

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	24
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0213pj005eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ilog[®]

ii

Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

Z8 Encore! XP[®] F0823 Series Product Specification

MULTIPROCESSOR (9-Bit) Mode	. 103
External Driver Enable	. 105
UART Interrupts	. 105
UART Baud Rate Generator	. 108
UART Control Register Definitions	. 108
UART Transmit Data Register	. 109
UART Receive Data Register	. 109
UART Status 0 Register	. 110
UART Status 1 Register	. 111
UART Control 0 and Control 1 Registers	. 112
UART Address Compare Register	. 115
UART Baud Rate High and Low Byte Registers	. 115
Infrared Encoder/Decoder	. 117
Architecture	. 117
Operation	. 117
Transmitting IrDA Data	. 118
Receiving IrDA Data	. 119
Infrared Encoder/Decoder Control Register Definitions	. 120
Analog-to-Digital Converter	. 121
Architecture	. 121
Operation	. 122
Automatic Powerdown	. 123
Single-Shot Conversion	. 123
Continuous Conversion	. 124
Interrupts	. 125
Calibration and Compensation	. 125
ADC Control Register Definitions	. 126
ADC Control Register 0	. 126
ADC Control/Status Register 1	. 129
ADC Data High Byte Register	. 130
ADC Data Low Bits Register	. 131
Comparator	. 132
Operation	. 132
Comparator Control Register Definition	. 133
Flash Memory	. 134
Flash Information Area	. 135
Operation	. 135
Flash Operation Timing Using the Flash Frequency Registers	. 137
Flash Code Protection Against External Access	. 137

An IXYS Company 6

On-Chip Debugger

F0823 Series products feature an integrated On-Chip Debugger. The OCD provides a richset of debugging capabilities, such as reading and writing registers, programming Flash memory, setting breakpoints and executing code. A single-pin interface provides communication to the OCD.

nbedded in Life

13

Address Space

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O Port Control Registers
- The Program Memory contains addresses for all memory locations having executable code and/or data
- The Data Memory contains addresses for all memory locations that contain data only

These three address spaces are covered briefly in the following subsections. For more detailed information regarding the eZ8 CPU and its address space, refer to the <u>eZ8 CPU</u> <u>Core User Manual (UM0128)</u>, available for download at <u>www.zilog.com</u>.

Register File

The Register File address space in the Z8 Encore! XP[™] MCU is 4KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. Z8 Encore! XP F0823 Series devices contain 256B–1KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64KB of Program Memory address space. F0823 Series devices contain 1KB to 8KB of on-chip Flash memory in the Program Memory address space. Reading from Program Memory addresses outside the available Flash memory addresses

ILOG[°] Embedded in Life □IXYS Company 22

During a System Reset or Stop Mode Recovery, the IPO requires 4 µs to start up. Then the Z8 Encore! XP F0823 Series device is held in Reset for 66 cycles of the Internal Precision Oscillator. If the crystal oscillator is enabled in the Flash option bits, this reset period is increased to 5000 IPO cycles. When a reset occurs because of a low voltage condition or Power-On Reset, this delay is measured from the time that the supply voltage first exceeds the POR level. If the external pin reset remains asserted at the end of the reset period, the device remains in reset until the pin is deasserted.

At the beginning of Reset, all GPIO pins are configured as inputs with pull-up resistor disabled.

During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal oscillator and Watchdog Timer oscillator continue to run.

Upon Reset, control registers within the Register File that have a defined Reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer, and Flags) and general-purpose RAM are undefined following Reset. The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address.

When the control registers are re-initialized by a system reset, the system clock after reset is always the IPO. The software must reconfigure the oscillator control block, such that the correct system clock source is enabled and selected.

Embedded in Life

38

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port C ⁴	PC0	Reserved		AFS1[0]: 0
		ANA4/CINP	ADC or Comparator Input	AFS1[0]: 1
	PC1	Reserved		AFS1[1]: 0
		ANA5/CINN	ADC or Comparator Input	AFS1[1]: 1
	PC2	Reserved		AFS1[2]: 0
		ANA6/V _{REF} ⁶	ADC Analog Input or ADC Voltage Refer- ence	AFS1[2]: 1
	PC3	COUT	Comparator Output	AFS1[3]: 0
		Reserved		AFS1[3]: 1
	PC4	Reserved		AFS1[4]: 0
				AFS1[4]: 1
	PC5	Reserved		AFS1[5]: 0
				AFS1[5]: 1
	PC6	Reserved		AFS1[6]: 0
				AFS1[6]: 1
	PC7	Reserved		AFS1[7]: 0
				AFS1[7]: 1

Table 17. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)

Notes:

- Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in the <u>Port A–C Alternate Function</u> Subregisters section on page 43 automatically enables the associated alternate function.
- 2. Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in the <u>Timer Pin Signal Operation</u> section on page 83.
- 3. Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, alternate function selection as described in the <u>Port A–C Alternate Function Subregisters</u> section on page 43 must also be enabled.
- 4. V_{REF} is available on PB5 in 28-pin products only.
- Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, Alternate Function selection as described in the <u>Port A–C Alternate Function Subregisters</u> section on page 43 must also be enabled.
- 6. V_{REF} is available on PC2 in 20-pin parts only.

Direct LED Drive

The Port C pins provide a current sinked output capable of driving an LED without requiring an external resistor. The output sinks current at programmable levels of 3mA, 7mA, 13mA, and 20mA. This mode is enabled through the LED control registers. The LED Drive Enable (LEDEN) register turns on the drivers. The LED Drive Level (LEDLVLH and LEDLVLL) registers select the sink current.

ilog Embedded in Life An ∎IXYS Company 51

Port A–C Output Data Register

The Port A–C Output Data Register (Table 31) controls the output data to the pins.

Table 31. Port A–C Output Data Register (PxOUT)

Bit	7	6	5	4	3	2	1	0
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FD3H, FD7H, FDBH							

Bit Description

[7:0] **Port Output Data**

PxOUT These bits contain the data to be driven to the port pins. The values are only driven if the corresponding pin is configured as an output and the pin is not configured for alternate function operation.

0 = Drive a logical 0 (Low).

1 = Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting the corresponding Port Output Control Register bit to 1.

Note: x indicates the specific GPIO port pin number (7–0).

LED Drive Enable Register

The LED Drive Enable Register, shown in Table 32, activates the controlled current drive. The Alternate Function Register has no control over the LED function; therefore, setting the Alternate Function Register to select the LED function is not required. LEDEN bits [7:0] correspond to Port C bits [7:0], respectively.

Bit	7	6	5	4	3	2	1	0	
Field	LEDEN[7:0]								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		F82H							

Table 32. LED Drive Enable (LEDEN)

[7:0]	LED Drive Enable	

Description

LEDEN These bits determine which Port C pins are connected to an internal current sink.

1= Connect controlled current sink to the Port C pin.

Bit

^{0 =} Tristate the Port C pin.

Embedded in Life

PWM SINGLE OUTPUT Mode

In PWM SINGLE OUTPUT Mode, the timer outputs a PWM output signal through a GPIO port pin. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the Timer Output toggles. The timer continues counting until it reaches the reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control Register is set to 1, the Timer Output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the reload value and is reset to 0001H.

If the TPOL bit in the Timer Control Register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the reload value and is reset to 0001H.

Observe the following steps to configure a timer for PWM Single Output mode and initiating the PWM operation:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for PWM Mode
 - Set the prescale value
 - Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H); this write only affects the first pass in PWM Mode. After the first timer reset in PWM Mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM period). The reload value must be greater than the PWM value.
- 5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 6. Configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

ilog° Embedded in Life An∎IXYS Company 88

Bit	7	6	5	4	3	2	1	0
Field	TEN	TPOL		PRES			TMODE	
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F07H, F0FH							

Table 58. Timer 0–1 Control Register 1 (TxCTL1)

Bit	Description
[7]	Timer Enable
TEN	0 = Timer is disabled.
	1 = Timer enabled to count.
[6]	Timer Input/Output Polarity
TPOL	Operation of this bit is a function of the current operating mode of the timer.
	ONE-SHOT Mode
	When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer reload.
	CONTINUOUS Mode
	When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer reload.

Z8 Encore! XP[®] F0823 Series Product Specification

Operation

The UART always transmits and receives data in an 8-bit data format, least-significant bit (lsb) first. An even or odd parity bit can be added to the data stream. Each character begins with an active Low Start bit and ends with either 1 or 2 active High Stop bits. Figure 11 and Figure 12 display the asynchronous data format employed by the UART without parity and with parity, respectively.

116

The UART data rate is calculated using the following equation:

UART Baud Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

For a given UART data rate, calculate the integer baud rate divisor value using the following equation:

UART Baud Rate Divisor Value (BRG) = Round $\left(\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Data Rate (bits/s)}}\right)$

The baud rate error relative to the acceptable baud rate is calculated using the following equation:

UART Baud Rate Error (%) = $100 \times \left(\frac{\text{Actual Data Rate} - \text{Desired Data Rate}}{\text{Desired Data Rate}}\right)$

For reliable communication, the UART baud rate error must never exceed five percent. Table 73 provides information about data rate errors for a 5.5296MHz System Clock.

5.5296MHz System Clock							
Acceptable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)				
1250.0	N/A	N/A	N/A				
625.0	N/A	N/A	N/A				
250.0	1	345.6	38.24				
115.2	3	115.2	0.00				
57.6	6	57.6	0.00				
38.4	9	38.4	0.00				
19.2	18	19.2	0.00				
9.60	36	9.60	0.00				
4.80	72	4.80	0.00				
2.40	144	2.40	0.00				
1.20	288	1.20	0.00				
0.60	576	0.60	0.00				
0.30	1152	0.30	0.00				

Table 73. UART Baud Rates

nbedded in Life IXYS Company 138

Table 80. Flash Code Protection Using the Flash Option Bits

FWP	Flash Code Protection Description
0	Programming and erasing disabled for all of Flash Program Memory. In user code program- ming, Page Erase, and Mass Erase are all disabled. Mass Erase is available through the On- Chip Debugger.
1	Programming, Page Erase, and Mass Erase are enabled for all of Flash Program Memory.

Flash Code Protection Using the Flash Controller

At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash memory. To program or erase the Flash memory, first write the Page Select Register with the target page. Unlock the Flash Controller by making two consecutive writes to the Flash Control Register with the values 73H and 8CH, sequentially. The Page Select Register must be rewritten with the same page previously stored there. If the two Page Select writes do not match, the controller reverts to a locked state. If the two writes match, the selected page becomes active. For more details, see Figure 21.

After unlocking a specific page, you can enable either Page Program or Erase. Writing the value 95H causes a Page Erase only if the active page resides in a sector that is not protected. Any other value written to the Flash Control Register locks the Flash Controller. Mass Erase is not allowed in the user code but only in through the Debug Port.

After unlocking a specific page, you can also write to any byte on that page. After a byte is written, the page remains unlocked, allowing for subsequent writes to other bytes on the same page. Further writes to the Flash Control Register cause the active page to revert to a locked state.

Sector-Based Flash Protection

The final protection mechanism is implemented on a per-sector basis. The Flash memories of Z8 Encore! XP devices are divided into maximum number of 8 sectors. A sector is 1/8 of the total Flash memory size unless this value is smaller than the page size – in which case, the sector and page sizes are equal. On Z8 Encore! F0823 Series devices, the sector size is varied according to the Flash memory configuration shown in <u>Table 79</u> on page 134.

The Flash Sector Protect Register can be configured to prevent sectors from being programmed or erased. After a sector is protected, it cannot be unprotected by user code. The Flash Sector Protect Register is cleared after reset, and any previously-written protection values are lost. User code must write this register in their initialization routine if they prefer to enable sector protection.

The Flash Sector Protect Register shares its Register File address with the Page Select Register. The Flash Sector Protect Register is accessed by writing the Flash Control Register with 5EH. After the Flash Sector Protect Register is selected, it can be accessed at the Page Select Register address. When user code writes the Flash Sector Protect Register,

ilog Ibedded in Life

156

On-Chip Debugger

Z8 Encore! XP F0823 Series devices contain an integrated On-Chip Debugger (OCD) which provides advanced debugging features that include:

- Single pin interface
- Reading and writing of the register file
- Reading and writing of program and data memory
- Setting of breakpoints and watchpoints
- Executing eZ8 CPU instructions
- Debug pin sharing with general-purpose input-output function to maximize the pins available

Architecture

The on-chip debugger consists of four primary functional blocks: transmitter, receiver, auto-baud detector/generator, and debug controller. Figure 22 displays the architecture of the OCD.

Figure 22. On-Chip Debugger Block Diagram

Z8 Encore! XP[®] F0823 Series Product Specification

Table 102. OCD Control Register (OCDCTL)

Bit	7	6	5	4	3	2	1	0	
Field	DBGMODE	BRKEN	DBGACK		Rese	erved		RST	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R	R	R	R	R/W	
Bit	Bit Description								
[7] DBGMODI	DEBUG M The device stops fetch automatica Flash Read device. It of 0 = F0823 1 = F0823	DEBUG Mode The device enters DEBUG Mode when this bit is 1. When in DEBUG Mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is automatically set when a BRK instruction is decoded and breakpoints are enabled. If the Flash Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device. It cannot be written to 0. 0 = F0823 Series device is operating in NORMAL Mode. 1 = F0823 Series device is in DEBUG Mode							
[6] BRKEN	 Breakpoint Enable N This bit controls the behavior of the BRK instruction (opcode 00H). By default, breakpoints are disabled and the BRK instruction behaves similar to an NOP instruction. If this bit is 1, when a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automatically set to 1. 0 = Breakpoints are disabled. 1 = Breakpoints are enabled. 								
[5] DBGACK	Debug Acknowledge This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a Debug Acknowledge character (FFH) to the host when a Breakpoint occurs. 0 = Debug Acknowledge is disabled. 1 = Debug Acknowledge is enabled.								
[4:1]	Reserved These bits are reserved and must be 00000 when read.								
[0] RST	Reset Setting this bit to 1 resets the Z8F04xA family device. The device goes through a normal Power-On Reset sequence with the exception that the OCD is not reset. This bit is automat ically cleared to 0 at the end of reset. 0 = No effect. 1 = Reset the Flash Read Protect Option Bit device.						a normal is automat-		

nbedded in Life

171

conditions, do not enable the clock failure circuitry (POFEN must be deasserted in the OSCCTL Register).

Watchdog Timer Failure

In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like event is issued. This event does not trigger an attendant clock switch-over, but alerts the CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a primary oscillator failure. The failure detection circuitry does not function if the Watchdog Timer is used as the primary oscillator or if the Watchdog Timer oscillator has been disabled. For either of these cases, it is necessary to disable the detection circuitry by deasserting the WDFEN bit of the OSCCTL Register.

The Watchdog Timer oscillator failure detection circuit counts system clocks while searching for a Watchdog Timer clock. The logic counts 8004 system clock cycles before determining that a failure has occurred. The system clock rate determines the speed at which the Watchdog Timer failure can be detected. A very slow system clock results in very slow detection times.

Caution: It is possible to disable the clock failure detection circuitry as well as all functioning clock sources. In this case, the Z8 Encore! XP F0823 Series device ceases functioning and can only be recovered by Power-On Reset.

Oscillator Control Register Definitions

The following section provides the bit definitions for the Oscillator Control Register.

Oscillator Control Register

The Oscillator Control Register (OSCCTL) enables/disables the various oscillator circuits, enables/disables the failure detection/recovery circuitry and selects the primary oscillator, which becomes the system clock.

The Oscillator Control Register must be unlocked before writing. Writing the two step sequence E7H followed by 18H to the Oscillator Control Register unlocks it. The register is locked at successful completion of a register write to the OSCCTL.

205

An∎IXYS Company

Table 130. GPIO Port Input Timing	

		Delay (ns)		
Parameter	Abbreviation	Minimum	Maximum	
T _{S_PORT}	Port Input Transition to X _{IN} Rise Setup Time (Not pictured)	5	_	
T _{H_PORT}	X _{IN} Rise to Port Input Transition Hold Time (Not pictured)	0	_	
T _{SMR}	GPIO Port Pin Pulse Width to ensure Stop Mode Recovery (for GPIO Port Pins enabled as SMR sources)	1 μs		

Z8 Encore! XP[®] F0823 Series Product Specification

> ilog Embedded in Life An IXYS Company 217

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP F0823 Series with 1 KB Flash, 10-Bit Analog-to-Digital Converter								
Standard Temperature: 0°C to 70°C								
Z8F0123PB005SG	1 KB	256 B	6	12	2	4	1	PDIP 8-pin package
Z8F0123QB005SG	1 KB	256 B	6	12	2	4	1	QFN 8-pin package
Z8F0123SB005SG	1 KB	256 B	6	12	2	4	1	SOIC 8-pin package
Z8F0123SH005SG	1 KB	256 B	16	18	2	7	1	SOIC 20-pin package
Z8F0123HH005SG	1 KB	256 B	16	18	2	7	1	SSOP 20-pin package
Z8F0123PH005SG	1 KB	256 B	16	18	2	7	1	PDIP 20-pin package
Z8F0123SJ005SG	1 KB	256 B	22	18	2	8	1	SOIC 28-pin package
Z8F0123HJ005SG	1 KB	256 B	22	18	2	8	1	SSOP 28-pin package
Z8F0123PJ005SG	1 KB	256 B	22	18	2	8	1	PDIP 28-pin package
Extended Temperature: -40°C to 105°C								
Z8F0123PB005EG	1 KB	256 B	6	12	2	4	1	PDIP 8-pin package
Z8F0123QB005EG	1 KB	256 B	6	12	2	4	1	QFN 8-pin package
Z8F0123SB005EG	1 KB	256 B	6	12	2	4	1	SOIC 8-pin package
Z8F0123SH005EG	1 KB	256 B	16	18	2	7	1	SOIC 20-pin package
Z8F0123HH005EG	1 KB	256 B	16	18	2	7	1	SSOP 20-pin package
Z8F0123PH005EG	1 KB	256 B	16	18	2	7	1	PDIP 20-pin package
Z8F0123SJ005EG	1 KB	256 B	22	18	2	8	1	SOIC 28-pin package
Z8F0123HJ005EG	1 KB	256 B	22	18	2	8	1	SSOP 28-pin package
Z8F0123PJ005EG	1 KB	256 B	22	18	2	8	1	PDIP 28-pin package

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)

219

ilog[®] Embedded in Life

An∎IXYS Company

Part Number	Flash	RAM	VO Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP F0823 Series Development Kit								
Z8F08A28100KITG		Z8 En	core! X	P F08	2A Serie	es Dev	velopme	nt Kit (20- and 28-Pin)
Z8F04A28100KITG		Z8 Encore! XP F042A Series Development Kit (20- and 28-Pin)						
Z8F04A08100KITG Z8 Encore! XP F042A Series Development Kit (8-Pin)			nt Kit (8-Pin)					
ZUSBSC00100ZACG	USB Smart Cable Accessory Kit							
ZUSBOPTSC01ZACG		Opto-Isolated USB Smart Cable Accessory Kit						
ZENETSC0100ZACG		Ethernet Smart Cable Accessory Kit						

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)

221

Index

Numerics

10-bit ADC 4

Α

absolute maximum ratings 196 AC characteristics 200 ADC 178 architecture 121 block diagram 122 continuous conversion 124 control register 126, 129 control register definitions 126 data high byte register 130 data low bits register 131 electrical characteristics and timing 203 operation 122 single-shot conversion 123 ADCCTL register 126, 129 ADCDH register 130 ADCDL register 131 ADCX 178 ADD 178 add - extended addressing 178 add with carry 178 add with carry - extended addressing 178 additional symbols 177 address space 13 **ADDX 178** analog signals 10 analog-to-digital converter (ADC) 121 AND 181 **ANDX 181** arithmetic instructions 178 assembly language programming 174 assembly language syntax 175

В

B 177

b 176 baud rate generator, UART 108 **BCLR 179** binary number suffix 177 **BIT 179** bit 176 clear 179 manipulation instructions 179 set 179 set or clear 179 swap 179 test and jump 181 test and jump if non-zero 181 test and jump if zero 181 bit jump and test if non-zero 181 bit swap 181 block diagram 3 block transfer instructions 179 **BRK 181 BSET 179** BSWAP 179, 181 BTJ 181 **BTJNZ 181 BTJZ 181**

С

CALL procedure 181 CAPTURE mode 89 CAPTURE/COMPARE mode 89 cc 176 CCF 180 characteristics, electrical 196 clear 180 CLR 180 COM 181 COMPARE 89 compare - extended addressing 178 COMPARE mode 89 compare with carry 178

UARTx control 1 (UxCTL1) 113 UARTx receive data (UxRXD) 109 UARTx status 0 (UxSTAT0) 110 UARTx status 1 (UxSTAT1) 111 UARTx transmit data (UxTXD) 109 Watchdog Timer control (WDTCTL) 94, 133 watch-dog timer control (WDTCTL) 172 Watchdog Timer reload high byte (WDTH) 95 Watchdog Timer reload low byte (WDTL) 95 Watchdog Timer reload upper byte (WDTU) 95 register file 13 register pair 177 register pointer 177 reset and stop mode characteristics 21 and stop mode recovery 21 carry flag 179 sources 23 **RET 181** return 181 RL 181 **RLC 181** rotate and shift instructions 181 rotate left 181 rotate left through carry 181 rotate right 182 rotate right through carry 182 RP 177 RR 177, 182 rr 177 **RRC 182**

S

SBC 179 SCF 179, 180 second opcode map after 1FH 195 set carry flag 179, 180 set register pointer 180 shift right arithmetic 182 shift right logical 182 signal descriptions 9 single-sho conversion (ADC) 123 software trap 181 source operand 177 SP 177 **SRA 182** src 177 **SRL 182 SRP 180** stack pointer 177 **STOP 180** STOP mode 30, 180 Stop Mode Recovery sources 26 using a GPIO port pin transition 27, 28 using Watchdog Timer time-out 27 **SUB 179** subtract 179 subtract - extended addressing 179 subtract with carry 179 subtract with carry - extended addressing 179 **SUBX 179 SWAP 182** swap nibbles 182 symbols, additional 177

Т

TCM 179 TCMX 179 test complement under mask 179 test complement under mask - extended addressing 179 test under mask 179 test under mask - extended addressing 179 timer signals 9 timers 69 architecture 70 block diagram 70 CAPTURE mode 78, 79, 89 CAPTURE/COMPARE mode 82, 89 COMPARE mode 80, 89 CONTINUOUS mode 71, 88 COUNTER mode 72, 73 **COUNTER modes 89** GATED mode 81, 89

