or to the op-amp output. The RBotMux bits control the connection of the bottom end of the resistor string. The RTapMux bits control the center tap of the resistor string. Note that only relative weighting of units is given in the table.

The Gain and Loss columns correspond to the gain or loss obtained if the RTopMux and Gain bits are set so that the overall amplifier provides gain or loss.

The Gain bit controls whether the resistor string is connected around the op-amp as for gain (center tap to

10.7.2.2 Analog Continuous Time Block xx Control 1 Register

The PMux bits control the multiplexing of inputs to the non-inverting input of the op-amp. There are physically only 7 inputs.

The 8th code (111) will leave the input floating. This is not desirable, and should be avoided.

The NMux bits control the multiplexing of inputs to the inverting input of the op-amp. There are physically only 7 inputs.

CompBus controls a tri-state buffer that drives the comparator logic. If no PSoC block in the analog column is driving the comparator bus, it will be driven low externally to the blocks.

AnalogBus controls the analog output bus. A CMOS switch connects the op-amp output to the analog bus.

Table 67:	Analog Continuous Time Block xx Control 1 Register	
-----------	--	--

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write	RW	RW	RW	RW	RW	RW	RW	RW
Bit Name	AnalogBus	CompBus	NMux2	NMux1	NMux0	PMux2	PMux1	PMux0
 Bit 7: <u>AnalogBus</u> Enable output to the analog bus 0 = Disable analog bus driven by this block 1 = Enable analog bus driven by this block Bit 6: <u>CompBus</u> Enable output to the comparator bus 0 = Disable comparator bus driven by this block 1 = Enable comparator bus driven by this block 								
ыт [5:3]: М		coding for neg						
$0 \ 0 \ 1 = 0 \ 1 \ 0 = 0 \ 1 \ 1 = 0 \ 1 \ 0 \ 1 \ 1 = 0 \ 1 \ 0 \ 1 \ 0 \ 1 = 0 \ 1 \ 0 \ 1 = 0 \ 1 \ 0 \ 1 = 0 \ 1 \ 0 \ 1 = 0 \ 1 \ 0 \ 1 = 0 \ 1 \ 0 \ 1 = 0 \ 1 \ 0 \ 0 = 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	ACA00 ACA01 AGND REFLO REFHI ACA00 ASA10 ASB11 Reserved	ACA01 ACA00 AGND REFLO REFHI ACA01 ASB11 ASA10 Reserved	ACA02 ACA03 AGND REFLO REFHI ACA02 ASA12 ASB13 Reserved	ACA03 ACA02 AGND REFLO REFHI ACA03 ASB13 ASA12 Reserved				
Bit [2:0]: PMux [2:0] Encoding for positive input select								
0 0 1 = 0 1 0 = 0 1 1 = 1 0 0 = 1 0 1 = 1 1 0 =	ACA00 REFLO Port Inputs ACA01 AGND ASA10 ASB11 ABUS0 Reserved	ACA02 Port Inputs ACA00 AGND ASB11 ASA10 ABUS1 Reserved	ACA02 ACA01 Port Inputs ACA03 AGND ASA12 ASB13 ABUS2 Reserved	ACA03 REFLO Port Inputs ACA02 AGND ASB13 ASA12 ABUS3 Reserved				

1. This in fact is the feedback input of the MUX.

Analog Continuous Time Block 00 Control 1 Register (ACA00CR1, Address = Bank 0/1, 72h) Analog Continuous Time Block 01 Control 1 Register (ACA01CR1, Address = Bank 0/1, 76h) Analog Continuous Time Block 02 Control 1 Register (ACA02CR1, Address = Bank 0/1, 7Ah) Analog Continuous Time Block 03 Control 1 Register (ACA03CR1, Address = Bank 0/1, 7Eh)

10.7.2.3 Analog Continuous Time Type A Block xx Control 2 Register

CPhase controls which internal clock phase the comparator data is latched on.

CLatch controls whether the latch is active or if it is always transparent.

CompCap controls whether the compensation capacitor is switched in or not in the op-amp. By not switching in the compensation capacitance, a much faster response can be obtained if the amplifier is being used as a comparator.

TestMux – selects block bypass mode for testing and characterization purposes.

Power – encoding for selecting 1 of 4 power levels. The blocks always power up in the off state.

Table 68:	Analog Continuous Time Type A Block xx Control 2 Register
-----------	---

	U		••		-			
Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write	RW	RW	RW	RW	RW	RW	RW	RW
Bit Name	CPhase	CLatch	CompCap	TestMux[2]	TestMux[1]	TestMux[0]	Power[1]	Power[0]
1 = Compar Bit 6: <u>CLate</u> 0 = Compar 1 = Compar Bit 5 : <u>Comp</u> 0 = Compar 1 = Op-amp Bit [4:2]: Te 1 0 0 = Pos 1 0 1 = AGN 1 1 0 = REF 1 1 1 = REF 0 x x = AII F	ator Control Ia ator Control Ia ator Control Ia ator Control Ia ator Control Ia ator Control Ia ator Mode Mode estMux [2:0] a itive Input to ED to FHI to Paths Off ower [1:0] En 60 μA) 150 μA)	atch transpar atch is alway atch is active Select block I <u>ACA00</u> <u>A</u> ABUS0 A ABUS0 A ABUS0 A	ent on PHI2 s transparent s transparent bypass mode <u>CA01 </u>	for testing ar CA02 AC IBUS2 AB IBUS2 AB IBUS2 AB IBUS2 AB	<u>A03</u> JS3 JS3 JS3 JS3 JS3	ation purpose	25	

Analog Continuous Time Block 00 Control 2 Register (ACA00CR2, Address = Bank 0/1, 73h) Analog Continuous Time Block 01 Control 2 Register (ACA01CR2, Address = Bank 0/1, 77h) Analog Continuous Time Block 02 Control 2 Register (ACA02CR2, Address = Bank 0/1, 7Bh) Analog Continuous Time Block 03 Control 2 Register (ACA03CR2, Address = Bank 0/1, 7Fh)

10.8 Analog Switch Cap Type A PSoC Blocks

10.8.1 Introduction

The Analog Switch Cap Type A PSoC blocks are built around an operational amplifier. There are several analog muxes that are controlled by register-bit settings in the control registers that determine the signal topology inside the block. There are also four arrays of unit value capacitors that are located in the feedback path for the op-amp, and are switched by two phase clocks, PHI1 and PHI2. These four capacitor arrays are labeled A Cap Array, B Cap Array, C Cap Array, and F Cap Array. There is also an analog comparator connected to the output OUT, which converts analog comparisons into digital signals.

There are three discrete outputs from this block. These outputs are:

- 1. The analog output bus (ABUS), which is an analog bus resource that is shared by all of the analog blocks in the analog column for that block.
- 2. The comparator bus (CBUS), which is a digital bus that is a resource that is shared by all of the analog blocks in a column for that block.
- 3. The output bus (OUT), which is an analog bus resource that is shared by all of the analog blocks in a column and connects to one of the analog output buffers, to send a signal externally to the device.

SC Integrator Block A supports Delta-Sigma, Successive Approximation and Incremental A/D Conversion, Capacitor DACs, and SC filters. It has three input arrays of binarily-weighted switched capacitors, allowing user programmability of the capacitor weights. This provides summing capability of two (CDAC) scaled inputs, and a non-switched capacitor input. Since the input of SC Block A has this additional switched capacitor, it is configured for the input stage of such a switched capacitor biquad filter. When followed by an SC Block B Integrator, this combination of blocks can be used to provide a full Switched Capacitor Biquad.

10.8.2.3 ACMux

The ACMux, as shown in Analog Switch Cap Type A Block xx Control 1 Register, controls the input muxing for both the A and C capacitor branches. The high order bit, ACMux[2], selects one of two inputs for the C branch. low order bits, forcing the A and C branches to the same source. The resulting condition is used to construct low pass biquad filters. See the individual AMux and CMux diagrams.

However, when the bit is high, it also overrides the two

10.8.2.4 BMuxSCA/SCB

B Input Multiplexer Connections

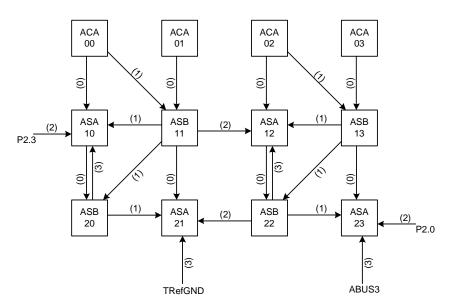


Figure 25: BMuxSCA/SCB Connections

10.8.3 Registers

10.8.3.1 Analog Switch Cap Type A Block xx Control 0 Register

FCap controls the size of the switched feedback capacitor in the integrator.

ClockPhase controls the internal clock phasing relative to the input clock phasing. ClockPhase affects the output of the analog column bus which is controlled by the AnalogBus bit in Control 2 Register (ASA10CR2, ASA12CR2, ASA21CR2, ASA23CR2).

ASign controls the switch phasing of the switches on the bottom plate of the ACap capacitor. The bottom plate samples the input or the reference.

The ACap bits set the value of the capacitor in the A path.

Table 69: An	nalog Switch Cap	Type A Block xx	Control 0 Register
--------------	------------------	-----------------	--------------------

Bit #	7	6	5	4	3	2	1	0
POR	0	0	0	0	0	0	0	0
Read/ Write	RW	RW	RW	RW	RW	RW	RW	RW
Bit Name	FCap	ClockPhase	ASign	ACap[4]	ACap[3]	ACap[2]	ACap[1]	ACap[0]

Table 69: Analog Switch Cap Type A Block xx Control 0 Register, continued

Bit 7: <u>FCap</u> F Capacitor value selection bit

0 = 16 capacitor units

1 = 32 capacitor units

Bit 6: <u>ClockPhase</u> Clock phase select, will invert clocks internal to the blocks. During normal operation of an SC block for the amplifier of a column enabled to drive the output bus, the connection is only made for the last half of PHI2 (during PHI1 and for the first half of PHI2, the output bus floats at the last voltage to which it was driven). This forms a sample and hold operation using the output bus and its associated capacitance. This design prevents the output bus from being perturbed by the intermediate states of the SC operation (often a reset state for PHI1 and setting to the valid state during PHI2)

Following are the exceptions: 1) If the ClockPhase bit in CR0 (for the SC block in question) is set to 1, then the output is enabled for the whole of PHI2. 2) If the SHDIS signal is set in bit 6 of the Analog Clock Select Register, then sample and hold operation is disabled for all columns and all enabled outputs of SC blocks are connected to their respective output busses for the entire period of their respective PHI2s

0 = Internal PHI1 = External PHI1

1 = Internal PHI1 = External PHI2

This bit also affects the latching of the comparator output (CBUS). Both clock phases, PHI1 and PHI2, are involved in the output latching mechanism. The capture of the next value to be output from the latch (capture point event) happens during the falling edge of one clock phase, and the rising edge of the other clock phase will cause the value to come out (output point event). This bit determines which clock phase triggers the capture point event, and the other clock will trigger the output point event. The value output to the comparator bus will remain stable between output point events.

0 = Capture Point Event triggered by Falling PHI2, Output Point Event triggered by Rising PHI1 1 = Capture Point Event triggered by Falling PHI1, Output Point Event triggered by Rising PHI2

Bit 5: ASign

0 = Input sampled on Internal PHI1, Reference Input sampled on internal PHI2

1 = Input sampled on Internal PHI2, Reference Input sampled on internal PHI1

Bit [4:0]: <u>ACap [4:0]</u> Binary encoding for 32 possible capacitor sizes for A Capacitor:

$0\ 0\ 0\ 0\ 0 = 0$ Capacitor units in array	1 0 0 0 0 = 16 Capacitor units in array
$0\ 0\ 0\ 0\ 1 = 1$ Capacitor units in array	10001 = 17 Capacitor units in array
$0\ 0\ 0\ 1\ 0 = 2$ Capacitor units in array	10010 = 18 Capacitor units in array
$0\ 0\ 0\ 1\ 1=3$ Capacitor units in array	1 0 0 1 1 = 19 Capacitor units in array
$0\ 0\ 1\ 0\ 0 = 4$ Capacitor units in array	10100 = 20 Capacitor units in array
$0\ 0\ 1\ 0\ 1 = 5$ Capacitor units in array	1 0 1 0 1 = 21 Capacitor units in array
$0\ 0\ 1\ 1\ 0 = 6$ Capacitor units in array	1 0 1 1 0 = 22 Capacitor units in array
0 0 1 1 1 = 7 Capacitor units in array	1 0 1 1 1 = 23 Capacitor units in array
0 1 0 0 0 = 8 Capacitor units in array	1 1 0 0 0 = 24 Capacitor units in array
0 1 0 0 1 = 9 Capacitor units in array	1 1 0 0 1 = 25 Capacitor units in array
0 1 0 1 0 = 10 Capacitor units in array	$1\ 1\ 0\ 1\ 0 = 26$ Capacitor units in array
0 1 0 1 1 = 11 Capacitor units in array	1 1 0 1 1 = 27 Capacitor units in array
0 1 1 0 0 = 12 Capacitor units in array	1 1 1 0 0 = 28 Capacitor units in array
0 1 1 0 1 = 13 Capacitor units in array	1 1 1 0 1 = 29 Capacitor units in array
0 1 1 1 0 = 14 Capacitor units in array	1 1 1 1 0 = 30 Capacitor units in array
0 1 1 1 1 = 15 Capacitor units in array	1 1 1 1 1 = 31 Capacitor units in array

Analog Switch Cap Type A Block 10 Control 0 Register (ASA10CR0, Address = Bank 0/1, 80h) Analog Switch Cap Type A Block 12 Control 0 Register (ASA12CR0, Address = Bank 0/1, 88h) Analog Switch Cap Type A Block 21 Control 0 Register (ASA21CR0, Address = Bank 0/1, 94h) Analog Switch Cap Type A Block 23 Control 0 Register (ASA23CR0, Address = Bank 0/1, 9Ch)

11.0 Special Features of the CPU

11.1 Multiplier/Accumulator

A fast, on-chip signed 2's complement MAC (Multiply/ Accumulate) function is provided to assist the main CPU with digital signal processing applications. Multiply results, as well as the lower 2 bytes of the Accumulator, are available immediately after the input registers are written. The upper 2 bytes require a single instruction delay before reading. The MAC function is tied directly on the internal data bus, and is mapped into the register space. The following MAC block diagram provides data flow information. The user has the choice to either cause a multiply/accumulate function to take place, or a multiply only function. The user selects which operation is performed by the choice of input register. The multiply function occurs immediately whenever the MUL X or the MUL_Y multiplier input registers are written, and the result is available in the MUL_DH and MUL_DL multiplier result registers. The Multiply/Accumulate function is executed whenever there is a write to the MAC_X or the MAC_Y Multiply/Accumulate input registers, and the result is available in the ACC DR3, ACC DR2, ACC_DR1, and ACC_DR0 accumulator result registers. A write to MUL_X or MAC_X is input as the X value to both the multiply and Multiply/Accumulate functions. A write to MUL_Y or MAC_Y is input as the Y value to both the multiply and Multiply/Accumulate functions. A write to the MAC_CL0 or MAC_CL1 registers will clear the value in the four accumulate registers.

Operation of the Multiply/Accumulate function relies on proper multiplicand input. The first value of each multiplicand must be placed into MUL_X (or MUL_Y) register to avoid causing a Multiply/Accumulate to occur. The second multiplicand must be placed into MAC_Y (or MAC_X) thereby triggering the Multiply/Accumulate function.

MUL_X, MUL_Y, MAC_X, and MAC_Y are 8-bit signed input registers. MUL_DL and MUL_DH form a 16-bit signed output. ACC_DR0, ACC_DR1, ACC_DR2 and ACC_DR3 form a 32-bit signed output. An extra instruction must be inserted between the following sequences of MAC operations to provide extra delay. If this is not done, the Accumulator results will be inaccurate.

a. Two MAC instructions in succession:

mov reg[MAC_X],a
nop //add nop or any other instruction
mov reg[MAC_X],a

For sequence a., there is no workaround, the nop or other instruction must be inserted.

b. A MAC instruction followed by a read of the most significant Accumulator bytes:

mov reg[MAC_X],a
nop //add nop or any other instruction
mov a,[ACC DR2] // or ACC DR3

For sequence b., the least significant Accumulator bytes (ACC_DR0, ACC_DR1) may be reliably read directly after the MAC instruction.

Writing to the multiplier registers (MUL_X, MUL_Y), and reading the result back from the multiplier product registers (MUL_DH, MUL_DL), is not affected by this problem and does not have any restrictions.

12.0 Development Tools

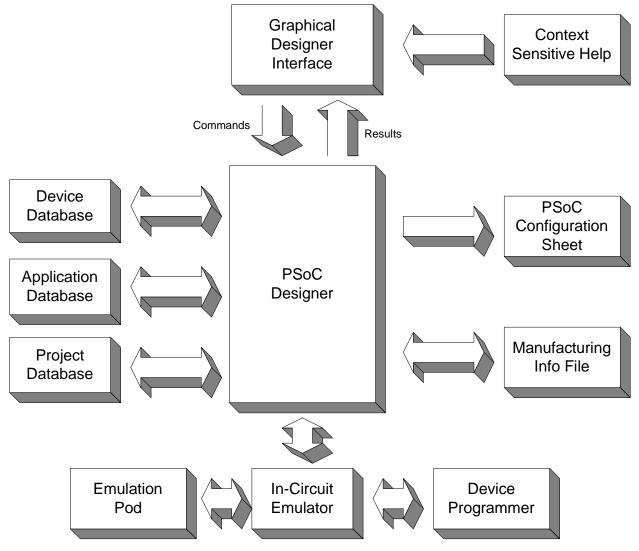


Figure 35: PSoC Designer Functional Flow

12.1 Overview

The Cypress MicroSystems PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer runs on Windows 98, Windows NT 4.0, Windows 2000, Windows Millennium (Me), or Windows XP.

PSoC Designer helps the customer to select an operating configuration for the microcontroller, write application code that uses the microcontroller, and debug the application. This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and the CYASM macro assembler for the CPUs.

PSoC Designer also supports a high-level C language compiler developed specifically for the devices in the family.

12.2 Integrated Development Environment Subsystems

12.2.1 Online Help System

The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own contextsensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started.

12.2.2 Device Editor

PSoC Designer has several main functions. The Device Editor subsystem lets the user select different onboard analog and digital component configurations for the PSoC blocks. PSoC Designer sets up power-on initialization tables for selected PSoC block configurations and creates source code for an application framework. The framework contains software to operate the selected components and, if the project uses more than one operating configuration, contains routines to switch between different sets of PSoC block configurations at runtime. PSoC Designer can print out a configuration sheet for given project configuration for use during application programming in conjunction with the Device Data Sheet. Once the framework is generated, the user can add application-specific code to flesh out the framework. It's also possible to change the selected components and regenerate the framework.

12.2.3 Assembler

The included CYASM macro assembler supports the M8C microcontroller instruction set and generates a load file ready for device programming or system debugging using the ICE hardware.

12.2.4 C Language Software Development

A C language compiler supports Cypress MicroSystems' PSoC family devices. Even if you have never worked in the C language before, the product quickly allows you to create complete C programs for the PSoC family devices.

The embedded, optimizing C compiler provides all the features of C tailored to the PSoC architecture. It includes a built-in macro assembler allowing assembly

code to be merged seamlessly with C code. The link libraries automatically use absolute addressing or can be compiled in relative mode, and linked with other software modules to get absolute addressing.

The compiler comes complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

12.2.5 Debugger

The PSoC Designer Debugger subsystem provides hardware in-circuit emulation, allowing the designer to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and write program and data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

12.3 Hardware Tools

12.3.1 In-Circuit Emulator

A low cost, high functionality ICE is available for development support. This hardware has the capability to program single devices.