

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	6
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-QFN (5x6)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0213qb005eg

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ilog[®]

ii

Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

ilog[°] Embedded in Life An ∎IXYS Company

5

Internal Precision Oscillator

The internal precision oscillator (IPO) is a trimmable clock source that requires no external components.

10-Bit Analog-to-Digital Converter

The optional analog-to-digital converter (ADC) converts an analog input signal to a 10-bit binary number. The ADC accepts inputs from eight different analog input pins in both single-ended and differential modes.

Analog Comparator

The analog comparator compares the signal at an input pin with either an internal programmable voltage reference or a second input pin. The comparator output can be used to drive either an output pin or to generate an interrupt.

Universal Asynchronous Receiver/Transmitter

The UART is full-duplex and capable of handling asynchronous data transfers. The UART supports 8- and 9-bit data modes and selectable parity. The UART also supports multi-drop address processing in hardware. The UART baud rate generator can be configured and used as a basic 16-bit timer.

Timers

Two enhanced 16-bit reloadable timers can be used for timing/counting events or for motor control operations. These timers provide a 16-bit programmable reload counter and operate in ONE-SHOT, CONTINUOUS, GATED, CAPTURE, CAPTURE RESTART, COMPARE, CAPTURE AND COMPARE, PWM SINGLE OUTPUT, and PWM DUAL OUTPUT modes.

Interrupt Controller

Z8 Encore! XP[®] F0823 Series products support up to 20 interrupts. These interrupts consist of eight internal peripheral interrupts and 12 general-purpose I/O pin interrupt sources. The interrupts have three levels of programmable interrupt priority.

Reset Controller

Z8 Encore! $XP^{\text{(B)}}$ F0823 Series products can be reset using the RESET pin, POR, WDT time-out, STOP Mode exit, or Voltage Brown-Out warning signal. The RESET pin is bidirectional, that is, it functions as reset source as well as a reset indicator.

8

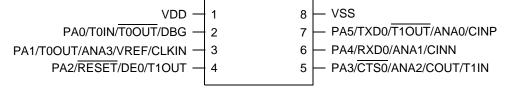
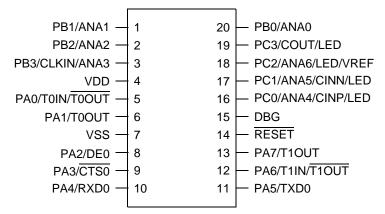



Figure 2. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 8-Pin SOIC, QFN/MLF-S, or PDIP Package*

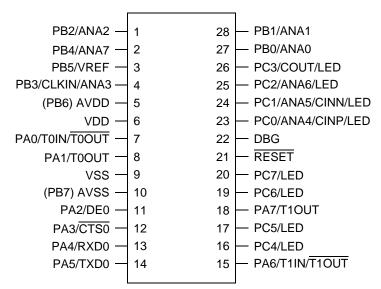


Figure 4. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 28-Pin SOIC, SSOP or PDIP Package*

nbedded in Life

13

Address Space

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O Port Control Registers
- The Program Memory contains addresses for all memory locations having executable code and/or data
- The Data Memory contains addresses for all memory locations that contain data only

These three address spaces are covered briefly in the following subsections. For more detailed information regarding the eZ8 CPU and its address space, refer to the <u>eZ8 CPU</u> <u>Core User Manual (UM0128)</u>, available for download at <u>www.zilog.com</u>.

Register File

The Register File address space in the Z8 Encore! XP[™] MCU is 4KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. Z8 Encore! XP F0823 Series devices contain 256B–1KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64KB of Program Memory address space. F0823 Series devices contain 1KB to 8KB of on-chip Flash memory in the Program Memory address space. Reading from Program Memory addresses outside the available Flash memory addresses

ilog° Embedded in Life An∎IXYS Company

29

Bit	Description (Continued)
[4] EXT	External Reset Indicator If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register
	resets this bit. For POR/Stop Mode Recover event values, please see Table 13.
[3:0]	Reserved

These bits are reserved and must be programmed to 0000 when read.

Table 13. POR Indicator Values

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using WDT time-out	0	0	1	0
Reset using the OCD (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG Pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using WDT time-out	0	1	1	0

Embedded in Life

Shared Interrupt Select Register

The Shared Interrupt Select (IRQSS) register (Table 49) determines the source of the PADxS interrupts. The Shared Interrupt Select register selects between Port A and alternate sources for the individual interrupts.

Because these shared interrupts are edge-triggered, it is possible to generate an interrupt just by switching from one shared source to another. For this reason, an interrupt must be disabled before switching between sources.

Bit	7	6	5	4	3	2	1	0
Field	Reserved	PA6CS	Reserved					
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		FCEH						

Table 49. Shared Interrupt Select Register (IRQSS)

Bit	Description
[7]	Reserved This bit is reserved and must be programmed to 0.
[6] PA6CS	 PA6/Comparator Selection 0 = PA6 is used for the interrupt for PA6CS interrupt request. 1 = The comparator is used as an interrupt for PA6CS interrupt requests.
[5:0]	Reserved These bits are reserved and must be programmed to 000000.

Embedded in Life An IXYS Company 97

Universal Asynchronous Receiver/ Transmitter

The universal asynchronous receiver/transmitter (UART) is a full-duplex communication channel capable of handling asynchronous data transfers. The UART uses a single 8-bit data mode with selectable parity. The features of UART include:

- 8-bit asynchronous data transfer
- Selectable even- and odd-parity generation and checking
- Option of one or two STOP bits
- Separate transmit and receive interrupts
- Framing, parity, overrun, and break detection
- Separate transmit and receive enables
- 16-bit baud rate generator (BRG)
- Selectable MULTIPROCESSOR (9-bit) Mode with three configurable interrupt schemes
- BRG can be configured and used as a basic 16-bit timer
- Driver Enable output for external bus transceivers

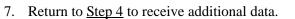
Architecture

The UART consists of three primary functional blocks: transmitter, receiver, and baud rate generator. The UART's transmitter and receiver function independently, but employ the same baud rate and data format. Figure 10 displays the UART architecture.

nbedded in Life

100

- Set or clear the CTSE bit to enable or disable control from the remote receiver using the $\overline{\text{CTS}}$ pin
- 6. Check the TDRE bit in the UART Status 0 Register to determine if the Transmit Data Register is empty (indicated by a 1). If empty, continue to <u>Step 7</u>. If the Transmit Data Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data Register becomes available to receive new data.
- 7. Write the UART Control 1 Register to select the outgoing address bit.
- 8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 9. Write the data byte to the UART Transmit Data Register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
- 10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate and MULTIPROCESSOR Mode is enabled,.
- 11. To transmit additional bytes, return to <u>Step 5</u>.


Transmitting Data Using the Interrupt-Driven Method

The UART Transmitter interrupt indicates the availability of the Transmit Data Register to accept new data for transmission. Observe the following steps to configure the UART for interrupt-driven data transmission:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the acceptable priority.
- 5. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) Mode functions, if MULTIPROCESSOR Mode is appropriate.
- 6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR Mode.
- 7. Write to the UART Control 0 Register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission.
 - Enable parity, if appropriate and if MULTIPROCESSOR Mode is not enabled, and select either even or odd parity.

nbedded in Life

102

Receiving Data Using the Interrupt-Driven Method

The UART Receiver interrupt indicates the availability of new data (as well as error conditions). Observe the following steps to configure the UART receiver for interrupt-driven operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the acceptable baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set the acceptable priority.
- 5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.
- 6. Write to the UART Control 1 Register to enable Multiprocessor (9-bit) mode functions, if appropriate.
 - Set the Multiprocessor Mode Select (MPEN) to Enable MULTIPROCESSOR Mode
 - Set the Multiprocessor Mode Bits, MPMD[1:0], to select the acceptable address matching scheme
 - Configure the UART to interrupt on received data and errors or errors only (interrupt on errors only is unlikely to be useful for Z8 Encore! XP devices without a DMA block)
- 7. Write the device address to the Address Compare Register (automatic MULTIPRO-CESSOR modes only).
- 8. Write to the UART Control 0 Register to:
 - Set the receive enable bit (REN) to enable the UART for data reception
 - Enable parity, if appropriate and if multiprocessor mode is not enabled, and select either even or odd parity
- 9. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data reception. When the UART Receiver interrupt is detected, the associated interrupt service routine (ISR) performs the following:

Baud Rate Generator Interrupts

If the Baud Rate Generator (BRG) interrupt enable is set, the UART Receiver interrupt asserts when the UART Baud Rate Generator reloads. This condition allows the Baud Rate Generator to function as an additional counter if the UART functionality is not employed.

UART Baud Rate Generator

The UART Baud Rate Generator creates a lower frequency baud rate clock for data transmission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate High and Low Byte registers combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data rate is calculated using the following equation:

UART Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer with interrupt on time-out. Observe the following steps to configure the Baud Rate Generator as a timer with interrupt on time-out:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 Register to 0.
- 2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BIRQ bit in the UART Control 1 Register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval (s) = System Clock Period (s) × BRG[15:0]

UART Control Register Definitions

The UART control registers support the UART and the associated infrared encoder/decoders. For more information about the infrared operation, see the <u>Infrared Encoder/Decoder</u> chapter on page 117.

ilog^{*} Embedded in Life An∎IXYS Company 154

Serialization Data

Table 96. Serial Number at 001C–001F (S_NUM)

Bit	7	6	5	4	3	2	1	0
Field		S_NUM						
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	Information Page Memory 001C–001F							
Note: U =	lote: U = Unchanged by Reset. R/W = Read/Write.							

Bit Description [7:0] Serial Number Byte S_NUM The serial number is a unique four-byte binary value; see Table 97.

Table 97. Serialization Data Locations

Info Page Address	Memory Address	Usage
1C	FE1C	Serial Number Byte 3 (most significant).
1D	FE1D	Serial Number Byte 2.
1E	FE1E	Serial Number Byte 1.
1F	FE1F	Serial Number Byte 0 (least significant).

Randomized Lot Identifier

Table 98. Lot Identification Number (RAND_LOT)

Bit	7	6	5	4	3	2	1	0
Field		RAND_LOT						
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	s Interspersed throughout Information Page Memory							
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.							

Bit	Description
[7]	Randomized Lot ID
RAND_LOT	The randomized lot ID is a 32-byte binary value that changes for each production lot; see Table 99.

ILOG abedded in Life

169

Oscillator Control

Z8 Encore! XP F0823 Series devices uses three possible clocking schemes, each userselectable. These three schemes are:

- On-chip precision trimmed RC oscillator
- External clock drive
- On-chip low power Watchdog Timer oscillator

In addition, F0823 Series devices contain clock failure detection and recovery circuitry, which allow continued operation despite a failure of the primary oscillator.

Operation

This chapter discusses the logic used to select the system clock and handle primary oscillator failures. A description of the specific operation of each oscillator is outlined elsewhere in this document.

System Clock Selection

The oscillator control block selects from the available clocks. Table 104 details each clock source and its usage.

Clock Source	Characteristics	Required Setup
Internal Precision RC Oscillator	 32.8kHz or 5.53MHz ± 4% accuracy when trimmed No external components required 	 Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator at either 5.53MHz or 32.8kHz
External Clock Drive	 0 to 20MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO
Internal Watchdog Timer Oscillator	 10kHz nominal ± 40% accuracy; no external components required Very Low power consumption 	 Enable WDT if not enabled and wait until WDT Oscillator is operating. Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator

Table 104. Oscillator Configuration and Selection

177

Table 108. Notational Shorthand (Continued)

Notation	Description	Operand	Range
RA	Relative Address	Х	X represents an index in the range of $+127$ to -128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14.
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH.
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH.
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.

Table 109 lists additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Symbol	Definition
dst	Destination Operand
src Source Operand	
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
В	Binary Number Suffix
%	Hexadecimal Number Prefix
Н	Hexadecimal Number Suffix

Table 109. Additional Symbols

Assignment of a value is indicated by an arrow, as shown in the following example.

 $dst \leftarrow dst + src$

This example indicates that the source data is added to the destination data; the result is stored in the destination location.

ilog° Embedded in Life An∎IXYS Company

190

Assembly		Address Opcode(s			Flags						_ Fetch	Instr.
Mnemonic	Symbolic Operation	dst src		(Hex)	С	Ζ	S	۷	D	Н	Cycles	
TCM dst, src	(NOT dst) AND src	r	r	62	-	*	*	0	-	_	2	3
		r	lr	63	-						2	4
		R	R	64	-						3	3
		R	IR	65	-						3	4
		R	IM	66	-						3	3
		IR	IM	67	-						3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	-	*	*	0	-	_	4	3
		ER	IM	69	-						4	3
TM dst, src	dst AND src	r	r	72	-	*	*	0	-	_	2	3
		r	lr	73	-						2	4
		R	R	74	-						3	3
		R	IR	75	-						3	4
		R	IM	76	-						3	3
		IR	IM	77	-						3	4
TMX dst, src	dst AND src	ER	ER	78	-	*	*	0	_	_	4	3
		ER	IM	79	-						4	3
TRAP Vector	$SP \leftarrow SP - 2$ @SP \leftarrow PC $SP \leftarrow SP - 1$ @SP \leftarrow FLAGS PC \leftarrow @Vector		Vector	F2	-	_	-	-	-	_	2	6
WDT				5F	_	_	_	_	_	_	1	2

Table 118. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

							Lo	ower Nil	bble (He	x)						
	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	1.1 BRK	2.2 SRP IM	2.3 ADD r1,r2	2.4 ADD r1,lr2	3.3 ADD R2,R1	3.4 ADD IR2,R1	3.3 ADD R1,IM	3.4 ADD IR1,IM	4.3 ADDX ER2,ER1	4.3 ADDX IM,ER1	2.3 DJNZ r1,X	2.2 JR cc,X	2.2 LD r1,IM	3.2 JP cc,DA	1.2 INC r1	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1						See 2nd Opcode Map
2	2.2 INC R1	2.3 INC IR1	2.3 SUB r1,r2	2.4 SUB r1,lr2	3.3 SUB R2,R1	3.4 SUB IR2,R1	3.3 SUB R1,IM	3.4 SUB IR1,IM	4.3 SUBX ER2,ER1	4.3 SUBX IM,ER1						1
3	2.2 DEC R1	2.3 DEC IR1	2.3 SBC r1,r2	2.4 SBC r1,lr2	3.3 SBC R2,R1	3.4 SBC IR2,R1	3.3 SBC R1,IM	3.4 SBC IR1,IM	4.3 SBCX ER2,ER1	4.3 SBCX						
4	2.2 DA R1	2.3 DA IR1	2.3 OR	2.4 OR	3.3 OR R2,R1	3.4 OR	3.3 OR	3.4 OR	4.3 ORX ER2,ER1	4.3 ORX						
5	2.2 POP R1	2.3 POP	r1,r2 2.3 AND	r1,lr2 2.4 AND	3.3 AND R2,R1	3.4 AND	81,IM 3.3 AND	3.4 AND	4.3 ANDX	4.3 ANDX						1.2 WDT
6	2.2 COM	IR1 2.3 COM	r1,r2 2.3 TCM	r1,lr2 2.4 TCM	3.3 TCM	3.4 TCM	81,IM 3.3 TCM	3.4 TCM	4.3 TCMX	4.3 TCMX						1.2 STOP
7	R1 2.2 PUSH R2	IR1 2.3 PUSH IR2	r1,r2 2.3 TM	r1,lr2 2.4 TM	R2,R1 3.3 TM	IR2,R1 3.4 TM	R1,IM 3.3 TM	IR1,IM 3.4 TM	ER2,ER1 4.3 TMX	4.3 TMX						1.2 HALT
8	2.5 DECW RR1	2.6 DECW IRR1	r1,r2 2.5 LDE	r1,lr2 2.9 LDEI	R2,R1 3.2 LDX	IR2,R1 3.3 LDX	R1,IM 3.4 LDX	IR1,IM 3.5 LDX	3.4 LDX	IM,ER1 3.4 LDX						1.2 DI
9	2.2 RL R1	2.3 RL IR1	r1,Irr2 2.5 LDE	2.9 LDEI Ir2,Irr1	r1,ER2 3.2 LDX r2,ER1	Ir1,ER2 3.3 LDX Ir2,ER1	3.4 LDX R2,IRR1	IRR2,IR1 3.5 LDX IR2,IRR1	r1,rr2,X 3.3 LEA r1,r2,X	3.5 LEA						1.2 El
A	2.5 INCW RR1	2.6 INCW	r2,Irr1 2.3 CP r1,r2	2.4 CP r1,lr2	3.3 CP R2,R1	3.4 CP IR2,R1	3.3 CP R1,IM	3.4 CP IR1,IM	4.3 CPX ER2,ER1	4.3 CPX IM,ER1						1.4 RET
в	2.2 CLR R1	2.3 CLR IR1	2.3 XOR r1,r2	2.4 XOR r1,lr2	3.3 XOR R2,R1	3.4 XOR IR2,R1	3.3 XOR R1,IM	3.4 XOR IR1,IM	4.3 XORX ER2,ER1	4.3 XORX IM,ER1						1.5 IRET
С	2.2 RRC R1	2.3 RRC IR1	2.5 LDC r1,lrr2	2.9 LDCI lr1,lrr2	2.3 JP IRR1	2.9 LDC lr1,lrr2	IXT,IW	3.4 LD r1,r2,X	3.2 PUSHX ER2							1.2 RCF
D	2.2 SRA R1	2.3 SRA IR1	2.5 LDC r2,Irr1	2.9 LDCI lr2,lrr1	2.6	2.2 BSWAP R1	3.3 CALL DA	3.4 LD r2,r1,X	3.2 POPX ER1							1.2 SCF
E	2.2 RR R1	2.3 RR IR1	2.2 BIT p,b,r1	2.3 LD r1,lr2	3.2 LD R2,R1	3.3 LD IR2,R1	3.2 LD R1,IM	3.3 LD IR1,IM	4.2 LDX ER2,ER1	4.2 LDX IM,ER1						1.2 CCF
F	2.2 SWAP R1	2.3 SWAP IR1	2.6 TRAP Vector	2.3 LD lr1,r2	2.8 MULT RR1	3.3 LD R2,IR1	3.3 BTJ p,b,r1,X	3.4 BTJ p,b,lr1,X			V	┥	V	▼	V	

Figure 27. First Opcode Map

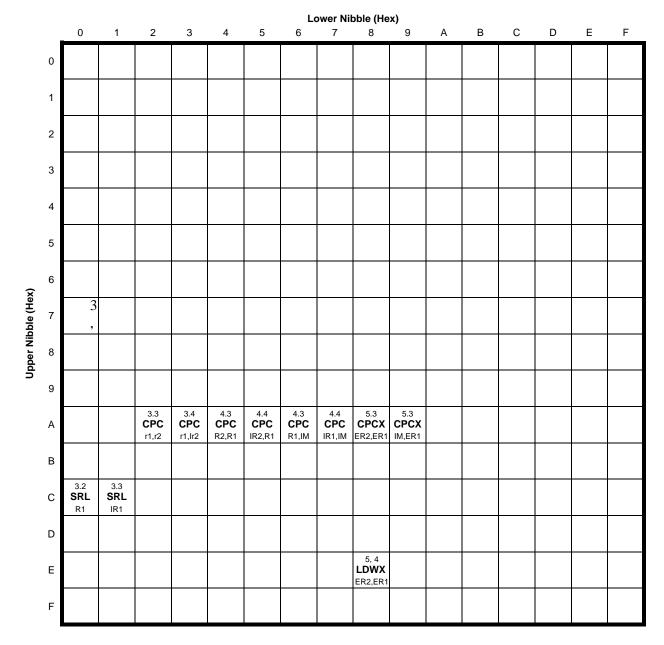


Figure 28. Second Opcode Map after 1FH

Embedded in Life An IXYS Company

AC Characteristics

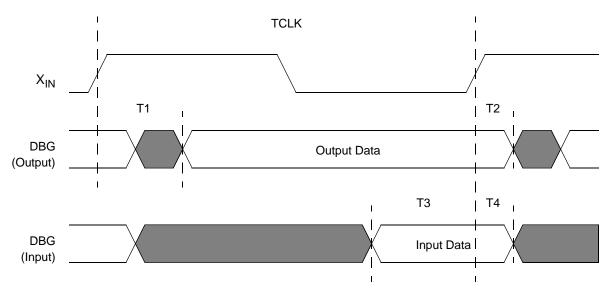
The section provides information about the AC characteristics and timing. All AC timing information assumes a standard load of 50 pF on all outputs.

		T _A = -40°C (unless o	'V to 3.6V C to +105°C otherwise ted)			
Symbol	Parameter	Minimum	Maximum	Units	Conditions	
FSYSCLK	System Clock Frequency	_	20.0*	MHz	Read-only from Flash memory.	
		0.032768	20.0 ¹	MHz	Program or erasure of the Flash memory.	
T _{XIN}	System Clock Period	50	-	ns	$T_{CLK} = 1/F_{SYSCLK}$.	
T _{XINH}	System Clock High Time	20	30	ns	T _{CLK} = 50ns.	
T _{XINL}	System Clock Low Time	20	30	ns	T _{CLK} = 50ns.	
T _{XINR}	System Clock Rise Time	_	3	ns	T _{CLK} = 50ns.	
T _{XINF}	System Clock Fall Time	_	3	ns	Т _{СІ К} = 50ns.	

Table '	123. AC	Characteristics
---------	---------	-----------------

Table 124. Internal Precision Oscillator Electrical Characteristics

		$T_A = -$	= 2.7V to -40°C to + otherwise			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{IPO}	Internal Precision Oscillator Frequency (High Speed)		5.53		MHz	V _{DD} = 3.3V T _A = 30°C
F _{IPO}	Internal Precision Oscillator Frequency (Low Speed)		32.7		kHz	V _{DD} = 3.3V T _A = 30°C
F _{IPO}	Internal Precision Oscillator Error		<u>+</u> 1	<u>+</u> 4	%	
T _{IPOST}	Internal Precision Oscillator Startup Time		3		μs	


edded in Life

An∎IXYS Company

207

On-Chip Debugger Timing

Figure 31 and Table 132 provide timing information for the DBG pin. The DBG pin timing specifications assume a 4 ns maximum rise and fall time.

		Delay (ns)				
Parameter	Abbreviation	Minimum	Maximum			
DBG						
T ₁	X _{IN} Rise to DBG Valid Delay	_	15			
T ₂	X _{IN} Rise to DBG Output Hold Time	2	-			
T ₃	DBG to X _{IN} Rise Input Setup Time	5	_			
T ₄	DBG to X _{IN} Rise Input Hold Time	5	_			

Table 132. On-Chip Debugger Timing

> ilog Embedded in Life An IXYS Company 218

Part Number	sh	Σ	/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description		
	Flash	RAM		_	16- w/P	10-	NA	Des		
Z8 Encore! XP F0823 Series with 1 KB Flash										
Standard Temperatu	ire: 0°C to	o 70°C								
Z8F0113PB005SG	1 KB	256 B	6	12	2	0	1	PDIP 8-pin package		
Z8F0113QB005SG	1 KB	256 B	6	12	2	0	1	QFN 8-pin package		
Z8F0113SB005SG	1 KB	256 B	6	12	2	0	1	SOIC 8-pin package		
Z8F0113SH005SG	1 KB	256 B	16	18	2	0	1	SOIC 20-pin package		
Z8F0113HH005SG	1 KB	256 B	16	18	2	0	1	SSOP 20-pin package		
Z8F0113PH005SG	1 KB	256 B	16	18	2	0	1	PDIP 20-pin package		
Z8F0113SJ005SG	1 KB	256 B	24	18	2	0	1	SOIC 28-pin package		
Z8F0113HJ005SG	1 KB	256 B	24	18	2	0	1	SSOP 28-pin package		
Z8F0113PJ005SG	1 KB	256 B	24	18	2	0	1	PDIP 28-pin package		
Extended Temperatu	ure: –40°0	C to 10	5°C							
Z8F0113PB005EG	1 KB	256 B	6	12	2	0	1	PDIP 8-pin package		
Z8F0113QB005EG	1 KB	256 B	6	12	2	0	1	QFN 8-pin package		
Z8F0113SB005EG	1 KB	256 B	6	12	2	0	1	SOIC 8-pin package		
Z8F0113SH005EG	1 KB	256 B	16	18	2	0	1	SOIC 20-pin package		
Z8F0113HH005EG	1 KB	256 B	16	18	2	0	1	SSOP 20-pin package		
Z8F0113PH005EG	1 KB	256 B	16	18	2	0	1	PDIP 20-pin package		
Z8F0113SJ005EG	1 KB	256 B	24	18	2	0	1	SOIC 28-pin package		
Z8F0113HJ005EG	1 KB	256 B	24	18	2	0	1	SSOP 28-pin package		
Z8F0113PJ005EG	1 KB	256 B	24	18	2	0	1	PDIP 28-pin package		

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)

219

ilog[®] Embedded in Life

An∎IXYS Company

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP F0823 Se	eries	Develo	pment	t Kit				
Z8F08A28100KITG		Z8 En	core! X	P F08	2A Seri	es Dev	elopme	nt Kit (20- and 28-Pin)
Z8F04A28100KITG		Z8 En	core! X	P F04	2A Seri	es Dev	velopme	nt Kit (20- and 28-Pin)
Z8F04A08100KITG		Z8 En	core! X	P F04	2A Seri	es Dev	velopme	nt Kit (8-Pin)
ZUSBSC00100ZACG		USB S	Smart C	Cable A	Accesso	ry Kit		
ZUSBOPTSC01ZACG		Opto-I	solated	USB	Smart (Cable A	Accesso	ry Kit
ZENETSC0100ZACG		Etherr	net Sma	art Cal	ble Acce	essory	Kit	

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)