Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | | |----------------------------|---|--| | Product Status | Obsolete | | | Core Processor | eZ8 | | | Core Size | 8-Bit | | | Speed | 5MHz | | | Connectivity | IrDA, UART/USART | | | Peripherals | Brown-out Detect/Reset, LED, POR, PWM, WDT | | | Number of I/O | 16 | | | Program Memory Size | 8KB (8K x 8) | | | Program Memory Type | FLASH | | | EEPROM Size | - | | | RAM Size | 1K x 8 | | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.6V | | | Data Converters | - | | | Oscillator Type | Internal | | | Operating Temperature | -40°C ~ 105°C (TA) | | | Mounting Type | Surface Mount | | | Package / Case | 20-SSOP (0.209", 5.30mm Width) | | | Supplier Device Package | - | | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/z8f0813hh005eg | | ## Z8 Encore! XP[®] F0823 Series **Product Specification** | MULTIPROCESSOR (9-Bit) Mode | 103 | |--|-----| | External Driver Enable | 105 | | UART Interrupts | 105 | | UART Baud Rate Generator | 108 | | UART Control Register Definitions | 108 | | UART Transmit Data Register | 109 | | UART Receive Data Register | 109 | | UART Status 0 Register | 110 | | UART Status 1 Register | 111 | | UART Control 0 and Control 1 Registers | 112 | | UART Address Compare Register | 115 | | UART Baud Rate High and Low Byte Registers | 115 | | Infrared Encoder/Decoder | 117 | | Architecture | | | Operation | 117 | | Transmitting IrDA Data | | | Receiving IrDA Data | | | Infrared Encoder/Decoder Control Register Definitions | | | Analog-to-Digital Converter | 121 | | Architecture | | | Operation | 122 | | Automatic Powerdown | | | Single-Shot Conversion | 123 | | Continuous Conversion | 124 | | Interrupts | 125 | | Calibration and Compensation | 125 | | ADC Control Register Definitions | 126 | | ADC Control Register 0 | 126 | | ADC Control/Status Register 1 | 129 | | ADC Data High Byte Register | 130 | | ADC Data Low Bits Register | 131 | | Comparator | 132 | | Operation | 132 | | Comparator Control Register Definition | 133 | | Flash Memory | 134 | | Flash Information Area | 135 | | Operation | 135 | | Flash Operation Timing Using the Flash Frequency Registers | | | Flash Code Protection Against External Access | 137 | # Z8 Encore! XP[®] F0823 Series Product Specification | Table 70. | UART Address Compare Register (U0ADDR) | 115 | |------------|--|-----| | Table 71. | UART Baud Rate High Byte Register (U0BRH) | 115 | | Table 72. | UART Baud Rate Low Byte Register (U0BRL) | 115 | | Table 73. | UART Baud Rates | 116 | | Table 74. | ADC Control Register 0 (ADCCTL0) | 127 | | Table 75. | ADC Control/Status Register 1 (ADCCTL1) | 129 | | Table 76. | ADC Data High Byte Register (ADCD_H) | 130 | | Table 77. | ADC Data Low Bits Register (ADCD_L) | 131 | | Table 78. | Comparator Control Register (CMP0) | 133 | | Table 79. | Z8 Encore! XP F0823 Series Flash Memory Configurations | 134 | | Table 80. | Flash Code Protection Using the Flash Option Bits | 138 | | Table 81. | Flash Control Register (FCTL) | 141 | | Table 82. | Flash Status Register (FSTAT) | 142 | | Table 83. | Flash Page Select Register (FPS) | 143 | | Table 84. | Flash Sector Protect Register (FPROT) | 144 | | Table 85. | Flash Frequency High Byte Register (FFREQH) | 145 | | Table 86. | Flash Frequency Low Byte Register (FFREQL) | | | Table 87. | Trim Bit Address Register (TRMADR) | 148 | | Table 88. | Trim Bit Data Register (TRMDR) | 149 | | Table 89. | Flash Option Bits at Program Memory Address 0000H | 149 | | Table 90. | Flash Options Bits at Program Memory Address 0001H | 150 | | Table 91. | Trim Options Bits at Address 0000H | 151 | | Table 92. | Trim Option Bits at 0001H | 152 | | Table 93. | Trim Option Bits at 0002H (TIPO) | 152 | | Table 94. | ADC Calibration Bits | 153 | | Table 95. | ADC Calibration Data Location | 153 | | Table 96. | Serial Number at 001C-001F (S_NUM) | 154 | | Table 97. | Serialization Data Locations | 154 | | Table 98. | Lot Identification Number (RAND_LOT) | 154 | | Table 99. | Randomized Lot ID Locations | 155 | | Table 100. | OCD Baud-Rate Limits | 160 | | Table 101. | OCD Commands | 162 | | Table 102. | OCD Control Register (OCDCTL) | 167 | | Table 103. | OCD Status Register (OCDSTAT) | 168 | | | Oscillator Configuration and Selection | | | Table 105. | Oscillator Control Register (OSCCTL) | 172 | | | | | Table 5 provides detailed information about the characteristics for each pin available on Z8 Encore! XP F0823 Series 8-pin devices. **Table 5. Pin Characteristics (8-Pin Devices)** | Symbol
Mnemonic | Direction | Reset
Direction | Active
Low
or
Active
High | Tristate
Output | Internal
Pull-up
or Pull-
down | Schmitt-
Trigger
Input | Open Drain
Output | 5V
Tolerance | |--------------------|-----------|--|---------------------------------------|--------------------|--|------------------------------|--|------------------------------------| | PA0/DBG | I/O | I (but can
change
during
reset if
key
sequence
detected) | N/A | Yes | Program-
mable
Pull-up | Yes | Yes,
Programmable | Yes, unless
pull-ups
enabled | | PA1 | I/O | I | N/A | Yes | Program-
mable
Pull-up | Yes | Yes,
Programmable | Yes, unless
pull-ups
enabled | | RESET/PA2 | I/O | I/O
(defaults
to
RESET) | N/A | Yes | Program-
mable for
PA2;
always
on for
RESET | Yes | Programma-
ble for PA2;
always on for
RESET | Yes, unless
pull-ups
enabled | | PA[5:3] | I/O | I | N/A | Yes | Program-
mable
Pull-up | Yes | Yes,
Programmable | Yes, unless
pull-ups
enabled | | VDD | N/A | VSS | N/A returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 6 describes the Program Memory maps for the Z8 Encore! XP F0823 Series products. Table 6. Z8 Encore! XP F0823 Series Program Memory Maps | | , , | |------------------------------|--------------------------| | Program Memory Address (Hex) | Function | | Z8F0823 and Z8F0813 Products | | | 0000–0001 | Flash Option Bits | | 0002–0003 | Reset Vector | | 0004–0005 | WDT Interrupt Vector | | 0006–0007 | Illegal Instruction Trap | | 0008–0037 | Interrupt Vectors* | | 0038-003D | Oscillator Fail Traps* | | 003E-0FFF | Program Memory | | Z8F0423 and Z8F0413 Products | | | 0000–0001 | Flash Option Bits | | 0002–0003 | Reset Vector | | 0004–0005 | WDT Interrupt Vector | | 0006–0007 | Illegal Instruction Trap | | 0008–0037 | Interrupt Vectors* | | 0038-003D | Oscillator Fail Traps* | | 003E-0FFF | Program Memory | | Z8F0223 and Z8F0213 Products | | | 0000–0001 | Flash Option Bits | | 0002–0003 | Reset Vector | | 0004–0005 | WDT Interrupt Vector | | 0006–0007 | Illegal Instruction Trap | | 0008–0037 | Interrupt Vectors* | | 0038-003D | Oscillator Fail Traps* | | 003E-07FF | Program Memory | | | | Note: *See the <u>Trap and Interrupt Vectors in Order of Priority section on page 55</u> for a list of the interrupt vectors and traps. ## **Reset Sources** Table 10 lists the possible sources of a System Reset. Table 10. Reset Sources and Resulting Reset Type | Operating Mode | Reset Source | Special Conditions | | | | | |----------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | NORMAL or HALT modes | Power-On Reset/Voltage Brown-Out. | Reset delay begins after supply voltage exceeds POR level. | | | | | | | Watchdog Timer time-out when configured for Reset. | None. | | | | | | | RESET pin assertion. | All reset pulses less than three system clocks in width are ignored. | | | | | | | OCD initiated Reset (OCDCTL[0] set to 1). | System Reset, except the OCD is unaffected by the reset. | | | | | | STOP Mode | Power-On Reset/Voltage Brown-Out. | Reset delay begins after supply voltage exceeds POR level. | | | | | | | RESET pin assertion. | All reset pulses less than the specified analog delay are ignored. See the <u>Electrical Characteristics chapter on page 196</u> . | | | | | | | DBG pin driven Low. | None. | | | | | #### **Power-On Reset** Each device in the Z8 Encore! XP F0823 Series contains an internal POR circuit. The POR circuit monitors the supply voltage and holds the device in the Reset state until the supply voltage reaches a safe operating level. After the supply voltage exceeds the POR voltage threshold (V_{POR}) , the device is held in the Reset state until the POR Counter has timed out. If the crystal oscillator is enabled by the option bits, this time-out is longer. After the Z8 Encore! XP F0823 Series device exits the POR state, the eZ8 CPU fetches the Reset vector. Following the POR, the POR status bit in Watchdog Timer Control (WDTCTL) Register is set to 1. Figure 5 displays POR operation. For the POR threshold voltage (V_{POR}), see the <u>Electrical Characteristics</u> chapter on page 196. # **Low-Power Modes** Z8 Encore! XP F0823 Series products contain power-saving features. The highest level of power reduction is provided by the STOP Mode, in which nearly all device functions are powered down. The next lower level of power reduction is provided by the HALT Mode, in which the CPU is powered down. Further power savings can be implemented by disabling individual peripheral blocks while in ACTIVE mode (defined as being in neither STOP nor HALT Mode). ## **STOP Mode** Executing the eZ8 CPU's Stop instruction places the device into STOP Mode, powering down all peripherals except the Voltage Brown-Out detector, and the Watchdog Timer. These two blocks may also be disabled for additional power savings. In STOP Mode, the operating characteristics are: - Primary crystal oscillator and internal precision oscillator are stopped; X_{IN} and X_{OUT} (if previously enabled) are disabled, and PAO/PA1 revert to the states programmed by the GPIO registers - System clock is stopped - eZ8 CPU is stopped - Program counter (PC) stops incrementing - Watchdog Timer's internal RC oscillator continues to operate if enabled by the Oscillator Control Register - If enabled, the Watchdog Timer logic continues to operate - If enabled for operation in STOP Mode by the associated Flash Option Bit, the Voltage Brown-Out protection circuit continues to operate - All other on-chip peripherals are idle To minimize current in STOP Mode, all GPIO pins that are configured as digital inputs must be driven to one of the supply rails (V_{CC} or GND). Additionally, any GPIOs configured as outputs must also be driven to one of the supply rails. The device can be brought out of STOP Mode using Stop Mode Recovery. For more information about Stop Mode Recovery, see the Reset and Stop Mode Recovery chapter on page 21. ## Port A–C Stop Mode Recovery Source Enable Subregisters The Port A–C Stop Mode Recovery Source Enable Subregister (Table 26) is accessed through the Port A–C Control Register by writing 05H to the Port A–C Address Register. Setting the bits in the Port A–C Stop Mode Recovery Source Enable subregisters to 1 configures the specified Port pins as a Stop Mode Recovery source. During STOP Mode, any logic transition on a Port pin enabled as a Stop Mode Recovery source initiates Stop Mode Recovery. Table 26. Port A-C Stop Mode Recovery Source Enable Subregisters (PSMREx) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | |---------|-----------|---------------------------------------------------------------------------------------|-------------|--------|-------------|--------|--------|--------|--|--|--| | Field | PSMRE7 | PSMRE6 | PSMRE5 | PSMRE4 | PSMRE3 | PSMRE2 | PSMRE1 | PSMRE0 | | | | | RESET | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | R/W | R/W | R/W | R/W R/W R/W | | R/W R/W R/V | | | | | | | | Address | If 05H in | If 05H in Port A–C Address Register, accessible through the Port A–C Control Register | | | | | | | | | | [7:0] Port Stop Mode Recovery Source Enabled. PSMREx 0 = The Port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP Mode do not initiate Stop Mode Recovery. 1 = The Port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin during STOP Mode initiates Stop Mode Recovery. Note: x indicates the specific GPIO port pin number (7–0). PWM Output High Time Ratio (%) = $$\frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$$ If TPOL is set to 1, the ratio of the PWM output High time to the total period is represented by: PWM Output High Time Ratio (%) = $$\frac{PWM \ Value}{Reload \ Value} \times 100$$ #### **CAPTURE Mode** In CAPTURE Mode, the current timer count value is recorded when the appropriate external Timer Input transition occurs. The capture count value is written to the Timer PWM High and Low Byte registers. The timer input is the system clock. The TPOL bit in the Timer Control Register determines if the capture occurs on a rising edge or a falling edge of the Timer Input signal. When the capture event occurs, an interrupt is generated and the timer continues counting. The INPCAP bit in TxCTL1 Register is set to indicate the timer interrupt is because of an input capture event. The timer continues counting up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt and continues counting. The INPCAP bit in TxCTL1 Register clears indicating the timer interrupt is not because of an input capture event. Observe the following steps to configure a timer for CAPTURE Mode and initiating the count: - 1. Write to the Timer Control Register to: - Disable the timer - Configure the timer for CAPTURE Mode - Set the prescale value - Set the capture edge (rising or falling) for the Timer Input - 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). - 3. Write to the Timer Reload High and Low Byte registers to set the reload value. - 4. Clear the Timer PWM High and Low Byte registers to 0000H. Clearing these registers allows the software to determine if interrupts were generated by either a capture or a reload event. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a reload. - 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both - Set or clear the CTSE bit to enable or disable control from the remote receiver using the CTS pin - 6. Check the TDRE bit in the UART Status 0 Register to determine if the Transmit Data Register is empty (indicated by a 1). If empty, continue to Step 7. If the Transmit Data Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data Register becomes available to receive new data. - 7. Write the UART Control 1 Register to select the outgoing address bit. - 8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte. - 9. Write the data byte to the UART Transmit Data Register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data. - 10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate and MULTIPROCESSOR Mode is enabled,. - 11. To transmit additional bytes, return to <u>Step 5</u>. ## Transmitting Data Using the Interrupt-Driven Method The UART Transmitter interrupt indicates the availability of the Transmit Data Register to accept new data for transmission. Observe the following steps to configure the UART for interrupt-driven data transmission: - 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate. - 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation. - 3. Execute a DI instruction to disable interrupts. - 4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the acceptable priority. - 5. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) Mode functions, if MULTIPROCESSOR Mode is appropriate. - 6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR Mode. - 7. Write to the UART Control 0 Register to: - Set the transmit enable bit (TEN) to enable the UART for data transmission. - Enable parity, if appropriate and if MULTIPROCESSOR Mode is not enabled, and select either even or odd parity. # Infrared Encoder/Decoder Z8 Encore! XP F0823 Series products contain a fully-functional, high-performance UART with an infrared encoder/decoder (endec). The infrared endec is integrated with an on-chip UART to allow easy communication between the Z8 Encore! XP and IrDA Physical Layer Specification, Version 1.3-compliant infrared transceivers. Infrared communication provides secure, reliable, low-cost, point-to-point communication between PCs, PDAs, cell phones, printers and other infrared enabled devices. ## **Architecture** Figure 16 displays the architecture of the infrared endec. Figure 16. Infrared Data Communication System Block Diagram ## **Operation** When the infrared endec is enabled, the transmit data from the associated on-chip UART is encoded as digital signals in accordance with the IrDA standard and output to the infrared transceiver through the TXD pin. Similarly, data received from the infrared transceiver is passed to the infrared endec through the RXD pin, decoded by the infrared endec, and ## **Receiving IrDA Data** Data received from the infrared transceiver using the IR_RXD signal through the RXD pin is decoded by the infrared endec and passed to the UART. The UART's baud rate clock is used by the infrared endec to generate the demodulated signal (RXD) that drives the UART. Each UART/Infrared data bit is 16-clocks wide. Figure 18 displays data reception. When the infrared endec is enabled, the UART's RXD signal is internal to the Z8 Encore! XP F0823 Series products while the IR_RXD signal is received through the RXD pin. Figure 18. IrDA Data Reception ## **Infrared Data Reception** **Caution:** The system clock frequency must be at least 1.0MHz to ensure proper reception of the 1.4µs minimum width pulses allowed by the IrDA standard. #### **Endec Receiver Synchronization** The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate an input stream for the UART and to create a sampling window for detection of incoming pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods with respect to the incoming IrDA data stream. When a falling edge in the input data stream is detected, the endec counter is reset. When the count reaches a value of 8, the UART RXD value is updated to reflect the value of the decoded data. When the count reaches 12 baud clock periods, the sampling window for the next incoming pulse opens. - 4. When the first conversion in continuous operation is complete (after 5129 system clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic performs the following operations: - CEN resets to 0 to indicate the first conversion is complete. CEN remains 0 for all subsequent conversions in continuous operation - An interrupt request is sent to the Interrupt Controller to indicate the conversion is complete - 5. The ADC writes a new data result every 256 system clock cycles. For each completed conversion, the ADC control logic performs the following operations: - Writes the 11-bit two's complement result to {ADCD_H[7:0], ADCD_L[7:5]} - An interrupt request to the Interrupt Controller denoting conversion complete - 6. To disable continuous conversion, clear the CONT bit in the ADC Control Register to 0. ## Interrupts The ADC is able to interrupt the CPU whenever a conversion has been completed and the ADC is enabled. When the ADC is disabled, an interrupt is not asserted; however, an interrupt pending when the ADC is disabled is not cleared. ## **Calibration and Compensation** Z8 Encore! XP F0823 Series ADC can be factory calibrated for offset error and gain error, with the compensation data stored in Flash memory. Alternatively, user code can perform its own calibration, storing the values into Flash themselves. ## **Factory Calibration** Devices that have been factory calibrated contain nine bytes of calibration data in the Flash option bit space. This data consists of three bytes for each reference type. For a list of input modes for which calibration data exists, see the <u>Zilog Calibration Data</u> section on page 152. There is 1 byte for offset, and there are 2 bytes for gain correction. #### **User Calibration** If you have precision references available, its own external calibration can be performed, storing the values into Flash themselves. ## **OCD Unlock Sequence (8-Pin Devices Only)** Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to access the DBG pin. If this sequence is not completed during a system reset, then the PAO/DBG pin functions only as a GPIO pin. The following sequence unlocks the DBG pin: - 1. Hold PA2/RESET Low. - 2. Wait 5 ms for the internal reset sequence to complete. - 3. Send the following bytes serially to the debug pin: ``` DBG \leftarrow 80H (autobaud) DBG \leftarrow EBH DBG \leftarrow 5AH DBG \leftarrow 70H DBG \leftarrow CDH (32-bit unlock key) ``` 4. Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the DBG pin on the 20- or 28-pin device. To enter DEBUG Mode, reautobaud and write 80H to the OCD Control Register (see the On-Chip Debugger Commands section on page 162). ## **Breakpoints** Execution breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the OCD. If breakpoints are enabled, the OCD enters DEBUG Mode and idles the eZ8 CPU. If breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP instruction. ## **Breakpoints in Flash Memory** The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a breakpoint, write 00H to the required break address, overwriting the current instruction. To remove a breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data. #### **Runtime Counter** The OCD contains a 16-bit Runtime Counter. It counts system clock cycles between breakpoints. The counter starts counting when the OCD leaves DEBUG Mode and stops counting when it enters DEBUG Mode again or when it reaches the maximum count of FFFFH. **Caution:** Unintentional accesses to the Oscillator Control Register can actually stop the chip by switching to a non-functioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme. ## **OSC Control Register Unlocking/Locking** To write to the Oscillator Control Register, unlock it by making two writes to the OSC-CTL Register with the values E7H followed by 18H. A third write to the OSCCTL Register changes the value of the actual register and returns the register to a locked state. Any other sequence of Oscillator Control Register writes has no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation. When selecting a new clock source, the primary oscillator failure detection circuitry and the Watchdog Timer oscillator failure circuitry must be disabled. If POFEN and WOFEN are not disabled prior to a clock switch-over, it is possible to generate an interrupt for a failure of either oscillator. The Failure detection circuitry can be enabled anytime after a successful write of OSCSEL in the Oscillator Control Register. The internal precision oscillator is enabled by default. If the user code changes to a different oscillator, it is appropriate to disable the IPO for power savings. Disabling the IPO does not occur automatically. ## Clock Failure Detection and Recovery Should an oscillator or timer fail, there are methods of recovery, as this section describes. #### **Primary Oscillator Failure** Z8 Encore! XP F0823 Series devices can generate non-maskable interrupt-like events when the primary oscillator fails. To maintain system function in this situation, the clock failure recovery circuitry automatically forces the Watchdog Timer oscillator to drive the system clock. The Watchdog Timer oscillator must be enabled to allow the recovery. Although this oscillator runs at a much slower speed than the original system clock, the CPU continues to operate, allowing execution of a clock failure vector and software routines that either remedy the oscillator failure or issue a failure alert. This automatic switchover is not available if the Watchdog Timer is the primary oscillator. It is also unavailable if the Watchdog Timer oscillator is disabled, though it is not necessary to enable the Watchdog Timer reset function outlined in the the Watchdog Timer section on page 91. The primary oscillator failure detection circuitry asserts if the system clock frequency drops below 1kHz ±50%. If an external signal is selected as the system oscillator, it is possible that a very slow but non-failing clock can generate a failure condition. Under these **Table 110. Arithmetic Instructions (Continued)** | Mnemonic | Operands | Instruction | |----------|----------|-----------------------------------------------| | MULT | dst | Multiply | | SBC | dst, src | Subtract with Carry | | SBCX | dst, src | Subtract with Carry using Extended Addressing | | SUB | dst, src | Subtract | | SUBX | dst, src | Subtract using Extended Addressing | **Table 111. Bit Manipulation Instructions** | Mnemonic | Operands | Instruction | |----------|-------------|------------------------------------------------------| | BCLR | bit, dst | Bit Clear | | BIT | p, bit, dst | Bit Set or Clear | | BSET | bit, dst | Bit Set | | BSWAP | dst | Bit Swap | | CCF | _ | Complement Carry Flag | | RCF | _ | Reset Carry Flag | | SCF | _ | Set Carry Flag | | TCM | dst, src | Test Complement Under Mask | | TCMX | dst, src | Test Complement Under Mask using Extended Addressing | | TM | dst, src | Test Under Mask | | TMX | dst, src | Test Under Mask using Extended Addressing | **Table 112. Block Transfer Instructions** | Mnemonic | Operands | Instruction | |----------|----------|-------------------------------------------------------------------------| | LDCI | dst, src | Load Constant to/from Program Memory and Auto-
Increment Addresses | | LDEI | dst, src | Load External Data to/from Data Memory and Auto-
Increment Addresses | Table 118. eZ8 CPU Instruction Summary (Continued) | Assembly | | | dress
ode | _ Opcode(s) | Flags | | | | | | _ Fetch | Instr. | |---------------|--|-----|--------------|-------------|-------|---|---|---|---|---|---------|--------| | Mnemonic | Symbolic Operation | dst | src | (Hex) | С | Z | S | ٧ | D | Н | Cycles | | | TCM dst, src | (NOT dst) AND src | r | r | 62 | - | * | * | 0 | _ | - | 2 | 3 | | | | r | lr | 63 | | | | | | | 2 | 4 | | | | R | R | 64 | | | | | | | 3 | 3 | | | | R | IR | 65 | • | | | | | | 3 | 4 | | | | R | IM | 66 | • | | | | | | 3 | 3 | | | | IR | IM | 67 | • | | | | | | 3 | 4 | | TCMX dst, src | (NOT dst) AND src | ER | ER | 68 | - | * | * | 0 | _ | _ | 4 | 3 | | | | ER | IM | 69 | • | | | | | | 4 | 3 | | TM dst, src | dst AND src | r | r | 72 | - | * | * | 0 | _ | - | 2 | 3 | | | | r | lr | 73 | | | | | | | 2 | 4 | | | | R | R | 74 | • | | | | | | 3 | 3 | | | | R | IR | 75 | • | | | | | | 3 | 4 | | | | R | IM | 76 | | | | | | | 3 | 3 | | | | IR | IM | 77 | • | | | | | | 3 | 4 | | TMX dst, src | dst AND src | ER | ER | 78 | - | * | * | 0 | _ | _ | 4 | 3 | | | | ER | IM | 79 | • | | | | | | 4 | 3 | | TRAP Vector | $SP \leftarrow SP - 2$
$@SP \leftarrow PC$
$SP \leftarrow SP - 1$
$@SP \leftarrow FLAGS$
$PC \leftarrow @Vector$ | | Vector | F2 | _ | _ | _ | _ | _ | _ | 2 | 6 | | WDT | | | | 5F | _ | _ | _ | _ | _ | _ | 1 | 2 | Note: Flags Notation: ^{* =} Value is a function of the result of the operation. ⁻ = Unaffected. X = Undefined. ^{0 =} Reset to 0. ^{1 =} Set to 1. #### Table 118. eZ8 CPU Instruction Summary (Continued) | Assembly | | | ress
ode | _ Opcode(s) | | | Fla | ags | | | Fetch | Instr. | |---------------|--------------------|-----|-------------|-------------|---|---|-----|-----|---|---|--------|--------| | Mnemonic | Symbolic Operation | dst | src | (Hex) | С | Z | S | ٧ | D | Н | Cycles | Cycles | | XOR dst, src | dst ← dst XOR src | r | r | B2 | - | * | * | 0 | - | - | 2 | 3 | | | | r | lr | В3 | • | | | | | | 2 | 4 | | | | R | R | B4 | • | | | | | | 3 | 3 | | | | R | IR | B5 | • | | | | | | 3 | 4 | | | | R | IM | B6 | • | | | | | | 3 | 3 | | | | IR | IM | B7 | • | | | | | | 3 | 4 | | XORX dst, src | dst ← dst XOR src | ER | ER | B8 | - | * | * | 0 | - | - | 4 | 3 | | | | ER | IM | В9 | • | | | | | | 4 | 3 | Note: Flags Notation: * = Value is a function of the result of the operation. ⁻ = Unaffected. X = Undefined. ^{0 =} Reset to 0. ^{1 =} Set to 1. # Electrical Characteristics The data in this chapter represents all known data prior to qualification and characterization of the F0823 Series of products, and is therefore subject to change. Additional electrical characteristics may be found in the individual chapters of this document. ## **Absolute Maximum Ratings** Stresses greater than those listed in Table 120 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}). **Table 120. Absolute Maximum Ratings** | Parameter | Minimum | Maximum | Units | Notes | |--|---------|---------|-------|-------| | Ambient temperature under bias | -40 | +105 | °C | | | Storage temperature | -65 | +150 | °C | | | Voltage on any pin with respect to V _{SS} | -0.3 | +5.5 | V | 1 | | | -0.3 | +3.9 | V | 2 | | Voltage on V _{DD} pin with respect to V _{SS} | -0.3 | +3.6 | V | | | Maximum current on input and/or inactive output pin | -5 | +5 | μA | | | Maximum output current from active output pin | -25 | +25 | mA | | | 8-pin Packages Maximum Ratings at 0°C to 70°C | | | | | | Total power dissipation | | 220 | mW | | | Maximum current into V _{DD} or out of V _{SS} | | 60 | mA | | | 20-pin Packages Maximum Ratings at 0°C to 70°C | | | | | | Total power dissipation | | 430 | mW | | | Maximum current into V _{DD} or out of V _{SS} | | 120 | mA | | | 28-pin Packages Maximum Ratings at 0°C to 70°C | | | | | | Total power dissipation | | 450 | mW | | | Maximum current into V _{DD} or out of V _{SS} | | 125 | mA | | Notes: Operating temperature is specified in DC Characteristics. - This voltage applies to all pins except the following: V_{DD}, AV_{DD}, pins supporting analog input (Port B[5:0], Port C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). On the 8-pin packages, this applies to all pins but V_{DD}. - 2. This voltage applies to pins on the 20/28 pin packages supporting analog input (Port B[5:0], Port C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). # On-Chip Peripheral AC and DC Electrical Characteristics Table 125 tabulates the electrical characteristics of the POR and VBO blocks. Table 125. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing | | | $T_A = $ | –40°C to + | | Conditions | | |-------------------|--|------------------|-----------------|---------|------------|---| | Symbol | Parameter | Minimum Typical* | | Maximum | | | | V _{POR} | Power-On Reset Voltage
Threshold | 2.20 | 2.45 | 2.70 | V | $V_{DD} = V_{POR}$ | | V _{VBO} | Voltage Brown-Out Reset Voltage Threshold | 2.15 | 2.40 | 2.65 | V | $V_{DD} = V_{VBO}$ | | | V _{POR} to V _{VBO} hysteresis | | 50 | 75 | mV | | | | Starting V _{DD} voltage to ensure valid Power-On Reset. | - | V _{SS} | _ | V | | | T _{ANA} | Power-On Reset Analog Delay | - | 70 | - | μs | V _{DD} > V _{POR} ;
T _{POR} Digital
Reset delay fol-
lows T _{ANA} | | T _{POR} | Power-On Reset Digital Delay | | 16 | | μs | 66 Internal Precision Oscillator cycles + IPO startup time (T _{IPOST}) | | T _{SMR} | Stop Mode Recovery | | 16 | | μs | 66 Internal Precision Oscillator cycles | | T _{VBO} | Voltage Brown-Out Pulse
Rejection Period | - | 10 | - | μs | Period of time in which V _{DD} < V _{VBO} without generating a Reset. | | T _{RAMP} | Time for V_{DD} to transition from V_{SS} to V_{POR} to ensure valid Reset | 0.10 | - | 100 | ms | | | T _{SMP} | Stop Mode Recovery pin pulse rejection period | | 20 | | ns | For any SMR pin or for the Reset pin when it is asserted in STOP Mode. | Note: *Data in the typical column is from characterization at 3.3 V and 30°C. These values are provided for design guidance only and are not tested in production. | UARTx control 1 (UxCTL1) 113 | software trap 181 | | | | | | |---|--|--|--|--|--|--| | UARTx receive data (UxRXD) 109 | source operand 177 | | | | | | | UARTx status 0 (UxSTAT0) 110 | SP 177 | | | | | | | UARTx status 1 (UxSTAT1) 111 | SRA 182 | | | | | | | UARTx transmit data (UxTXD) 109 | src 177 | | | | | | | Watchdog Timer control (WDTCTL) 94, 133 | SRL 182 | | | | | | | watch-dog timer control (WDTCTL) 172 | SRP 180 | | | | | | | Watchdog Timer reload high byte (WDTH) 95 | stack pointer 177 | | | | | | | Watchdog Timer reload low byte (WDTL) 95 | STOP 180 | | | | | | | Watchdog Timer reload upper byte (WDTU) | STOP mode 30, 180 | | | | | | | 95 | Stop Mode Recovery | | | | | | | register file 13 | sources 26 | | | | | | | register pair 177 | using a GPIO port pin transition 27, 28 | | | | | | | register pointer 177 | using Watchdog Timer time-out 27 | | | | | | | reset | SUB 179 | | | | | | | and stop mode characteristics 21 | subtract 179 | | | | | | | and stop mode recovery 21 | subtract - extended addressing 179 | | | | | | | carry flag 179 | subtract with carry 179 | | | | | | | sources 23 | subtract with carry - extended addressing 179 | | | | | | | RET 181 | SUBX 179 | | | | | | | return 181 | SWAP 182 | | | | | | | RL 181 | swap nibbles 182 | | | | | | | RLC 181 | symbols, additional 177 | | | | | | | rotate and shift instructions 181 | | | | | | | | rotate left 181 | | | | | | | | rotate left through carry 181 | T | | | | | | | rotate right 182 | TCM 179 | | | | | | | rotate right through carry 182 | TCMX 179 | | | | | | | RP 177 | test complement under mask 179 | | | | | | | RR 177, 182 | test complement under mask - extended addressing | | | | | | | rr 177 | 179 | | | | | | | RRC 182 | test under mask 179 | | | | | | | | test under mask - extended addressing 179 | | | | | | | | timer signals 9 | | | | | | | S | timers 69 | | | | | | | SBC 179 | architecture 70 | | | | | | | SCF 179, 180 | block diagram 70 | | | | | | | second opcode map after 1FH 195 | CAPTURE mode 78, 79, 89 | | | | | | | set carry flag 179, 180 | CAPTURE/COMPARE mode 82, 89 | | | | | | | set register pointer 180 | COMPARE mode 80, 89 | | | | | | | shift right arithmetic 182 | CONTINUOUS mode 71, 88 | | | | | | | shift right logical 182 | COUNTER mode 72, 73 | | | | | | | signal descriptions 9 | COUNTER modes 89 | | | | | | | single-sho conversion (ADC) 123 | GATED mode 81, 89 | | | | | | | | | | | | | |