

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	16
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0213ph005sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ilog Embedded in Life An IXYS Company 17

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
Timer 1 (cont'd)				
F0A	Timer 1 Reload High Byte	T1RH	FF	<u>85</u>
F0B	Timer 1 Reload Low Byte	T1RL	FF	<u>85</u>
F0C	Timer 1 PWM High Byte	T1PWMH	00	<u>86</u>
F0D	Timer 1 PWM Low Byte	T1PWML	00	<u>86</u>
F0E	Timer 1 Control 0	T1CTL0	00	<u>87</u>
F0F	Timer 1 Control 1	T1CTL1	00	<u>84</u>
F10–F3F	Reserved	—	XX	
UART				
F40	UART0 Transmit Data	U0TXD	XX	<u>109</u>
	UART0 Receive Data	U0RXD	XX	<u>109</u>
F41	UART0 Status 0	U0STAT0	0000011Xb	<u>110</u>
F42	UART0 Control 0	U0CTL0	00	<u>112</u>
F43	UART0 Control 1	U0CTL1	00	<u>112</u>
F44	UART0 Status 1	U0STAT1	00	<u>111</u>
F45	UART0 Address Compare	U0ADDR	00	<u>115</u>
F46	UART0 Baud Rate High Byte	U0BRH	FF	<u>115</u>
F47	UART0 Baud Rate Low Byte	U0BRL	FF	<u>115</u>
F48–F6F	Reserved	—	XX	
Analog-to-Digita	al Converter (ADC)			
F70	ADC Control 0	ADCCTL0	00	<u>127</u>
F71	ADC Control 1	ADCCTL1	80	<u>127</u>
F72	ADC Data High Byte	ADCD_H	XX	<u>130</u>
F73	ADC Data Low Bits	ADCD_L	XX	<u>130</u>
F74–F7F	Reserved	—	XX	
Low Power Con	trol			
F80	Power Control 0	PWRCTL0	80	<u>32</u>
F81	Reserved	_	XX	
LED Controller				
F82	LED Drive Enable	LEDEN	00	<u>51</u>
F83	LED Drive Level High Byte	LEDLVLH	00	<u>52</u>
Note: XX=Undefi				

Table 8. Register File Address Map (Continued)

Note: XX=Undefined.

ilog° Embedded in Life An∎IXYS Company

29

Bit	Description (Continued)
[4] EXT	External Reset Indicator If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register
	resets this bit. For POR/Stop Mode Recover event values, please see Table 13.
[3:0]	Reserved

These bits are reserved and must be programmed to 0000 when read.

Table 13. POR Indicator Values

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using WDT time-out	0	0	1	0
Reset using the OCD (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG Pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using WDT time-out	0	1	1	0

Embedded in Life An TXYS Company

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A ¹	PA0	T0IN/T0OUT	Timer 0 Input/Timer 0 Output Complement	N/A
		Reserved		-
	PA1	T0OUT	Timer 0 Output	-
		Reserved		-
	PA2	DE0	UART 0 Driver Enable	-
PA3 PA4 PA5 PA6		Reserved		_
	CTS0	UART 0 Clear to Send	_	
		Reserved		_
	PA4	RXD0/IRRX0	UART 0 / IrDA 0 Receive Data	_
		Reserved		_
	TXD0/IRTX0	UART 0 / IrDA 0 Transmit Data	_	
	Reserved		_	
	PA6	T1IN/T1OUT ²	Timer 1 Input/Timer 1 Output Complement	_
		Reserved		_
	PA7	T1OUT	Timer 1 Output	_
		Reserved		_

Table 17. Port Alternate Function Mapping (Non 8-Pin Parts)

Notes:

 Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in the <u>Port A–C Alternate Function</u> <u>Subregisters</u> section on page 43 automatically enables the associated alternate function.

2. Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in the <u>Timer Pin Signal Operation</u> section on page 83.

 Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, alternate function selection as described in the <u>Port A–C Alternate Function Subregisters</u> section on page 43 must also be enabled.

4. V_{REF} is available on PB5 in 28-pin products only.

 Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, Alternate Function selection as described in the <u>Port A–C Alternate Function Subregisters</u> section on page 43 must also be enabled.

6. V_{REF} is available on PC2 in 20-pin parts only.

Z8 Encore! XP[®] F0823 Series Product Specification

Port A–C Alternate Function Set 1 Subregisters

The Port A–C Alternate Function Set1 Subregister (Table 28) is accessed through the Port A–C Control Register by writing 07H to the Port A–C Address Register. The Alternate Function Set 1 subregisters selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register are defined in "GPIO Alternate Functions" on page 34.

Note: Alternate function selection on port pins must also be enabled as described in the <u>Port A</u>–<u>C Alternate Function Subregisters</u> section on page 43.

Bit	7	6	5	4	3	2	1	0
Field	PAFS17	PAFS16	PAFS15	PAFS14	PAFS13	PAFS12	PAFS11	PAFS10
RESET		00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 07H ir	n Port A–C A	Address Reg	jister, acces	sible throug	h the Port A	-C Control F	Register

Table 28. Port A–C Alternate Function Set 1 Subregisters (PAFS1x)

Bit Description

[7:0] Port Alternate Function Set to 1

PAFS1x 0 = Port Alternate Function selected as defined in Table 15 (see the <u>GPIO Alternate Functions</u> section on page 34).

1 = Port Alternate Function selected as defined in Table 15 (see the <u>GPIO Alternate Functions</u> section on page 34).

Note: x indicates the specific GPIO port pin number (7–0).

Priority	Program Memory Vector Address	Interrupt or Trap Source
Highest	0002H	Reset (not an interrupt)
-	0004H	Watchdog Timer (see the Watchdog Timer section on page 91)
	003AH	Primary Oscillator Fail Trap (not an interrupt)
	003CH	Watchdog Timer Oscillator Fail Trap (not an interrupt)
	0006H	Illegal Instruction Trap (not an interrupt)
	0008H	Reserved
	000AH	Timer 1
	000CH	Timer 0
	000EH	UART 0 receiver
	0010H	UART 0 transmitter
	0012H	Reserved
	0014H	Reserved
	0016H	ADC
	0018H	Port A Pin 7, selectable rising or falling input edge
	001AH	Port A Pin 6, selectable rising or falling input edge or Comparator Output
	001CH	Port A Pin 5, selectable rising or falling input edge
	001EH	Port A Pin 4, selectable rising or falling input edge
	0020H	Port A Pin 3 or Port D Pin 3, selectable rising or falling input edge
	0022H	Port A Pin 2 or Port D Pin 2, selectable rising or falling input edge
	0024H	Port A Pin 1, selectable rising or falling input edge
	0026H	Port A Pin 0, selectable rising or falling input edge
	0028H	Reserved
	002AH	Reserved
	002CH	Reserved
	002EH	Reserved
	0030H	Port C Pin 3, both input edges
	0032H	Port C Pin 2, both input edges
	0034H	Port C Pin 1, both input edges
	0036H	Port C Pin 0, both input edges
Lowest	0038H	Reserved

Table 35. Trap and Interrupt Vectors in Order of Priority

Embedded in Life

63

Bit	Description (Continued)
[5] T0ENL	Timer 0 Interrupt Request Enable Low Bit
[4] U0RENL	UART 0 Receive Interrupt Request Enable Low Bit
[3] U0TENL	UART 0 Transmit Interrupt Request Enable Low Bit
[2:1]	Reserved These bits are reserved and must be programmed to 00.
[0] ADCENL	ADC Interrupt Request Enable Low Bit

IRQ1 Enable High and Low Bit Registers

Table 42 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit registers (Table 43 and Table 44) form a priority-encoded enabling for interrupts in the Interrupt Request 1 Register. Priority is generated by setting bits in each register.

IRQ1ENL[<i>x</i>]	Priority	Description
0	Disabled	Disabled
1	Level 1	Low
0	Level 2	Nominal
1	Level 3	High
	IRQ1ENL[x] 0 1 0 1 1	0Disabled1Level 10Level 2

Table 42. IRQ1 Enable and Priority Encoding

Timers

Z8 Encore! XP F0823 Series products contain up to two 16-bit reloadable timers that are used for timing, event counting or generation of PWM signals. The timers' features include:

- 16-bit reload counter
- Programmable prescaler with prescale values from 1 to 128
- PWM output generation
- Capture and compare capability
- External input pin for timer input, clock gating, or capture signal; external input pin signal frequency is limited to a maximum of one-fourth the system clock frequency
- Timer output pin
- Timer interrupt

In addition to the timers described in this chapter, the baud rate generator of the UART (if unused) also provides basic timing functionality. For information about using the baud rate generator as an additional timer, see the <u>Universal Asynchronous Receiver/Transmitter</u> chapter on page 97.

Embedded in Life

PWM SINGLE OUTPUT Mode

In PWM SINGLE OUTPUT Mode, the timer outputs a PWM output signal through a GPIO port pin. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the Timer Output toggles. The timer continues counting until it reaches the reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control Register is set to 1, the Timer Output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the reload value and is reset to 0001H.

If the TPOL bit in the Timer Control Register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the reload value and is reset to 0001H.

Observe the following steps to configure a timer for PWM Single Output mode and initiating the PWM operation:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for PWM Mode
 - Set the prescale value
 - Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H); this write only affects the first pass in PWM Mode. After the first timer reset in PWM Mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM period). The reload value must be greater than the PWM value.
- 5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 6. Configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

Embedded in Life

two bits to configure timer interrupt definition, and a status bit to identify if the most recent timer interrupt is caused by an input capture event.

Table 57. Timer 0–1 Control Register 0 (TxCTL0)

		Table 5	57. Timer 0-	-1 Control R	egister 0 (TxCTL0)		
Bit	7	6	5	4	3	2	1	0
Field	TMODEHI	TICO	NFIG	Reserved		PWMD		INPCAP
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F06H,	F0EH	·		
Bit	Descript	tion						
[7] TMODEHI	This bit a	Timer Mode High Bit This bit along with the TMODE field in TxCTL1 Register determines the operating mode of the timer. This is the most-significant bit of the Timer mode selection value.						
[6:5] TICONFIG	6 This field 0x = Tim 10 = Tim	 Timer Interrupt Configuration This field configures timer interrupt definition. 0x = Timer Interrupt occurs on all defined reload, compare and input events. 10 = Timer Interrupt only on defined input capture/deassertion events. 11 = Timer Interrupt only on defined reload/compare events. 						
[4]	Reserve This bit is		and must be	programme	d to 0.			
[3:1] PWMD	PWMD—PWM Delay value This field is a programmable delay to control the number of system clock cycles delay before the Timer Output and the Timer Output Complement are forced to their active state. 000 = No delay. 001 = 2 cycles delay. 010 = 4 cycles delay. 011 = 8 cycles delay. 100 = 16 cycles delay. 101 = 32 cycles delay. 110 = 64 cycles delay. 111 = 128 cycles delay.							
[0] INPCAP	This bit i 0 = Previ	 Input Capture Event This bit indicates if the most recent timer interrupt is caused by a Timer Input capture event. 0 = Previous timer interrupt is not a result of Timer Input capture event. 1 = Previous timer interrupt is a result of Timer Input capture event. 						

Timer 0–1 Control Register 1

The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode.

ilog[°] Embedded in Life An∎IXYS Company 95

Table 61. Watchdog Timer Reload Upper Byte Register (WDTU)

Bit	7	6	5	4	3	2	1	0
Field		WDTU						
RESET	00H							
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*
Address	FF1H							
Note: R/W	*—Read retu	rns the curre	nt WDT count	t value. Write	sets the appr	opriate Reloa	id Value.	

Bit	Description
[7:0]	WDT Reload Upper Byte
WDTU	Most significant byte (MSB), Bits[23:16], of the 24-bit WDT reload value.

Table 62. Watchdog Timer Reload High Byte Register (WDTH)

Bit	7	6	5	4	3	2	1	0		
Field	WDTH									
RESET	04H									
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*		
Address	FF2H									
Note: R/W	te: R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.									

Bit	Description
[7:0]	WDT Reload High Byte
WDTH	Middle byte, Bits[15:8], of the 24-bit WDT reload value.

Table 63. Watchdog Timer Reload Low Byte Register (WDTL)

Bit	7	6	5	4	3	2	1	0			
Field	WDTL										
RESET	00H										
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*			
Address	FF3H										
Note: R/W	*—Read retu	rns the curre	Note: R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.								

Bit	Description
[7:0]	WDT Reload Low
WDTL	Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.

00

105

scheme, except that there are no interrupts on address bytes. The first data byte of each frame remains accompanied by a NEWFRM assertion.

External Driver Enable

The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature reduces the software overhead associated with using a GPIO pin to control the transceiver when communicating on a multi-transceiver bus, such as RS-485.

Driver Enable is an active High signal that envelopes the entire transmitted data frame including parity and Stop bits as displayed in Figure 14. The Driver Enable signal asserts when a byte is written to the UART Transmit Data Register. The Driver Enable signal asserts at least one UART bit period and no greater than two UART bit periods before the Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver Enable signal deasserts one system clock period after the final Stop bit is transmitted. This one system clock delay allows both time for data to clear the transceiver before disabling it, as well as the ability to determine if another character follows the current character. In the event of back to back characters (new data must be written to the Transmit Data Register before the previous character is completely transmitted) the DE signal is not deasserted between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of the Driver Enable signal.

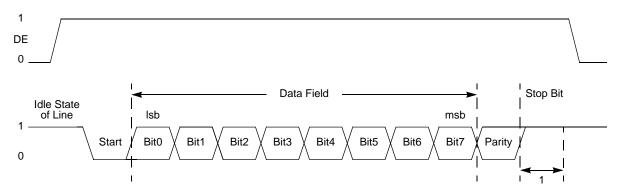


Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

UART Interrupts

The UART features separate interrupts for the transmitter and the receiver. In addition, when the UART primary functionality is disabled, the Baud Rate Generator can also function as a basic timer with interrupt capability.

Z8 Encore! XP[®] F0823 Series Product Specification

ilog Embedded in Life An∎IXYS Company 110

UART Status 0 Register

The UART Status 0 and Status 1 registers (Table 66 and Table 67) identify the current UART operating configuration and status.

Bit	7	6	5	4	3	2	1	0
Field	RDA	PE	OE	FE	BRKD	TDRE	TXE	CTS
RESET	0	0	0	0	0	1	1	Х
R/W	R	R	R	R	R	R	R	R
Address				F4	1H			
Bit	Descriptio	n						
[7] RDA	This bit indi Receive Da 0 = The UA	ita Register RT Receive	he UART Re clears this b Data Regis			received da	ata. Reading	the UART
[6] PE	register clea 0 = No parit	cates that a	occurred.	has occurre	d. Reading t	the UART R	eceive Data	
[5] OE	received an reading the 0 = No over	cates that a d the UART	Receive Da eive Data Re curred.		urred. An ov has not bee s this bit.			
[4] FE	Framing Error This bit indicates that a framing error (no Stop bit following data reception) was detected. Reading the UART Receive Data Register clears this bit. 0 = No framing error occurred. 1 = A framing error occurred.							
[3] BRKD	Break Detect This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data Register clears this bit. 0 = No break occurred. 1 = A break occurred.							

ILO O hbedded in Life IXYS Company
120

The window remains open until the count again reaches 8 (that is, 24 baud clock periods since the previous pulse was detected), giving the endec a sampling window of minus four baud rate clocks to plus eight baud rate clocks around the expected time of an incoming pulse. If an incoming pulse is detected inside this window this process is repeated. If the incoming data is a logical 1 (no pulse), the endec returns to the initial state and waits for the next falling edge. As each falling edge is detected, the endec clock counter is reset, resynchronizing the endec to the incoming signal, allowing the endec to tolerate jitter and baud rate errors in the incoming datastream. Resynchronizing the endec does not alter the operation of the UART, which ultimately receives the data. The UART is only synchronized to the incoming data stream when a Start bit is received.

Infrared Encoder/Decoder Control Register Definitions

All infrared endec configuration and status information is set by the UART control registers as defined in the <u>Universal Asynchronous Receiver/Transmitter</u> chapter on page 97.

Caution: To prevent spurious signals during IrDA data transmission, set the IREN bit in the UART Control 1 Register to 1 to enable the endec before enabling the GPIO port alternate function for the corresponding pin.

ilog^{*} Embedded in Life An∎IXYS Company 154

Serialization Data

Table 96. Serial Number at 001C–001F (S_NUM)

Bit	7	6	5	4	3	2	1	0		
Field	S_NUM									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	Information Page Memory 001C–001F									
Note: U =	Unchanged b	y Reset. R/W	/ = Read/Write	е.						

Bit Description [7:0] Serial Number Byte S_NUM The serial number is a unique four-byte binary value; see Table 97.

Table 97. Serialization Data Locations

Info Page Address	Memory Address	Usage
1C	FE1C	Serial Number Byte 3 (most significant).
1D	FE1D	Serial Number Byte 2.
1E	FE1E	Serial Number Byte 1.
1F	FE1F	Serial Number Byte 0 (least significant).

Randomized Lot Identifier

Table 98. Lot Identification Number (RAND_LOT)

Bit	7	6	5	4	3	2	1	0		
Field	RAND_LOT									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	Interspersed throughout Information Page Memory									
Note: U =	Unchanged b	y Reset. R/M	/ = Read/Write	ə.						

Bit	Description
[7] RAND_LOT	Randomized Lot ID The randomized lot ID is a 32-byte binary value that changes for each production lot; see Table 99.

ilog° Embedded in Life An∎IXYS Company

189

Assembly		Address <u>Mode</u> Opcode(s) _		Flags					Fetch Instr.			
Mnemonic	Symbolic Operation	dst	src	(Hex)		Ζ	S	۷	D	Н	Cycles	
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
		r	lr	33	-						2	4
	-	R	R	34	-						3	3
	-	R	IR	35	-						3	4
		R	IM	36	_						3	3
	-	IR	IM	37	-						3	4
SBCX dst, src	$dst \gets dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
	-	ER	IM	39	-						4	3
SCF	C ← 1			DF	1	_	_	-	_	-	1	2
SRA dst	**	R		D0	*	*	*	0	_	-	2	2
	D7_D6_D5_D4_D3_D2_D1_D0 ► C dst	IR		D1	-						2	3
SRL dst	0 - ▶ D7 D6 D5 D4 D3 D2 D1 D0 - ▶ C	R		1F C0	*	*	0	*	_	_	3	2
	dst	IR		1F C1	-						3	3
SRP src	$RP \leftarrow src$		IM	01	_	_	_	_	_	_	2	2
STOP	STOP Mode			6F	-	-	_	-	_	_	1	2
SUB dst, src	$dst \leftarrow dst - src$	r	r	22	*	*	*	*	1	*	2	3
	-	r	lr	23	-						2	4
	-	R	R	24	-						3	3
		R	IR	25	-						3	4
		R	IM	26	-						3	3
		IR	IM	27	-						3	4
SUBX dst, src	$dst \leftarrow dst - src$	ER	ER	28	*	*	*	*	1	*	4	3
		ER	IM	29	-						4	3
SWAP dst	$dst[7:4] \leftrightarrow dst[3:0]$	R		F0	Х	*	*	Х	-	_	2	2
	-	IR		F1	-						2	3

Table 118. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

Abbreviation	Description	Abbreviation	Description
b	Bit position	IRR	Indirect Register Pair
СС	Condition code	р	Polarity (0 or 1)
Х	8-bit signed index or displace- ment	r	4-bit Working Register
DA	Destination address	R	8-bit register
ER	Extended Addressing register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address
lr	Indirect Working Register	RA	Relative
IR	Indirect register	rr	Working Register Pair
Irr	Indirect Working Register Pair	RR	Register Pair

Table 119. Opcode Map Abbreviations

ILOG[°] Inbedded in Life IXYS Company **210**

Packaging

Zilog's F0823 Series of MCUs includes the Z8F0113, Z8F0123, Z8F0213, Z8F0223, Z8F0413, Z8F0423, Z8F0813 and Z8F0823 devices, which are available in the following packages:

- 8-pin Plastic Dual Inline Package (PDIP)
- 8-Pin Quad Flat No-Lead Package (QFN)/MLF-S¹
- 20-pin Plastic Dual-Inline Package (PDIP)
- 20-pin Small Outline Integrated Circuit Package (SOIC)
- 20-pin Small Shrink Outline Package (SSOP)
- 28-pin Plastic Dual-Inline Package (PDIP)
- 28-pin Small Outline Integrated Circuit Package (SOIC)
- 28-pin Small Shrink Outline Package (SSOP)

Current diagrams for each of these packages are published in Zilog's <u>Packaging Product</u> <u>Specification (PS0072)</u>, which is available free for download from the Zilog website.

^{1.} The footprint of the QFN)/MLF-S package is identical to that of the 8-pin SOIC package, but with a lower profile.

Z8 Encore! XP[®] F0823 Series Product Specification

> ilog Embedded in Life An IXYS Company 215

						U	· · · ·
Part Number	Flash RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP F0823 Series with 2 KB Flash, 10-Bit Analog-to-Digital Converter							
Standard Temperature: 0°C to 70°C							
Z8F0223PB005SG	2 KB 512	B 6	12	2	4	1	PDIP 8-pin package
Z8F0223QB005SG	2 KB 512	B 6	12	2	4	1	QFN 8-pin package
Z8F0223SB005SG	2 KB 512	B 6	12	2	4	1	SOIC 8-pin package
Z8F0223SH005SG	2 KB 512	B 16	18	2	7	1	SOIC 20-pin package
Z8F0223HH005SG	2 KB 512	B 16	18	2	7	1	SSOP 20-pin package
Z8F0223PH005SG	2 KB 512	B 16	18	2	7	1	PDIP 20-pin package
Z8F0223SJ005SG	2 KB 512	B 22	18	2	8	1	SOIC 28-pin package
Z8F0223HJ005SG	2 KB 512	B 22	18	2	8	1	SSOP 28-pin package
Z8F0223PJ005SG	2 KB 512	B 22	18	2	8	1	PDIP 28-pin package
Extended Temperature: –40°C to 105°C							
Z8F0223PB005EG	2 KB 512	B 6	12	2	4	1	PDIP 8-pin package
Z8F0223QB005EG	2 KB 512	B 6	12	2	4	1	QFN 8-pin package
Z8F0223SB005EG	2 KB 512	B 6	12	2	4	1	SOIC 8-pin package
Z8F0223SH005EG	2 KB 512	B 16	18	2	7	1	SOIC 20-pin package
Z8F0223HH005EG	2 KB 512	B 16	18	2	7	1	SSOP 20-pin package
Z8F0223PH005EG	2 KB 512	B 16	18	2	7	1	PDIP 20-pin package
Z8F0223SJ005EG	2 KB 512	B 22	18	2	8	1	SOIC 28-pin package
Z8F0223HJ005EG	2 KB 512	B 22	18	2	8	1	SSOP 28-pin package
Z8F0223PJ005EG	2 KB 512	B 22	18	2	8	1	PDIP 28-pin package

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)

230

Customer Support

To share comments, get your technical questions answered, or report issues you may be experiencing with our products, please visit Zilog's Technical Support page at <u>http://support.zilog.com</u>.

To learn more about this product, find additional documentation, or to discover other facets about Zilog product offerings, please visit the Zilog Knowledge Base at <u>http://</u><u>zilog.com/kb</u> or consider participating in the Zilog Forum at <u>http://zilog.com/forum</u>.

This publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the Zilog website at <u>http://www.zilog.com</u>.