E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0113hh005eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 2.7V to 3.6V operating voltage
- Up to thirteen 5 V-tolerant input pins
- 8-, 20-, and 28-pin packages
- 0° C to +70°C and -40°C to +105°C for operating temperature ranges

Part Selection Guide

Table 1 lists the basic features and package styles available for each device within the Z8 Encore! $XP^{\text{®}}$ F0823 Series product line.

Part Number	Flash (KB)	RAM (B)	I/O	ADC Inputs	Packages
Z8F0823	8	1024	6–22	4–8	8-, 20-, and 28-pins
Z8F0813	8	1024	6–24	0	8-, 20-, and 28-pins
Z8F0423	4	1024	6–22	4–8	8-, 20-, and 28-pins
Z8F0413	4	1024	6–24	0	8-, 20-, and 28-pins
Z8F0223	2	512	6–22	4–8	8-, 20-, and 28-pins
Z8F0213	2	512	6–24	0	8-, 20-, and 28-pins
Z8F0123	1	256	6–22	4–8	8-, 20-, and 28-pins
Z8F0113	1	256	6–24	0	8-, 20-, and 28-pins

Table 1. F0823 Series Family Part Selection Guide

ilog[°] Embedded in Life 10 An∎IXYS Company

Signal Mnemonic	I/O	Description
COUT	0	Comparator Output. This is the output of the comparator.
Analog		
ANA[7:0]	I	Analog port. These signals are used as inputs to the ADC. The ANA0, ANA1, and ANA2 pins can also access the inputs and output of the integrated transimpedance amplifier.
VREF	I/O	Analog-to-Digital Converter reference voltage input.
Clock Input		
CLKIN	Ι	Clock Input Signal. This pin can be used to input a TTL-level signal to be used as the system clock.
LED Drivers		
LED	0	Direct LED drive capability. All port C pins have the capability to drive an LED without any other external components. These pins have programmable drive strengths set by the GPIO block.
On-Chip Debugger		
DBG	I/O	Debug. This signal is the control and data input and output to and from the OCD. Caution: The DBG pin is open-drain and requires an external pull-up resistor to ensure proper operation.
Reset		
RESET	I/O	RESET. Generates a reset when asserted (driven Low). Also serves as a reset indicator; the Z8 Encore! XP forces this pin Low when in reset. This pin is open-drain and features an enabled internal pull-up resistor.
Power Supply		
V _{DD}	I	Digital Power Supply.
AV _{DD} ²	I	Analog Power Supply.
V _{SS}	I	Digital Ground.
AV _{SS}	I	Analog Ground.
Notes: 1. PB6 and PB7 are	only ava	ailable in 28-pin packages without ADC. In 28-pin packages with ADC, they are

Table 3. Signal Descriptions (Continued)

replaced by AV_{DD} and AV_{SS}.
The AV_{DD} and AV_{SS} signals are available only in 28-pin packages with ADC. They are replaced by PB6 and PB7 on 28-pin packages without ADC.

nbedded in Life

13

Address Space

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O Port Control Registers
- The Program Memory contains addresses for all memory locations having executable code and/or data
- The Data Memory contains addresses for all memory locations that contain data only

These three address spaces are covered briefly in the following subsections. For more detailed information regarding the eZ8 CPU and its address space, refer to the <u>eZ8 CPU</u> <u>Core User Manual (UM0128)</u>, available for download at <u>www.zilog.com</u>.

Register File

The Register File address space in the Z8 Encore! XP[™] MCU is 4KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. Z8 Encore! XP F0823 Series devices contain 256B–1KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64KB of Program Memory address space. F0823 Series devices contain 1KB to 8KB of on-chip Flash memory in the Program Memory address space. Reading from Program Memory addresses outside the available Flash memory addresses

ilog° Embedded in Life An∎IXYS Company 18

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
LED Controller (cont'd)			
F84	LED Drive Level Low Byte	LEDLVLL	00	<u>53</u>
F85	Reserved	—	XX	
Oscillator Contro	ol			
F86	Oscillator Control	OSCCTL	A0	<u>172</u>
F87–F8F	Reserved	_	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	<u>133</u>
F91–FBF	Reserved	—	XX	
Interrupt Contro	ller			
FC0	Interrupt Request 0	IRQ0	00	<u>59</u>
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	<u>62</u>
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	<u>62</u>
FC3	Interrupt Request 1	IRQ1	00	<u>60</u>
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	<u>64</u>
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	<u>64</u>
FC6	Interrupt Request 2	IRQ2	00	<u>61</u>
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	<u>65</u>
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	<u>66</u>
FC9–FCC	Reserved	_	XX	
FCD	Interrupt Edge Select	IRQES	00	<u>67</u>
FCE	Shared Interrupt Select	IRQSS	00	<u>67</u>
FCF	Interrupt Control	IRQCTL	00	<u>68</u>
GPIO Port A				
FD0	Port A Address	PAADDR	00	<u>40</u>
FD1	Port A Control	PACTL	00	<u>42</u>
FD2	Port A Input Data	PAIN	XX	<u>43</u>
FD3	Port A Output Data	PAOUT	00	<u>43</u>
GPIO Port B				
FD4	Port B Address	PBADDR	00	<u>40</u>
FD5	Port B Control	PBCTL	00	<u>42</u>

Table 8. Register File Address Map (Continued)

Note: XX=Undefined.

ILOG[°] hbedded in Life IXYS Company 30

Low-Power Modes

Z8 Encore! XP F0823 Series products contain power-saving features. The highest level of power reduction is provided by the STOP Mode, in which nearly all device functions are powered down. The next lower level of power reduction is provided by the HALT Mode, in which the CPU is powered down.

Further power savings can be implemented by disabling individual peripheral blocks while in ACTIVE mode (defined as being in neither STOP nor HALT Mode).

STOP Mode

Executing the eZ8 CPU's Stop instruction places the device into STOP Mode, powering down all peripherals except the Voltage Brown-Out detector, and the Watchdog Timer. These two blocks may also be disabled for additional power savings. In STOP Mode, the operating characteristics are:

- Primary crystal oscillator and internal precision oscillator are stopped; X_{IN} and X_{OUT} (if previously enabled) are disabled, and PA0/PA1 revert to the states programmed by the GPIO registers
- System clock is stopped
- eZ8 CPU is stopped
- Program counter (PC) stops incrementing
- Watchdog Timer's internal RC oscillator continues to operate if enabled by the Oscillator Control Register
- If enabled, the Watchdog Timer logic continues to operate
- If enabled for operation in STOP Mode by the associated Flash Option Bit, the Voltage Brown-Out protection circuit continues to operate
- All other on-chip peripherals are idle

To minimize current in STOP Mode, all GPIO pins that are configured as digital inputs must be driven to one of the supply rails (V_{CC} or GND). Additionally, any GPIOs configured as outputs must also be driven to one of the supply rails. The device can be brought out of STOP Mode using Stop Mode Recovery. For more information about Stop Mode Recovery, see the <u>Reset and Stop Mode Recovery</u> chapter on page 21.

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B ³	PB03	Reserved		AFS1[0]: 0
		ANA0	ADC Analog Input	AFS1[0]: 1
	PB1	Reserved		AFS1[1]: 0
		ANA1	ADC Analog Input	AFS1[1]: 1
	PB2	Reserved		AFS1[2]: 0
		ANA2	ADC Analog Input	AFS1[2]: 1
	PB3	CLKIN	External Clock Input	AFS1[3]: 0
		ANA3	ADC Analog Input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC Analog Input	AFS1[4]: 1
	PB5	Reserved		AFS1[5]: 0
		V _{REF} ⁴	ADC Voltage Reference	AFS1[5]: 1
	PB6	Reserved		AFS1[6]: 0
		Reserved		AFS1[6]: 1
	PB7	Reserved		AFS1[7]: 0
		Reserved		AFS1[7]: 1

Table 17. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)

Notes:

 Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in the <u>Port A–C Alternate Function</u> <u>Subregisters</u> section on page 43 automatically enables the associated alternate function.

2. Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in the <u>Timer Pin Signal Operation</u> section on page 83.

 Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, alternate function selection as described in the <u>Port A–C Alternate Function Subregisters</u> section on page 43 must also be enabled.

4. V_{REF} is available on PB5 in 28-pin products only.

 Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, Alternate Function selection as described in the <u>Port A–C Alternate Function Subregisters</u> section on page 43 must also be enabled.

6. V_{REF} is available on PC2 in 20-pin parts only.

bedded in Life

40

PC[2:0]. All other signal pins are 5V-tolerant, and can safely handle inputs higher than V_{DD} even with the pull-ups enabled.

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator Control Register (see the <u>Oscillator Control Register Definitions</u> section on page 171) such that the external oscillator is selected as the system clock. For 8-pin devices, use PA1 instead of PB3.

GPIO Interrupts

Many of the GPIO port pins are used as interrupt sources. Some port pins are configured to generate an interrupt request on either the rising edge or falling edge of the pin input signal. Other port pin interrupt sources generate an interrupt when any edge occurs (both rising and falling). For more information about interrupts using the GPIO pins, see the <u>Interrupt Controller</u> chapter on page 54.

GPIO Control Register Definitions

Four registers for each port provide access to GPIO control, input data, and output data. Table 18 lists these port registers. Use the Port A–D Address and Control registers together to provide access to subregisters for port configuration and control.

Port Register	
Mnemonic	Port Register Name
P <i>x</i> ADDR	Port A–C Address Register (Selects subregisters).
P <i>x</i> CTL	Port A–C Control Register (Provides access to subregisters).
PxIN	Port A–C Input Data Register.
P <i>x</i> OUT	Port A–C Output Data Register.
Port Subregister	
Mnemonic	Port Register Name
P <i>x</i> DD	Data Direction.
P <i>x</i> AF	Alternate Function.
P <i>x</i> OC	Output Control (Open-Drain).

Table 18. GPIO Port Registers and Subregisters

Port A–C Alternate Function Set 1 Subregisters

The Port A–C Alternate Function Set1 Subregister (Table 28) is accessed through the Port A–C Control Register by writing 07H to the Port A–C Address Register. The Alternate Function Set 1 subregisters selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register are defined in "GPIO Alternate Functions" on page 34.

Note: Alternate function selection on port pins must also be enabled as described in the <u>Port A</u>–<u>C Alternate Function Subregisters</u> section on page 43.

Bit	7	6	5	4	3	2	1	0
Field	PAFS17	PAFS16	PAFS15	PAFS14	PAFS13	PAFS12	PAFS11	PAFS10
RESET	00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 07H ir	If 07H in Port A–C Address Register, accessible through the Port A–C Control Register						

Table 28. Port A–C Alternate Function Set 1 Subregisters (PAFS1x)

Bit Description

[7:0] Port Alternate Function Set to 1

PAFS1x 0 = Port Alternate Function selected as defined in Table 15 (see the <u>GPIO Alternate Functions</u> section on page 34).

1 = Port Alternate Function selected as defined in Table 15 (see the <u>GPIO Alternate Functions</u> section on page 34).

Note: x indicates the specific GPIO port pin number (7–0).

Embedded in Life An TIXYS Company

Port A–C Input Data Registers

Reading from the Port A–C Input Data registers (Table 30) returns the sampled values from the corresponding port pins. The Port A–C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those missing on the 8- and 28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.

Bit	7	6	5	4	3	2	1	0	
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0	
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R R R R R R R R							
Address	FD2H, FD6H, FDAH								

	Table 30.	Port A-C	Input Data	Registers	(PxIN)
--	-----------	----------	------------	-----------	--------

Bit	Description
[7:0]	Port Input Data
PxIN	Sampled data from the corresponding port pin input.
	0 = Input data is logical 0 (Low).
	1 = Input data is logical 1 (High).
Note:	x indicates the specific GPIO port pin number (7–0).

Table 43. IRQ1 Enable High Bit Register (IRQ1ENH)

Bit	7	7 6 5 4 3 2 1 0								
Field	PA7VENH	PA6CENH	PA5ENH	PA4ENH	PA3ENH	PA2ENH	PA1ENH	PA0ENH		
RESET	0	0 0 0 0 0 0 0 0								
R/W	R/W R/W									
Address		FC4H								

Bit	Description
[7] PA7VENH	Port A Bit[7] Interrupt Request Enable High Bit
[6] PA6CENH	Port A Bit[7] or Comparator Interrupt Request Enable High Bit
[5:0] PAxENH	Port A Bit[x] Interrupt Request Enable High Bit For selection of Port A as the interrupt source, see the <u>Shared Interrupt Select Register</u> sec- tion on page 67.

Note: x indicates the specific GPIO Port A pin number (5–0).

Table 44. IRQ1 Enable Low Bit Register (IRQ1ENL)

Bit	7	6	5	4	3	2	1	0
Field	PA7VENL	PA6CENL	PA5ENL	PA4ENL	PA3ENL	PA2ENL	PA1ENL	PA0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	5H			

Bit	Description
[7] PA7VENL	Port A Bit[7] Interrupt Request Enable Low Bit
[6] PA6CENL	Port A Bit[7] or Comparator Interrupt Request Enable Low Bit
[5:0] PAxENL	Port A Bit[x] Interrupt Request Enable Low Bit
Noto: vindio	r_{1}

Note: x indicates the specific GPIO Port A pin number (5–0).

PWM Output High Time Ratio (%) = $\frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$

If TPOL is set to 1, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{PWM Value}{Reload Value} \times 100$

CAPTURE Mode

In CAPTURE Mode, the current timer count value is recorded when the appropriate external Timer Input transition occurs. The capture count value is written to the Timer PWM High and Low Byte registers. The timer input is the system clock. The TPOL bit in the Timer Control Register determines if the capture occurs on a rising edge or a falling edge of the Timer Input signal. When the capture event occurs, an interrupt is generated and the timer continues counting. The INPCAP bit in TxCTL1 Register is set to indicate the timer interrupt is because of an input capture event.

The timer continues counting up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt and continues counting. The INPCAP bit in TxCTL1 Register clears indicating the timer interrupt is not because of an input capture event.

Observe the following steps to configure a timer for CAPTURE Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for CAPTURE Mode
 - Set the prescale value
 - Set the capture edge (rising or falling) for the Timer Input
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. Clearing these registers allows the software to determine if interrupts were generated by either a capture or a reload event. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a reload.
- 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both

Timer 0–1 PWM High and Low Byte Registers

The Timer 0–1 PWM High and Low Byte (TxPWMH and TxPWML) registers (Table 55 and Table 56) control pulse-width modulator (PWM) operations. These registers also store the capture values for the CAPTURE and CAPTURE/COMPARE modes.

Bit	7	6	5	4	3	2	1	0		
Field		PWMH								
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address		F04H, F0CH								

Table 55. Timer 0–1 PWM High Byte Register (TxPWMH)

Bit	7	6	5	4	3	2	1	0		
Field		PWML								
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address				F05H,	F0DH					

Bit	Description
[7:0]	Pulse-Width Modulator High and Low Bytes
PWMH, PWML	These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current 16-bit timer count. When a match occurs, the PWM output changes state. The PWM output value is set by the TPOL bit in the Timer Control Register (TxCTL1) register.

These TxPWMH and TxPWML registers also store the 16-bit captured timer value when operating in CAPTURE or CAPTURE/COMPARE modes.

Timer 0–1 Control Registers

The Timer Control registers are 8-bit read/write registers that control the operation of their associated counter/timers.

Timer 0–1 Control Register 0

The Timer Control Register 0 (TxCTL0) and Timer Control Register 1 (TxCTL1) determine the timer operating mode. It also includes a programmable PWM deadband delay,

ilog[°] Embedded in Life An □IXYS Company 94

<u>Watchdog Timer Reload High Byte Register (WDTH)</u>: see page 95 <u>Watchdog Timer Reload Low Byte Register (WDTL)</u>: see page 95

Watchdog Timer Control Register

The Watchdog Timer Control (WDTCTL) register is a write-only control register. Writing the 55H, AAH unlock sequence to the WDTCTL Register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL Register address produce no effect on the bits in the WDTCTL Register. The locking mechanism prevents spurious writes to the Reload registers.

This register address is shared with the read-only Reset Status Register.

Bit	7	6	5	4	3	2	1	0		
Field				WDT	UNLK					
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	W	W	W	W	W	W	W	W		
Address				FF	ΌΗ					
Bit	Description									
[7:0] WDTUNLK	Watchdog Timer Unlock The software must write the correct unlocking sequence to this register before it is allowed									

Table 60. Watchdog Timer Control Register (WDTCTL)

Watchdog Timer Reload Upper, High and Low Byte Registers

The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers, shown in Tables 61 through 63, form the 24-bit reload value that is loaded into the Watchdog Timer when a WDT instruction executes. The 24-bit reload value ranges across bits [23:0] to encompass the three bytes {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the appropriate Reload Value. Reading from these registers returns the current Watchdog Timer count value.

Caution: The 24-bit WDT Reload Value must not be set to a value less than 000004H.

to modify the contents of the Watchdog Timer reload registers.

Embedded in Life

n IXYS Company

107

occurred, this byte cannot contain valid data and must be ignored. The BRKD bit indicates if the overrun was caused by a break condition on the line. After reading the status byte indicating an overrun error, the Receive Data Register must be read again to clear the error bits is the UART Status 0 Register. Updates to the Receive Data Register occur only when the next data word is received.

UART Data and Error Handling Procedure

Figure 15 displays the recommended procedure for use in UART receiver interrupt service routines.

Figure 15. UART Receiver Interrupt Service Routine Flow

Embedded in Life

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 registers (Table 68 and Table 69) configure the properties of the UART's transmit and receive operations. The UART Control registers must not be written while the UART is enabled.

Bit	7	6	5	4	3	2	1	0			
Field	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address				F4	2H						
Bit	Descriptio	n									
[7] TEN	Transmit E										

Table 68. UART Control 0 Register (U0CTL0)

DI	Description
[7] TEN	Transmit Enable This bit enables or disables the transmitter. The enable is also controlled by the CTS signal and the CTSE bit. If the CTS signal is low and the CTSE bit is 1, the transmitter is enabled. 0 = Transmitter disabled. 1 = Transmitter enabled.
[6] REN	Receive EnableThis bit enables or disables the receiver.0 = Receiver disabled.1 = Receiver enabled.
[5] CTSE	CTSE — CTS Enable 0 = The CTS signal has no effect on the transmitter. 1 = The UART recognizes the CTS signal as an enable control from the transmitter.
[4] PEN	 Parity Enable This bit enables or disables parity. Even or odd is determined by the PSEL bit. 0 = Parity is disabled. 1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit .
[3] PSEL	 Parity Select 0 = Even parity is transmitted and expected on all received data. 1 = Odd parity is transmitted and expected on all received data.
[2] SBRK	 Send Break This bit pauses or breaks data transmission. Sending a break interrupts any transmission in progress, so ensure that the transmitter has finished sending data before setting this bit. 0 = No break is sent. 1 = Forces a break condition by setting the output of the transmitter to zero.

Software Compensation Procedure

The value read from the ADC high and low byte registers are uncompensated. The user mode software must apply gain and offset correction to this uncompensated value for maximum accuracy. The following formula yields the compensated value:

 $ADC_{comp} = (ADC_{uncomp} - OFFCAL) + ((ADC_{uncomp} - OFFCAL)*GAINCAL)/2$

where GAINCAL is the gain calibration byte, OFFCAL is the offset calibration byte and ADC_{uncomp} is the uncompensated value read from the ADC. The OFFCAL value is in two's complement format, as are the compensated and uncompensated ADC values.

Note: The offset compensation is performed first, followed by the gain compensation. One bit of resolution is lost because of rounding on both the offset and gain computations. As a result the ADC registers read back 13 bits: 1 sign bit, two calibration bits lost to rounding and 10 data bits. Also note that in the second term, the multiplication must be performed before the division by 2¹⁶. Otherwise, the second term evaluates to zero incorrectly.

Caution: Although the ADC can be used without the gain and offset compensation, it does exhibit non-unity gain. Designing the ADC with sub-unity gain reduces noise across the ADC range but requires the ADC results to be scaled by a factor of 8/7.

ADC Control Register Definitions

The following sections define the ADC Control registers.

ADC Control Register 0

The ADC Control Register selects the analog input channel and initiates the analog-to-digital conversion.

> ilog Embedded in Life An∎IXYS Company
> 127

Bit	7	6	5	4	3	2	1	0			
Field	CEN	REFSELL	REFEXT	CONT		ANAIN[3:0]					
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		F70H									
Bit	Descrip	Description									
[7] CEN	Convers 0 = Conv this t 1 = Begin prog	 Conversion Enable 0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears this bit to 0 when a conversion is complete. 1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already in progress, the conversion restarts. This bit remains 1 until the conversion is complete. 									
[6] REFSELL	Voltage Reference Level Select Low Bit In conjunction with the High bit (REFSELH) in ADC Control/Status Register 1, this deter- mines the level of the internal voltage reference; the following details the effects of {REF- SELH, REFSELL}. This reference is independent of the Comparator reference. 00 = Internal Reference Disabled, reference comes from external pin. 01 = Internal Reference set to 1.0V.							is deter- of {REF-			
[5] REFEXT	Externa 0 = Exte 1 = The	External Reference Select 0 = External reference buffer is disabled; V_{REF} pin is available for GPIO functions. 1 = The internal ADC reference is buffered and connected to the V _{REF} pin.									
[4] CONT	Continu 0 = Singl cycle 1 = Cont	 Continuous Conversion 0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock cycles. 1 = Continuous conversion. ADC data updated every 256 system clock cycles. 									

Table 74. ADC Control Register 0 (ADCCTL0)

nbedded in Life

148

These serial numbers are stored in the Flash information page (for more details, see the <u>Reading the Flash Information Page</u> section on page 148 and the <u>Serialization Data</u> section on page 154) and are unaffected by mass erasure of the device's Flash memory.

Randomized Lot Identification Bits

As an optional feature, Zilog is able to provide a factory-programmed random lot identifier. With this feature, all devices in a given production lot are programmed with the same random number. This random number is uniquely regenerated for each successive production lot and is not likely to be repeated.

The randomized lot identifier is a 32-byte binary value, stored in the flash information page (for more details, see the <u>Reading the Flash Information Page</u> section on page 148 and the <u>Randomized Lot Identifier</u> section on page 154) and is unaffected by mass erasure of the device's flash memory.

Reading the Flash Information Page

The following code example shows how to read data from the Flash Information Area.

; get value at info address 60 (FE60h) ldx FPS, #%80 ; enable access to flash info page ld R0, #%FE ld R1, #%60 ldc R2, @RR0 ; R2 now contains the calibration value

Flash Option Bit Control Register Definitions

This section briefly describes the features of the Trim Bit Address and Data registers.

Trim Bit Address Register

The Trim Bit Address (TRMADR) Register contains the target address for an access to the trim option bits.

Bit	7	6	5	4	3	2	1	0		
Field		TRMADR: Trim Bit Address (00H to 1FH)								
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address				FF	6H					

Table 87. Trim Bit Address Register (TRMADR)

ilog^{*} Embedded in Life An∎IXYS Company 154

Serialization Data

Table 96. Serial Number at 001C–001F (S_NUM)

Bit	7	6	5	4	3	2	1	0
Field				S_N	IUM			
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	Information Page Memory 001C–001F							
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.							

Bit Description [7:0] Serial Number Byte S_NUM The serial number is a unique four-byte binary value; see Table 97.

Table 97. Serialization Data Locations

Info Page Address	Memory Address	Usage
1C	FE1C	Serial Number Byte 3 (most significant).
1D	FE1D	Serial Number Byte 2.
1E	FE1E	Serial Number Byte 1.
1F	FE1F	Serial Number Byte 0 (least significant).

Randomized Lot Identifier

Table 98. Lot Identification Number (RAND_LOT)

Bit	7	6	5	4	3	2	1	0		
Field	RAND_LOT									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	Interspersed throughout Information Page Memory									
Note: U = Unchanged by Reset. R/W = Read/Write.										

Bit	Description
[7]	Randomized Lot ID
RAND_LOT	The randomized lot ID is a 32-byte binary value that changes for each production lot; see Table 99.

ilog° Embedded in Life An∎IXYS Company

186

Assembly Mnemonic	Symbolic Operation	Address Mode		Oncode(s)	Flags						Fetch	Instr
		dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	Cycles
LD dst, rc	$dst \leftarrow src$	r	IM	0C-FC	_	_	_	_	_	_	2	2
		r	X(r)	C7	-						3	3
		X(r)	r	D7	-						3	4
		r	lr	E3	-						2	3
		R	R	E4	-						3	2
		R	IR	E5	-						3	4
		R	IM	E6	-						3	2
		IR	IM	E7	-						3	3
		lr	r	F3	-						2	3
		IR	R	F5	-						3	3
LDC dst, src	$dst \leftarrow src$	r	Irr	C2	-	_	_	_	_	_	2	5
		lr	Irr	C5	-						2	9
		Irr	r	D2	-						2	5
LDCI dst, src	$dst \leftarrow src$	lr	Irr	C3	_	_	_	_	_	_	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	D3	-						2	9
LDE dst, src	$dst \leftarrow src$	r	Irr	82	-	_	_	_	_	_	2	5
		Irr	r	92	-						2	5
LDEI dst, src	$dst \leftarrow src$	Ir	Irr	83	_	_	_	_	-	_	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	93	-						2	9
LDWX dst, src	dst ← src	ER	ER	1FE8	_	_	_	_	_	_	5	4

Table 118. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.