

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	22
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0423hj005sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.	Z8 Encore! XP F0823 Series Block Diagram 3
Figure 2.	Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 8-Pin SOIC, QFN/MLF-S, or PDIP Package
Figure 3.	Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 20-Pin SOIC, SSOP or PDIP Package
Figure 4.	Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 28-Pin SOIC, SSOP or PDIP Package
Figure 5.	Power-On Reset Operation
Figure 6.	Voltage Brown-Out Reset Operation
Figure 7.	GPIO Port Pin Block Diagram
Figure 8.	Interrupt Controller Block Diagram
Figure 9.	Timer Block Diagram
Figure 10.	UART Block Diagram
Figure 11.	UART Asynchronous Data Format without Parity
Figure 12.	UART Asynchronous Data Format with Parity
Figure 13.	UART Asynchronous MULTIPROCESSOR Mode Data Format 103
Figure 14.	UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity) 105
Figure 15.	UART Receiver Interrupt Service Routine Flow
Figure 16.	Infrared Data Communication System Block Diagram 117
Figure 17.	Infrared Data Transmission 118
Figure 18.	IrDA Data Reception
Figure 19.	Analog-to-Digital Converter Block Diagram 122
Figure 20.	Flash Memory Arrangement 135
Figure 21.	Flash Controller Operation Flowchart
Figure 22.	On-Chip Debugger Block Diagram 156
Figure 23.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, # 1 of 2 157
Figure 24.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, # 2 of 2
Figure 25.	OCD Data Format
Figure 26.	Opcode Map Cell Description 192
Figure 27.	First Opcode Map
Figure 28.	Second Opcode Map after 1FH 195
Figure 29.	Port Input Sample Timing 205

CPU and Peripheral Overview

The eZ8 CPU, Zilog's latest 8-bit central processing unit (CPU), meets the continuing demand for faster and code-efficient microcontrollers. The eZ8 CPU executes a superset of the original Z8 instruction set. The eZ8 CPU features include:

- Direct register-to-register architecture allows each register to function as an accumulator, improving execution time and decreasing the required program memory
- Software stack allows much greater depth in subroutine calls and interrupts than hardware stacks
- Compatible with existing Z8 code
- Expanded internal Register File allows access of up to 4 KB
- New instructions improve execution efficiency for code developed using higher-level programming languages, including C
- Pipelined instruction fetch and execution
- New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC, LDCI, LEA, MULT, and SRL
- New instructions support 12-bit linear addressing of the Register File
- Up to 10 MIPS operation
- C-Compiler friendly
- 2 to 9 clock cycles per instruction

For more information about the eZ8 CPU, refer to the <u>eZ8 CPU Core User Manual</u> (<u>UM0128</u>) available for download at <u>www.zilog.com</u>.

General-Purpose I/O

F0823 Series features 6 to 24 port pins (Ports A–C) for general-purpose I/O (GPIO). The number of GPIO pins available is a function of package. Each pin is individually programmable. 5 V-tolerant input pins are available on all I/Os on 8-pin devices, most I/Os on other package types.

Flash Controller

The Flash Controller programs and erases Flash memory. The Flash Controller supports protection against accidental program and erasure, as well as factory serialization and read protection.

9

IXYS Company

Note: *Analog input alternate functions (ANA) are not available on Z8F0x13 devices.

Signal Descriptions

>

Table 3 lists the Z8 Encore! XP F0823 Series signals. To determine the signals available for the specific package styles, see the Pin Configurations section on page 7.

Signal Mnemonic	I/O	Description
General-Purpose I/C	O Ports	A–D
PA[7:0]	I/O	Port A. These pins are used for general-purpose I/O.
PB[7:0] ¹	I/O	Port B. These pins are used for general-purpose I/O. PB6 and PB7 are available only in those devices without an ADC.
PC[7:0]	I/O	Port C. These pins are used for general-purpose I/O.
UART Controllers		
TXD0	0	Transmit Data. This signal is the transmit output from the UART and IrDA.
RXD0	I	Receive Data. This signal is the receive input for the UART and IrDA.
CTS0	Ι	Clear To Send. This signal is the flow control input for the UART.
DE	0	Driver Enable. This signal allows automatic control of external RS-485 drivers. This signal is approximately the inverse of the TXE (Transmit Empty) bit in the UART Status 0 Register. The DE signal can be used to ensure the external RS-485 driver is enabled when data is transmitted by the UART.
Timers		
T0OUT/T1OUT	0	Timer Output 0–1. These signals are output from the timers.
T0OUT/T1OUT	0	Timer Complement Output 0–1. These signals are output from the timers in PWM DUAL OUTPUT Mode.
T0IN/T1IN	Ι	Timer Input 0–1. These signals are used as the capture, gating and counter inputs. The T0IN signal is multiplexed T0OUT signals.
Comparator		
CINP/CINN	Ι	Comparator Inputs. These signals are the positive and negative inputs to the comparator.
Notes:		

Table 3. Signal Descriptions

1. PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are replaced by AV_{DD} and AV_{SS} .

2. The AV_{DD} and AV_{SS} signals are available only in 28-pin packages with ADC. They are replaced by PB6 and PB7 on 28-pin packages without ADC.

returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 6 describes the Program Memory maps for the Z8 Encore! XP F0823 Series products.

Program Memory Address (Hex)	Function	
Z8F0823 and Z8F0813 Products		
0000–0001	Flash Option Bits	
0002–0003	Reset Vector	
0004–0005	WDT Interrupt Vector	
0006–0007	Illegal Instruction Trap	
0008–0037	Interrupt Vectors*	
0038–003D	Oscillator Fail Traps*	
003E-0FFF	Program Memory	
Z8F0423 and Z8F0413 Products		
0000–0001	Flash Option Bits	
0002–0003	Reset Vector	
0004–0005	WDT Interrupt Vector	
0006–0007	Illegal Instruction Trap	
0008–0037	Interrupt Vectors*	
0038–003D	Oscillator Fail Traps*	
003E-0FFF	FF Program Memory	
Z8F0223 and Z8F0213 Products		
0000–0001	Flash Option Bits	
0002–0003	Reset Vector	
0004–0005	WDT Interrupt Vector	
0006–0007	Illegal Instruction Trap	
0008–0037	Interrupt Vectors*	
0038–003D	Oscillator Fail Traps*	
003E-07FF	Program Memory	

 Table 6. Z8 Encore! XP F0823 Series Program Memory Maps

Note: *See the <u>Trap and Interrupt Vectors in Order of Priority section on page 55</u> for a list of the interrupt vectors and traps.

Embedded in Life An IXYS Company

ilog[®] Embedded in Life

ilog° Embedded in Life An∎IXYS Company 18

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
LED Controller (cont'd)			
F84	LED Drive Level Low Byte	LEDLVLL	00	<u>53</u>
F85	Reserved	—	XX	
Oscillator Contro	ol			
F86	Oscillator Control	OSCCTL	A0	<u>172</u>
F87–F8F	Reserved	_	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	<u>133</u>
F91–FBF	Reserved	—	XX	
Interrupt Contro	ller			
FC0	Interrupt Request 0	IRQ0	00	<u>59</u>
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	<u>62</u>
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	<u>62</u>
FC3	Interrupt Request 1	IRQ1	00	<u>60</u>
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	<u>64</u>
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	<u>64</u>
FC6	Interrupt Request 2	IRQ2	00	<u>61</u>
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	<u>65</u>
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	<u>66</u>
FC9–FCC	Reserved	_	XX	
FCD	Interrupt Edge Select	IRQES	00	<u>67</u>
FCE	Shared Interrupt Select	IRQSS	00	<u>67</u>
FCF	Interrupt Control	IRQCTL	00	<u>68</u>
GPIO Port A				
FD0	Port A Address	PAADDR	00	<u>40</u>
FD1	Port A Control	PACTL	00	<u>42</u>
FD2	Port A Input Data	PAIN	XX	<u>43</u>
FD3	Port A Output Data	PAOUT	00	<u>43</u>
GPIO Port B				
FD4	Port B Address	PBADDR	00	<u>40</u>
FD5	Port B Control	PBCTL	00	<u>42</u>

Table 8. Register File Address Map (Continued)

Note: XX=Undefined.

Figure 6. Voltage Brown-Out Reset Operation

The POR level is greater than the VBO level by the specified hysteresis value. This ensures that the device undergoes a POR after recovering from a VBO condition.

Watchdog Timer Reset

If the device is in NORMAL or STOP Mode, the Watchdog Timer can initiate a System Reset at time-out if the WDT_RES Flash Option Bit is programmed to 1. This is the unprogrammed state of the WDT_RES Flash Option Bit. If the bit is programmed to 0, it configures the Watchdog Timer to cause an interrupt, not a System Reset, at time-out.

The WDT status bit in the WDT Control Register is set to signify that the reset was initiated by the Watchdog Timer.

External Reset Input

The $\overline{\text{RESET}}$ pin has a Schmitt-Triggered input and an internal pull-up resistor. Once the $\overline{\text{RESET}}$ pin is asserted for a minimum of four system clock cycles, the device progresses through the System Reset sequence. Because of the possible asynchronicity of the system

ilog Embedded in Life An∎IXYSCompany 42

Table 20. PADDR[7:0] Subregister Functions

PADDR[7:0]	Port Control Subregister Accessible Using the Port A–C Control Registers
05H	Stop Mode Recovery Source Enable.
06H	Pull-up Enable.
07H	Alternate Function Set 1.
08H	Alternate Function Set 2.
09H–FFH	No function.

Port A–C Control Registers

The Port A–C Control registers set the GPIO port operation. The value in the corresponding Port A–C Address Register determines which subregister is read from or written to by a Port A–C Control Register transaction; see Table 21.

Bit	7	6	5	4	3	2	1	0
Field				PC	TL			
RESET				00)H			
R/W	R/W	R/W R/W R/W R/W R/W R/W						
Address		l	l	FD1H, FD	5H, FD9H			
Bit	Descriptio	n						
[7:0] PCTL	Port Contr The Port Co operation.	ol ontrol Regis	ter provides	access to a	ll subregiste	rs that confi	gure the GP	IO Port

Table 21. Port A–C Control Registers (PxCTL)

ilog Embedded in Life An IXYS Company 65

IRQ2 Enable High and Low Bit Registers

Table 45 describes the priority control for IRQ2. The IRQ2 Enable High and Low Bit registers (Table 46 and Table 47) form a priority encoded enabling for interrupts in the Interrupt Request 2 register. Priority is generated by setting bits in each register.

IRQ2ENH[x]	IRQ2ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 45. IRQ2 Enable and Priority Encoding

Note: where x indicates the register bits from 0–7.

Table 46. IRQ2 Enable High Bit Register (IRQ2ENH)

Bit	7	6	5	4	3	2	1	0
Field	Reserved				C3ENH	C2ENH	C1ENH	C0ENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	7H			

Bit	Description
[7:4]	Reserved These bits are reserved and must be programmed to 0000.
[3] C3ENH	Port C3 Interrupt Request Enable High Bit
[2] C2ENH	Port C2 Interrupt Request Enable High Bit
[1] C1ENH	Port C1 Interrupt Request Enable High Bit
[0] C0ENH	Port C0 Interrupt Request Enable High Bit

Embedded in Life

Shared Interrupt Select Register

The Shared Interrupt Select (IRQSS) register (Table 49) determines the source of the PADxS interrupts. The Shared Interrupt Select register selects between Port A and alternate sources for the individual interrupts.

Because these shared interrupts are edge-triggered, it is possible to generate an interrupt just by switching from one shared source to another. For this reason, an interrupt must be disabled before switching between sources.

Bit	7	6	5	4	3	2	1	0
Field	Reserved	PA6CS		Reserved				
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	EH			

Table 49. Shared Interrupt Select Register (IRQSS)

Bit	Description
[7]	Reserved This bit is reserved and must be programmed to 0.
[6] PA6CS	 PA6/Comparator Selection 0 = PA6 is used for the interrupt for PA6CS interrupt request. 1 = The comparator is used as an interrupt for PA6CS interrupt requests.
[5:0]	Reserved These bits are reserved and must be programmed to 000000.

ilog[°] Embedded in Life An TIXYS Company

111

Bit	Description (Continued)
[2] TDRE	 Transmitter Data Register Empty This bit indicates that the UART Transmit Data Register is empty and ready for additional data. Writing to the UART Transmit Data Register resets this bit. 0 = Do not write to the UART Transmit Data Register. 1 = The UART Transmit Data Register is ready to receive an additional byte to be transmitted.
[1] TXE	Transmitter Empty This bit indicates that the transmit shift register is empty and character transmission is finished. 0 = Data is currently transmitting. 1 = Transmission is complete.
[0] CTS	CTS Signal When this bit is read, it returns the level of the $\overline{\text{CTS}}$ signal. This signal is active Low.

UART Status 1 Register

This register contains multiprocessor control and status bits.

Bit	7	6	5	4	3	2	1	0		
Field		NEWFRM	MPRX							
RESET	0	0	0	0	0	0	0	0		
R/W	R	R	R	R	R/W	R/W	R	R		
Address		F44H								

Bit	Description
[7:2]	Reserved These bits are reserved; R/W bits must be programmed to 000000 during writes and 000000 when read.
[1] NEWFRM	 New Frame A status bit denoting the start of a new frame. Reading the UART Receive Data Register resets this bit to 0. 0 = The current byte is not the first data byte of a new frame. 1 = The current byte is the first data byte of a new frame.
[0] MPRX	Multiprocessor Receive Returns the value of the most recent multiprocessor bit received. Reading from the UART Receive Data Register resets this bit to 0.

ilog Embedded in Life An∎IXYS Company 115

UART Address Compare Register

The UART Address Compare Register stores the multinode network address of the UART. When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare Register. Receive interrupts and RDA assertions only occur in the event of a match.

Bit	7	6	5	4	3	2	1	0			
Field		COMP_ADDR									
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address			•	F4	5H						

Bit	Description
[7:0]	Compare Address
COMP_ADDR	This 8-bit value is compared to incoming address bytes.

UART Baud Rate High and Low Byte Registers

The UART Baud Rate High and Low Byte registers (Table 71 and Table 72) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART.

Bit	7	6	5	4	3	2	1	0			
Field		BRH									
RESET	1	1	1	1	1	1	1	1			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		F46H									

Table 71. UART Baud Rate High Byte Register (U0BRH)

Table 72.	UART	Baud	Rate	Low Byte	Register	(U0BRL)
-----------	------	------	------	----------	----------	---------

Bit	7	6	5	4	3	2	1	0			
Field		BRL									
RESET	1	1	1	1	1	1	1	1			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		F47H									

dded in Life

118

passed to the UART. Communication is half-duplex, which means simultaneous data transmission and reception is not allowed.

The baud rate is set by the UART's baud rate generator and supports IrDA standard baud rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA specifications. The UART must be enabled to use the infrared endec. The infrared endec data rate is calculated using the following equation:

Infrared Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

Transmitting IrDA Data

The data to be transmitted using the infrared transceiver is first sent to the UART. The UART's transmit signal (TXD) and baud rate clock are used by the IrDA to generate the modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first outputs a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is output to complete the full 16 clock data period. Figure 17 displays IrDA data transmission. When the infrared endec is enabled, the UART's TXD signal is internal to Z8 Encore! XP F0823 Series products while the IR_TXD signal is output through the TXD pin.

Figure 17. Infrared Data Transmission

ILOG Embedded in Life An IXYS Company 140

Page Erase

The Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash memory sets all bytes in that page to the value FFH. The Flash Page Select register identifies the page to be erased. Only a page residing in an unprotected sector can be erased. With the Flash Controller unlocked and the active page set, writing the value 95h to the Flash Control Register initiates the Page Erase operation. While the Flash Controller executes the Page Erase operation, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. The eZ8 CPU resumes operation after the Page Erase operation completes. If the Page Erase operation is performed using the On-Chip Debugger, poll the Flash Status Register to determine when the Page Erase operation is complete. When the Page Erase is complete, the Flash Controller returns to its locked state.

Mass Erase

The Flash memory can also be Mass Erased using the Flash Controller, but only by using the On-Chip Debugger. Mass Erasing the Flash memory sets all bytes to the value FFH. With the Flash Controller unlocked and the Mass Erase successfully enabled, writing the value 63H to the Flash Control Register initiates the Mass Erase operation. While the Flash Controller executes the Mass Erase operation, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. Using the On-Chip Debugger, poll the Flash Status Register to determine when the Mass Erase operation is complete. When the Mass Erase is complete, the Flash Controller returns to its locked state.

Flash Controller Bypass

The Flash Controller can be bypassed and the control signals for the Flash memory brought out to the GPIO pins. Bypassing the Flash Controller allows faster Row Programming algorithms by controlling the Flash programming signals directly.

Row programing is recommended for gang programming applications and large volume customers who do not require in-circuit initial programming of the Flash memory. Page Erase operations are also supported when the Flash Controller is bypassed.

For more information about bypassing the Flash Controller, refer to the Zilog application note titled, <u>Third-Party Flash Programming Support for Z8 Encore! MCUs (AN0117)</u>, available for download at <u>www.zilog.com</u>.

Flash Controller Behavior in DEBUG Mode

The following changes in behavior of the Flash Controller occur when the Flash Controller is accessed using the On-Chip Debugger:

- The Flash Write Protect option bit is ignored
- The Flash Sector Protect register is ignored for programming and erase operations

ilog Embedded in Life

IXYS Company

149

Trim Bit Data Register

The Trim Bid Data (TRMDR) register contains the read or write data for access to the trim option bits.

Bit	7	6	5	4	3	2	1	0			
Field		TRMDR: Trim Bit Data									
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		FF7H									

Table 88. Trim Bit Data Register (TRMDR)

Flash Option Bit Address Space

The first two bytes of Flash program memory at addresses 0000H and 0001H are reserved for the user-programmable Flash option bits.

Table 89. Flash Option Bits at Program Memory Address 0000H

Bit	7	6	5	4	3	2	1	0			
Field	WDT_RES	WDT_AO	Reserved		VBO_AO	FRP	Reserved	FWP			
RESET	U	U	U	U	U	U	U	U			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address	Program Memory 0000H										
Note: 11-	Note: 11 - Unchanged by Pecet R/W - Read/Write										

U = Unchanged by Reset. R/W = Read/Write.

Bit	Description
[7] WDT_RES	 Watchdog Timer Reset 0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request. 1 = Watchdog Timer time-out causes a system reset. This setting is the default for unprogrammed (erased) Flash.
[6] WDT_AO	 Watchdog Timer Always ON 0 = Watchdog Timer is automatically enabled upon application of system power. Watchdog Timer can not be disabled. 1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled, the Watchdog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is the default for unprogrammed (erased) Flash.
[5:4]	Reserved These bits are reserved and must be programmed to 11 during writes, and to 11 when read.

PS024315-1011

ilog Embedded in Life An IXYS Company

187

Assombly		Add Mo	ress ode	Oncode(s)			Fla	ags			Fotch	Instr
Mnemonic	Symbolic Operation	dst	src	(Hex)	ex) CZSV	۷	D	Н	Cycles	Cycles		
LDX dst, src	dst ← src	r	ER	84	-	_	-	-	-	_	3	2
		lr	ER	85	-						3	3
		R	IRR	86	-						3	4
		IR	IRR	87	-						3	5
		r	X(rr)	88	-						3	4
		X(rr)	r	89	-						3	4
		ER	r	94	-						3	2
		ER	lr	95	-						3	3
		IRR	R	96	-						3	4
		IRR	IR	97	-						3	5
		ER	ER	E8	-						4	2
		ER	IM	E9	-						4	2
LEA dst, X(src)	$dst \gets src + X$	r	X(r)	98	_	_	_	_	_	_	3	3
		rr	X(rr)	99	-						3	5
MULT dst	dst[15:0] ← dst[15:8] * dst[7:0]	RR		F4	-	_	-	-	-	_	2	8
NOP	No operation			0F	-	_	_	-	_	_	1	2
OR dst, src	$dst \gets dst \ OR \ src$	r	r	42	_	*	*	0	_	_	2	3
		r	lr	43	-						2	4
		R	R	44	-						3	3
		R	IR	45	-						3	4
		R	IM	46	-						3	3
		IR	IM	47	-						3	4
ORX dst, src	$dst \gets dst \ OR \ src$	ER	ER	48	_	*	*	0	_	_	4	3
		ER	IM	49	-						4	3
POP dst	dst ← @SP	R		50	-	_	-	-	-	_	2	2
	$SP \leftarrow SP + 1$	IR		51	-						2	3

Table 118. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

ilog° Embedded in Life An∎IXYS Company

189

Assombly		Add Mo	lress ode	Opcodo(s)			Fla	ags			Fotob	Instr
Mnemonic	Symbolic Operation	dst	src	_ Opcode(s) (Hex)	С	Ζ	S	V	D	Н	Cycles	Cycles
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
	-	r	lr	33	-						2	4
	-	R	R	34	-						3	3
	-	R	IR	35	-						3	4
	-	R	IM	36	-						3	3
	-	IR	IM	37	-						3	4
SBCX dst, src	$dst \gets dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
	-	ER	IM	39	-						4	3
SCF	C ← 1			DF	1	-	_	-	-	_	1	2
SRA dst	*	R		D0	*	*	*	0	_	-	2	2
	D7D6D5D4D3D2D1D0 ► C dst	IR		D1	-						2	3
SRL dst	0 - ▶ D7 D6 D5 D4 D3 D2 D1 D0 ₽ C	R		1F C0	*	*	0	*	-	_	3	2
	dst	IR		1F C1	-						3	3
SRP src	$RP \leftarrow src$		IM	01	-	_	_	_	_	_	2	2
STOP	STOP Mode			6F	-	-	-	_	-	-	1	2
SUB dst, src	$dst \leftarrow dst - src$	r	r	22	*	*	*	*	1	*	2	3
	-	r	lr	23	-						2	4
		R	R	24	-						3	3
		R	IR	25	-						3	4
	-	R	IM	26	-						3	3
		IR	IM	27	-						3	4
SUBX dst, src	$dst \gets dst - src$	ER	ER	28	*	*	*	*	1	*	4	3
	-	ER	IM	29							4	3
SWAP dst	$dst[7:4] \leftrightarrow dst[3:0]$	R		F0	Х	*	*	Х	-	-	2	2
	-	IR		F1	-						2	3

Table 118. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

209

0g

■IXYS Company

Figure 33 and Table 134 provide timing information for UART pins for the case where CTS is not used for flow control. DE asserts after the transmit data register has been written. DE remains asserted for multiple characters as long as the transmit data register is written with the next character before the current character has completed.

|--|

		Delay (ns)					
Parameter	Abbreviation	Minimum	Maximum				
UART							
T ₁	DE assertion to TXD falling edge (start bit) delay	1 * X _{IN} period	1 bit time				
T ₂	End of Stop Bit(s) to DE deassertion delay (Tx data register is empty)	± 5					

ILOG[°] Inbedded in Life IXYS Company **210**

Packaging

Zilog's F0823 Series of MCUs includes the Z8F0113, Z8F0123, Z8F0213, Z8F0223, Z8F0413, Z8F0423, Z8F0813 and Z8F0823 devices, which are available in the following packages:

- 8-pin Plastic Dual Inline Package (PDIP)
- 8-Pin Quad Flat No-Lead Package (QFN)/MLF-S¹
- 20-pin Plastic Dual-Inline Package (PDIP)
- 20-pin Small Outline Integrated Circuit Package (SOIC)
- 20-pin Small Shrink Outline Package (SSOP)
- 28-pin Plastic Dual-Inline Package (PDIP)
- 28-pin Small Outline Integrated Circuit Package (SOIC)
- 28-pin Small Shrink Outline Package (SSOP)

Current diagrams for each of these packages are published in Zilog's <u>Packaging Product</u> <u>Specification (PS0072)</u>, which is available free for download from the Zilog website.

^{1.} The footprint of the QFN)/MLF-S package is identical to that of the 8-pin SOIC package, but with a lower profile.

221

Index

Numerics

10-bit ADC 4

Α

absolute maximum ratings 196 AC characteristics 200 ADC 178 architecture 121 block diagram 122 continuous conversion 124 control register 126, 129 control register definitions 126 data high byte register 130 data low bits register 131 electrical characteristics and timing 203 operation 122 single-shot conversion 123 ADCCTL register 126, 129 ADCDH register 130 ADCDL register 131 ADCX 178 ADD 178 add - extended addressing 178 add with carry 178 add with carry - extended addressing 178 additional symbols 177 address space 13 **ADDX 178** analog signals 10 analog-to-digital converter (ADC) 121 AND 181 **ANDX 181** arithmetic instructions 178 assembly language programming 174 assembly language syntax 175

В

B 177

b 176 baud rate generator, UART 108 **BCLR 179** binary number suffix 177 **BIT 179** bit 176 clear 179 manipulation instructions 179 set 179 set or clear 179 swap 179 test and jump 181 test and jump if non-zero 181 test and jump if zero 181 bit jump and test if non-zero 181 bit swap 181 block diagram 3 block transfer instructions 179 **BRK 181 BSET 179** BSWAP 179, 181 BTJ 181 **BTJNZ 181 BTJZ 181**

С

CALL procedure 181 CAPTURE mode 89 CAPTURE/COMPARE mode 89 cc 176 CCF 180 characteristics, electrical 196 clear 180 CLR 180 COM 181 COMPARE 89 compare - extended addressing 178 COMPARE mode 89 compare with carry 178

part selection guide 2