

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0123pb005sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9

IXYS Company

Note: *Analog input alternate functions (ANA) are not available on Z8F0x13 devices.

Signal Descriptions

>

Table 3 lists the Z8 Encore! XP F0823 Series signals. To determine the signals available for the specific package styles, see the Pin Configurations section on page 7.

Signal Mnemonic	I/O	Description
General-Purpose I/	O Ports	A–D
PA[7:0]	I/O	Port A. These pins are used for general-purpose I/O.
PB[7:0] ¹	I/O	Port B. These pins are used for general-purpose I/O. PB6 and PB7 are available only in those devices without an ADC.
PC[7:0]	I/O	Port C. These pins are used for general-purpose I/O.
UART Controllers		
TXD0	0	Transmit Data. This signal is the transmit output from the UART and IrDA.
RXD0	I	Receive Data. This signal is the receive input for the UART and IrDA.
CTS0	I	Clear To Send. This signal is the flow control input for the UART.
DE	Ο	Driver Enable. This signal allows automatic control of external RS-485 drivers. This signal is approximately the inverse of the TXE (Transmit Empty) bit in the UART Status 0 Register. The DE signal can be used to ensure the external RS-485 driver is enabled when data is transmitted by the UART.
Timers		
T0OUT/T1OUT	0	Timer Output 0–1. These signals are output from the timers.
T0OUT/T1OUT	0	Timer Complement Output 0–1. These signals are output from the timers in PWM DUAL OUTPUT Mode.
T0IN/T1IN	I	Timer Input 0–1. These signals are used as the capture, gating and counter inputs. The T0IN signal is multiplexed T0OUT signals.
Comparator		
CINP/CINN	Ι	Comparator Inputs. These signals are the positive and negative inputs to the comparator.
Notes:		

Table 3. Signal Descriptions

1. PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are replaced by AV_{DD} and AV_{SS} .

2. The AV_{DD} and AV_{SS} signals are available only in 28-pin packages with ADC. They are replaced by PB6 and PB7 on 28-pin packages without ADC.

Program Memory Address (Hex)	Function		
Z8F0123 and Z8F0113 Products			
0000–0001	Flash Option Bits		
0002–0003	Reset Vector		
0004–0005	WDT Interrupt Vector		
0006–0007	Illegal Instruction Trap		
0008–0037	Interrupt Vectors*		
0038–003D	Oscillator Fail Traps*		
003E-03FF	Program Memory		
Note: *See the <u>Trap and Interrupt Vectors in C</u> for a list of the interrupt vectors and trap			

Table 6. Z8 Encore! XP F0823 Series Program Memory Maps (Continued)

Data Memory

Z8 Encore! XP F0823 Series does not use the eZ8 CPU's 64KB Data Memory address space.

Flash Information Area

Table 7 lists the F0823 Series Flash Information Area. This 128B Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash Information Area is mapped into the Program Memory and overlays the 128 bytes at addresses FE00H to FF7FH. When the Information Area access is enabled, all reads from these Program Memory addresses return the Information Area data rather than the Program Memory data. Access to the Flash Information Area is read-only.

Program Memory Address (Hex)	Function
FE00–FE3F	Zilog Option Bits.
FE40–FE53	Part Number. 20-character ASCII alphanumeric code Left-justified and filled with FH.
FE54–FE5F	Reserved.
FE60–FE7F	Zilog Calibration Data.
FE80–FFFF	Reserved.

 Table 7. F0823 Series Flash Memory Information Area Map

ilog° Embedded in Life An∎IXYS Company 18

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
LED Controller	(cont'd)			
F84	LED Drive Level Low Byte	LEDLVLL	00	<u>53</u>
F85	Reserved	—	XX	
Oscillator Conti	rol			
F86	Oscillator Control	OSCCTL	A0	<u>172</u>
F87–F8F	Reserved	—	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	<u>133</u>
F91–FBF	Reserved	_	XX	
Interrupt Contro	oller			
FC0	Interrupt Request 0	IRQ0	00	<u>59</u>
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	<u>62</u>
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	<u>62</u>
FC3	Interrupt Request 1	IRQ1	00	<u>60</u>
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	<u>64</u>
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	<u>64</u>
FC6	Interrupt Request 2	IRQ2	00	<u>61</u>
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	<u>65</u>
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	<u>66</u>
FC9–FCC	Reserved	—	XX	
FCD	Interrupt Edge Select	IRQES	00	<u>67</u>
FCE	Shared Interrupt Select	IRQSS	00	<u>67</u>
FCF	Interrupt Control	IRQCTL	00	<u>68</u>
GPIO Port A				
FD0	Port A Address	PAADDR	00	<u>40</u>
FD1	Port A Control	PACTL	00	<u>42</u>
FD2	Port A Input Data	PAIN	XX	<u>43</u>
FD3	Port A Output Data	PAOUT	00	<u>43</u>
GPIO Port B				
FD4	Port B Address	PBADDR	00	<u>40</u>
FD5	Port B Control	PBCTL	00	<u>42</u>

Table 8. Register File Address Map (Continued)

Note: XX=Undefined.

clock and reset signals, the required reset duration can be as short as three clock periods and as long as four. A reset pulse three clock cycles in duration might trigger a reset; a pulse four cycles in duration always triggers a reset.

While the RESET input pin is asserted Low, the Z8 Encore! XP F0823 Series devices remain in the Reset state. If the RESET pin is held Low beyond the System Reset timeout, the device exits the Reset state on the system clock rising edge following RESET pin deassertion. Following a System Reset initiated by the external RESET pin, the EXT status bit in the WDT Control (WDTCTL) register is set to 1.

External Reset Indicator

During System Reset or when enabled by the GPIO logic (see **the** <u>Port A–C Control Registers</u> **section on page 42**), the RESET pin functions as an open-drain (active Low) reset mode indicator in addition to the input functionality. This reset output feature allows an Z8 Encore! XP F0823 Series device to reset other components to which it is connected, even if that reset is caused by internal sources such as POR, VBO, or WDT events.

After an internal reset event occurs, the internal circuitry begins driving the $\overrightarrow{\text{RESET}}$ pin Low. The $\overrightarrow{\text{RESET}}$ pin is held Low by the internal circuitry until the appropriate delay listed in Table 9 has elapsed.

On-Chip Debugger Initiated Reset

A POR is initiated using the On-Chip Debugger by setting the RST bit in the OCD Control Register. The OCD block is not reset but the rest of the chip goes through a normal system reset. The RST bit automatically clears during the System Reset. Following the System Reset, the POR bit in the Reset Status (RSTSTAT) Register is set.

Stop Mode Recovery

The device enters into STOP Mode when eZ8 CPU executes a STOP instruction. For more details about STOP Mode, see **the** Low-Power Modes **section on page 30**. During Stop Mode Recovery, the CPU is held in reset for 66 IPO cycles if the crystal oscillator is disabled or 5000 cycles if it is enabled. The SMR delay also included the time required to start up the IPO.

Stop Mode Recovery does not affect on-chip registers other than the Watchdog Timer Control Register (WDTCTL) and the Oscillator Control Register (OSCCTL). After any Stop Mode Recovery, the IPO is enabled and selected as the system clock. If another system clock source is required or IPO disabling is required, the Stop Mode Recovery code must reconfigure the oscillator control block such that the correct system clock source is enabled and selected.

Embedded in Life An TIXYS Company

Port A–C Input Data Registers

Reading from the Port A–C Input Data registers (Table 30) returns the sampled values from the corresponding port pins. The Port A–C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those missing on the 8- and 28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.

Bit	7	6	5	4	3	2	1	0
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
Address	FD2H, FD6H, FDAH							

Bit	Description
[7:0]	Port Input Data
PxIN	Sampled data from the corresponding port pin input.
	0 = Input data is logical 0 (Low).
	1 = Input data is logical 1 (High).
Note: x	indicates the specific GPIO port pin number (7–0).

ILO<u>G</u> abedded in Life

68

Interrupt Control Register

The Interrupt Control (IRQCTL) Register (Table 50) contains the master enable bit for all interrupts.

Bit	7	6	5	4	3	2	1	0
Field	IRQE				Reserved			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R	R	R	R	R	R	R
Address	FCFH							

Table 50. Interrupt Control Register (IRQCTL)

Bit Description

[7] Interrupt Request Enable
 IRQE This bit is set to 1 by executing an Enable Interrupts (EI) or Interrupt Return (IRET) instruction, or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of an interrupt request, reset or by a direct register write of a 0 to this bit.
 0 = Interrupts are disabled.
 1 = Interrupts are enabled.
 [6:0] Reserved These bits are reserved and must be programmed to 0000000 when read.

ILOG[°] Embedded in Life IXYS Company **79**

input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 Register.

- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

In CAPTURE Mode, the elapsed time from timer start to capture event can be calculated using the following equation:

Capture Elapsed Time (s) = (Capture Value – Start Value) × Prescale System Clock Frequency (Hz)

CAPTURE RESTART Mode

In CAPTURE RESTART Mode, the current timer count value is recorded when the acceptable external Timer Input transition occurs. The capture count value is written to the Timer PWM High and Low Byte registers. The timer input is the system clock. The TPOL bit in the Timer Control Register determines if the capture occurs on a rising edge or a falling edge of the Timer Input signal. When the capture event occurs, an interrupt is generated and the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 Register is set to indicate the timer interrupt is because of an input capture event.

If no capture event occurs, the timer counts up to the 16-bit compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 Register is cleared to indicate the timer interrupt is not caused by an input capture event.

Observe the following steps to configure a timer for CAPTURE RESTART Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for CAPTURE RESTART Mode; setting the mode also involves writing to TMODEHI bit in TxCTL1 Register
 - Set the prescale value
 - Set the capture edge (rising or falling) for the Timer Input
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.

ilog Embedded in Life An∎IXYS Company 80

- 4. Clear the Timer PWM High and Low Byte registers to 0000H. Clearing these registers allows the software to determine if interrupts were generated by either a capture or a reload event. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a reload.
- 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 Register.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

In CAPTURE Mode, the elapsed time from timer start to capture event can be calculated using the following equation:

Capture Elapsed Time (s) = (Capture Value – Start Value) × Prescale System Clock Frequency (Hz)

COMPARE Mode

In COMPARE Mode, the timer counts up to the 16-bit maximum compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon compare.

If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting. Observe the following steps to configure a timer for COMPARE Mode and to initiate the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COMPARE Mode
 - Set the prescale value
 - Set the initial logic level (High or Low) for the Timer Output alternate function, if appropriate
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the compare value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers.

ilog° Embedded in Life An∎IXYS Company 99

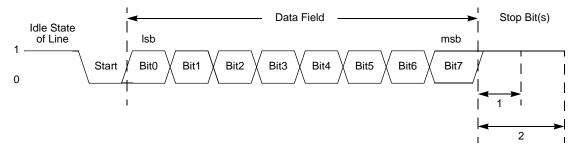


Figure 11. UART Asynchronous Data Format without Parity

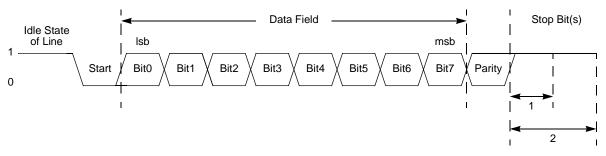


Figure 12. UART Asynchronous Data Format with Parity

Transmitting Data Using the Polled Method

Observe the following steps to transmit data using the polled method of operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the required baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Write to the UART Control 1 Register, if MULTIPROCESSOR Mode is appropriate, to enable MULTIPROCESSOR (9-bit) Mode functions.
- 4. Set the Multiprocessor Mode Select (MPEN) bit to enable MULTIPROCESSOR Mode.
- 5. Write to the UART Control 0 Register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - Set the parity enable bit (PEN), if parity is appropriate and MULTIPROCESSOR Mode is not enabled, and select either even or odd parity (PSEL)

nbedded in Life

100

- Set or clear the CTSE bit to enable or disable control from the remote receiver using the $\overline{\text{CTS}}$ pin
- 6. Check the TDRE bit in the UART Status 0 Register to determine if the Transmit Data Register is empty (indicated by a 1). If empty, continue to <u>Step 7</u>. If the Transmit Data Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data Register becomes available to receive new data.
- 7. Write the UART Control 1 Register to select the outgoing address bit.
- 8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 9. Write the data byte to the UART Transmit Data Register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
- 10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate and MULTIPROCESSOR Mode is enabled,.
- 11. To transmit additional bytes, return to <u>Step 5</u>.

Transmitting Data Using the Interrupt-Driven Method

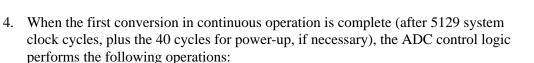
The UART Transmitter interrupt indicates the availability of the Transmit Data Register to accept new data for transmission. Observe the following steps to configure the UART for interrupt-driven data transmission:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the acceptable priority.
- 5. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) Mode functions, if MULTIPROCESSOR Mode is appropriate.
- 6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR Mode.
- 7. Write to the UART Control 0 Register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission.
 - Enable parity, if appropriate and if MULTIPROCESSOR Mode is not enabled, and select either even or odd parity.

ilog Embedded in Life An IXYS Company 113

Bit	Description (Continued)
[1] STOP	 Stop Bit Select 0 = The transmitter sends one stop bit. 1 = The transmitter sends two stop bits.
[0] LBEN	Loop Back Enable 0 = Normal operation. 1 = All transmitted data is looped back to the receiver.

Table 69. UART Control 1 Register (U0CTL1)


Bit	7	6	5	4	3	2	1	0	
Field	MPMD[1]	MPEN	MPMD[0]	MPBT	DEPOL	BRGCTL	RDAIRQ	IREN	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		F43H							
Bit	Descript	tion							
[7,5] MPMD[1:0		ROCESSO	R Mode DR (9-bit) Mo	nde is enabl	ed				
	-		· · ·			aived bytes	(data and a	ddrooo)	
		00 = The UART generates an interrupt request on all received bytes (data and address). 01 = The UART generates an interrupt request only on received address bytes.							
		•					•		
		•	erates an int						
	valu	le stored in	the Address	Compare R	egister and	on all succe	ssive data b	ytes until	
	an a	address mis	match occur	S.					
	11 – Tho		arates an inte	errunt reque	st on all rec	d etch havia	vtes for whic	h the most	

11 = The UART generates an interrupt request on all received data bytes for which the most
recent address byte matched the value in the Address Compare Register.

[6] MPEN	MULTIPROCESSOR (9-bit) Enable This bit is used to enable MULTIPROCESSOR (9-bit) Mode. 0 = Disable MULTIPROCESSOR (9-bit) Mode. 1 = Enable MULTIPROCESSOR (9-bit) Mode.
[4] MPBT	 Multiprocessor Bit Transmit This bit is applicable only when MULTIPROCESSOR (9-bit) Mode is enabled. The 9th bit is used by the receiving device to determine if the data byte contains address or data information. 0 = Send a 0 in the multiprocessor bit location of the data stream (data byte). 1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).
[3] DEPOL	Driver Enable Polarity 0 = DE signal is Active High. 1 = DE signal is Active Low.

nbedded in Life

125

- CEN resets to 0 to indicate the first conversion is complete. CEN remains 0 for all subsequent conversions in continuous operation
- An interrupt request is sent to the Interrupt Controller to indicate the conversion is complete
- 5. The ADC writes a new data result every 256 system clock cycles. For each completed conversion, the ADC control logic performs the following operations:
 - Writes the 11-bit two's complement result to {ADCD_H[7:0], ADCD_L[7:5]}
 - An interrupt request to the Interrupt Controller denoting conversion complete
- 6. To disable continuous conversion, clear the CONT bit in the ADC Control Register to 0.

Interrupts

The ADC is able to interrupt the CPU whenever a conversion has been completed and the ADC is enabled.

When the ADC is disabled, an interrupt is not asserted; however, an interrupt pending when the ADC is disabled is not cleared.

Calibration and Compensation

Z8 Encore! XP F0823 Series ADC can be factory calibrated for offset error and gain error, with the compensation data stored in Flash memory. Alternatively, user code can perform its own calibration, storing the values into Flash themselves.

Factory Calibration

Devices that have been factory calibrated contain nine bytes of calibration data in the Flash option bit space. This data consists of three bytes for each reference type. For a list of input modes for which calibration data exists, see the <u>Zilog Calibration Data</u> section on page 152. There is 1 byte for offset, and there are 2 bytes for gain correction.

User Calibration

If you have precision references available, its own external calibration can be performed, storing the values into Flash themselves.

ilog^{*} Embedded in Life An IXYS Company 133

Comparator Control Register Definition

The Comparator Control Register (CMPCTL) configures the comparator inputs and sets the value of the internal voltage reference.

Bit	7	6	5	4	3	2	1	0				
Field	INPSEL	INNSEL		REF	LVL	I	Rese	erved				
RESET	0	0	0	1	0	1	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address		F90H										
Bit	Description											
[7] INPSEL	Signal Select for Positive Input 0 = GPIO pin used as positive comparator input. 1 = temperature sensor used as positive comparator input.											
[6] INNSEL	Signal Select for Negative Input 0 = internal reference disabled, GPIO pin used as negative comparator input. 1 = internal reference enabled as negative comparator input.											
[5:2] REFLVL	Internal Reference Voltage Level 0000 = 0.0V. 0001 = 0.2V. 0010 = 0.4V. 0011 = 0.6V. 0100 = 0.8V. 0101 = 1.0V (Default). 0110 = 1.2V. 0111 = 1.4V. 1000 = 1.6V. 1001 = 1.8V. 1001 = 1.8V. 1010-1111 = Reserved. Note: This reference is independent of the ADC voltage reference.											
[1:0]	Reserved These bits a read.	are reserved	l; R/W bits r	nust be prog	rammed to	00 during w	rites and to (00 when				

Table 78. Comparator Control Register (CMP0)

illog[®] Ibedded in Life IXYS Company 138

Table 80. Flash Code Protection Using the Flash Option Bits

FWP	Flash Code Protection Description
0	Programming and erasing disabled for all of Flash Program Memory. In user code program- ming, Page Erase, and Mass Erase are all disabled. Mass Erase is available through the On- Chip Debugger.
1	Programming, Page Erase, and Mass Erase are enabled for all of Flash Program Memory.

Flash Code Protection Using the Flash Controller

At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash memory. To program or erase the Flash memory, first write the Page Select Register with the target page. Unlock the Flash Controller by making two consecutive writes to the Flash Control Register with the values 73H and 8CH, sequentially. The Page Select Register must be rewritten with the same page previously stored there. If the two Page Select writes do not match, the controller reverts to a locked state. If the two writes match, the selected page becomes active. For more details, see Figure 21.

After unlocking a specific page, you can enable either Page Program or Erase. Writing the value 95H causes a Page Erase only if the active page resides in a sector that is not protected. Any other value written to the Flash Control Register locks the Flash Controller. Mass Erase is not allowed in the user code but only in through the Debug Port.

After unlocking a specific page, you can also write to any byte on that page. After a byte is written, the page remains unlocked, allowing for subsequent writes to other bytes on the same page. Further writes to the Flash Control Register cause the active page to revert to a locked state.

Sector-Based Flash Protection

The final protection mechanism is implemented on a per-sector basis. The Flash memories of Z8 Encore! XP devices are divided into maximum number of 8 sectors. A sector is 1/8 of the total Flash memory size unless this value is smaller than the page size – in which case, the sector and page sizes are equal. On Z8 Encore! F0823 Series devices, the sector size is varied according to the Flash memory configuration shown in <u>Table 79</u> on page 134.

The Flash Sector Protect Register can be configured to prevent sectors from being programmed or erased. After a sector is protected, it cannot be unprotected by user code. The Flash Sector Protect Register is cleared after reset, and any previously-written protection values are lost. User code must write this register in their initialization routine if they prefer to enable sector protection.

The Flash Sector Protect Register shares its Register File address with the Page Select Register. The Flash Sector Protect Register is accessed by writing the Flash Control Register with 5EH. After the Flash Sector Protect Register is selected, it can be accessed at the Page Select Register address. When user code writes the Flash Sector Protect Register,

Assembly Language Source Program Example

JP START	; Everything after the semicolon is a comment.
START:	; A label called 'START'. The first instruction (JP START) in this ; example causes program execution to jump to the point within the ; program where the START label occurs.
LD R4, R7	; A Load (LD) instruction with two operands. The first operand, ; Working Register R4, is the destination. The second operand, ; Working Register R7, is the source. The contents of R7 is ; written into R4.
LD 234H, #%01	; Another Load (LD) instruction with two operands. ; The first operand, Extended Mode Register Address 234H, ; identifies the destination. The second operand, Immediate Data ; value 01H, is the source. The value 01H is written into the ; Register at address 234H.

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as 'destination, source'. After assembly, the object code usually has the operands in the order 'source, destination', but ordering is opcode-dependent. The following instruction examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. You must follow this binary format if you prefer manual program coding or intend to implement your own assembler.

Example 1

If the contents of registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is shown in Table 106.

Table 106. Assembly Language Syntax Example 1

Assembly Language Code	ADD	43H,	08H	(ADD dst, src)
Object Code	04	08	43	(OPC src, dst)

Example 2

In general, when an instruction format requires an 8-bit register address, that address can specify any register location in the range 0–255 or, using Escaped Mode Addressing, a Working Register R0–R15. If the contents of Register 43H and Working Register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is shown in Table 107.

ilog° Embedded in Life An∎IXYS Company

188

Assembly		Address Mode Opcode(s)			Flags						Fetch Instr.		
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles		
POPX dst	dst $\leftarrow @SP$ SP \leftarrow SP + 1	ER		D8	-	-	-	-	-	_	3	2	
PUSH src	$SP \leftarrow SP - 1$	R		70	-	-	_	_	_	-	2	2	
	$@SP \leftarrow src$	IR		71	•						2	3	
	-	IM		IF70							3	2	
PUSHX src	$SP \leftarrow SP - 1$ @SP ← src	ER		C8	_	_	_	_	_	-	3	2	
RCF	C ← 0			CF	0	_	-	_	_	-	1	2	
RET	$PC \leftarrow @SP \\ SP \leftarrow SP + 2$			AF	_	-	-	_	_	_	1	4	
RL dst		R		90	*	*	*	*	_	-	2	2	
	C	IR		91	•						2	3	
RLC dst		R		10	*	*	*	*	_	_	2	2	
	C ← D7 D6 D5 D4 D3 D2 D1 D0 ← dst	IR		11							2	3	
RR dst		R		E0	*	*	*	*	-	_	2	2	
	► <u>D7D6D5D4D3D2D1D0</u> C dst	IR		E1							2	3	
RRC dst		R		C0	*	*	*	*	_	_	2	2	
	► D7 D6 D5 D4 D3 D2 D1 D0 - C dst	IR		C1	•						2	3	

Table 118. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

> ilog[®] Embedded in Life

■IXYS Company

211

Ordering Information

Order your F0823 Series products from Zilog using the part numbers shown in Table 135. For more information about ordering, please consult your local Zilog sales office. The <u>Sales Location page</u> on the Zilog website lists all regional offices.

	Table 155. 20	LIICO		1 0025 (Oraci	
Part Number	Flash RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP F0823			ash, 10	-Bit An	alog-1	o-Digi	ital Converter
Standard Temperatu							
Z8F0823PB005SG	8 KB 1 KB	6	12	2	4	1	PDIP 8-pin package
Z8F0823QB005SG	8 KB 1 KB	6	12	2	4	1	QFN 8-pin package
Z8F0823SB005SG	8 KB 1 KB	6	12	2	4	1	SOIC 8-pin package
Z8F0823SH005SG	8 KB 1 KB	16	18	2	7	1	SOIC 20-pin package
Z8F0823HH005SG	8 KB 1 KB	16	18	2	7	1	SSOP 20-pin package
Z8F0823PH005SG	8 KB 1 KB	16	18	2	7	1	PDIP 20-pin package
Z8F0823SJ005SG	8 KB 1 KB	22	18	2	8	1	SOIC 28-pin package
Z8F0823HJ005SG	8 KB 1 KB	22	18	2	8	1	SSOP 28-pin package
Z8F0823PJ005SG	8 KB 1 KB	22	18	2	8	1	PDIP 28-pin package
Extended Temperatu	ıre: –40°C to 10)5°C					
Z8F0823PB005EG	8 KB 1 KB	6	12	2	4	1	PDIP 8-pin package
Z8F0823QB005EG	8 KB 1 KB	6	12	2	4	1	QFN 8-pin package
Z8F0823SB005EG	8 KB 1 KB	6	12	2	4	1	SOIC 8-pin package
Z8F0823SH005EG	8 KB 1 KB	16	18	2	7	1	SOIC 20-pin package
Z8F0823HH005EG	8 KB 1 KB	16	18	2	7	1	SSOP 20-pin package
Z8F0823PH005EG	8 KB 1 KB	16	18	2	7	1	PDIP 20-pin package
Z8F0823SJ005EG	8 KB 1 KB	22	18	2	8	1	SOIC 28-pin package
Z8F0823HJ005EG	8 KB 1 KB	22	18	2	8	1	SSOP 28-pin package
Z8F0823PJ005EG	8 KB 1 KB	22	18	2	8	1	PDIP 28-pin package

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix

> ilog Embedded in Life An IXYS Company 217

							•	· · · ·
Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP F0823	3 Series	with 1 I	KB Fla	ash, 10	-Bit An	alog-1	to-Digi	tal Converter
Standard Temperatu	re: 0°C t	o 70°C						
Z8F0123PB005SG	1 KB	256 B	6	12	2	4	1	PDIP 8-pin package
Z8F0123QB005SG	1 KB	256 B	6	12	2	4	1	QFN 8-pin package
Z8F0123SB005SG	1 KB	256 B	6	12	2	4	1	SOIC 8-pin package
Z8F0123SH005SG	1 KB	256 B	16	18	2	7	1	SOIC 20-pin package
Z8F0123HH005SG	1 KB	256 B	16	18	2	7	1	SSOP 20-pin package
Z8F0123PH005SG	1 KB	256 B	16	18	2	7	1	PDIP 20-pin package
Z8F0123SJ005SG	1 KB	256 B	22	18	2	8	1	SOIC 28-pin package
Z8F0123HJ005SG	1 KB	256 B	22	18	2	8	1	SSOP 28-pin package
Z8F0123PJ005SG	1 KB	256 B	22	18	2	8	1	PDIP 28-pin package
Extended Temperatu	ure: –40°	C to 10	5°C					
Z8F0123PB005EG	1 KB	256 B	6	12	2	4	1	PDIP 8-pin package
Z8F0123QB005EG	1 KB	256 B	6	12	2	4	1	QFN 8-pin package
Z8F0123SB005EG	1 KB	256 B	6	12	2	4	1	SOIC 8-pin package
Z8F0123SH005EG	1 KB	256 B	16	18	2	7	1	SOIC 20-pin package
Z8F0123HH005EG	1 KB	256 B	16	18	2	7	1	SSOP 20-pin package
Z8F0123PH005EG	1 KB	256 B	16	18	2	7	1	PDIP 20-pin package
Z8F0123SJ005EG	1 KB	256 B	22	18	2	8	1	SOIC 28-pin package
Z8F0123HJ005EG	1 KB	256 B	22	18	2	8	1	SSOP 28-pin package
Z8F0123PJ005EG	1 KB	256 B	22	18	2	8	1	PDIP 28-pin package

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)

225

LDEI 179, 180 LDX 180 LEA 180 load 180 load constant 179 load constant to/from program memory 180 load constant with auto-increment addresses 180 load effective address 180 load external data 180 load external data to/from data memory and autoincrement addresses 179 load external to/from data memory and auto-increment addresses 180 load instructions 180 load using extended addressing 180 logical AND 181 logical AND/extended addressing 181 logical exclusive OR 181 logical exclusive OR/extended addressing 181 logical instructions 181 logical OR 181 logical OR/extended addressing 181 low power modes 30

Μ

master interrupt enable 56 memory data 15 program 13 mode CAPTURE 89 **CAPTURE/COMPARE 89 CONTINUOUS 88 COUNTER 89** GATED 89 **ONE-SHOT 88 PWM 89** modes 89 **MULT 179** multiply 179 MULTIPROCESSOR mode, UART 103

Ν

NOP (no operation) 180 notation b 176 cc 176 DA 176 ER 176 IM 176 IR 176 Ir 176 **IRR 176** Irr 176 p 176 R 176 r 176 RA 177 RR 177 rr 177 vector 177 X 177 notational shorthand 176

0

OCD architecture 156 auto-baud detector/generator 159 baud rate limits 160 block diagram 156 breakpoints 161 commands 162 control register 166 data format 159 DBG pin to RS-232 Interface 157 DEBUG mode 158 debugger break 181 interface 157 serial errors 160 status register 168 timing 207 **OCD** commands execute instruction (12H) 166 read data memory (0DH) 165 read OCD control register (05H) 163

230

Customer Support

To share comments, get your technical questions answered, or report issues you may be experiencing with our products, please visit Zilog's Technical Support page at <u>http://support.zilog.com</u>.

To learn more about this product, find additional documentation, or to discover other facets about Zilog product offerings, please visit the Zilog Knowledge Base at <u>http://</u><u>zilog.com/kb</u> or consider participating in the Zilog Forum at <u>http://zilog.com/forum</u>.

This publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the Zilog website at <u>http://www.zilog.com</u>.