

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details		
Product Status	Active	
Core Processor	eZ8	
Core Size	8-Bit	
Speed	5MHz	
Connectivity	IrDA, UART/USART	
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT	
Number of I/O	6	
Program Memory Size	8KB (8K x 8)	
Program Memory Type	FLASH	
EEPROM Size	-	
RAM Size	1K x 8	
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V	
Data Converters	-	
Oscillator Type	Internal	
Operating Temperature	0°C ~ 70°C (TA)	
Mounting Type	Through Hole	
Package / Case	8-DIP (0.300", 7.62mm)	
Supplier Device Package	-	
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0813pb005sg	

Z8 Encore! XP[®] F0823 Series Product Specification

		•
А	v	

External Reset Input	
On-Chip Debugger Initiated Reset	
Stop Mode Recovery	
Stop Mode Recovery Using Watchdog Timer Time-Out	
Stop Mode Recovery Using a GPIO Port Pin Transition	
Stop Mode Recovery Using the External RESET Pin	
Low-Power Modes	
STOP Mode	
HALT Mode	
Peripheral-Level Power Control	
Power Control Register Definitions	1
General-Purpose Input/Output	3
GPIO Port Availability By Device	3
Architecture	4
GPIO Alternate Functions	34
Direct LED Drive	8
Shared Reset Pin	9
Shared Debug Pin	9
Crystal Oscillator Override	9
5 V Tolerance	9
External Clock Setup	0
GPIO Interrupts	0
GPIO Control Register Definitions	0
Port A–C Address Registers	1
Port A–C Control Registers	-2
Port A–C Data Direction Subregisters	3
Port A–C Alternate Function Subregisters	3
Port A–C Input Data Registers	60
Port A–C Output Data Register	<i>i</i> 1
LED Drive Enable Register 5	1
LED Drive Level High Register 5	52
LED Drive Level Low Register	13
Interrupt Controller	<i>i</i> 4
Interrupt Vector Listing	
Architecture	
Operation	
Master Interrupt Enable	6
Interrupt Vectors and Priority	

Table 8. Register File Address Map (Continued)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
LED Controller ((cont'd)			
F84	LED Drive Level Low Byte	LEDLVLL	00	<u>53</u>
F85	Reserved	_	XX	
Oscillator Contr	ol			
F86	Oscillator Control	OSCCTL	A0	<u>172</u>
F87–F8F	Reserved	_	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	133
F91–FBF Reserved		_	XX	
Interrupt Contro	ller			
FC0	Interrupt Request 0	IRQ0	00	<u>59</u>
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	<u>62</u>
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	<u>62</u>
FC3	Interrupt Request 1	IRQ1	00	<u>60</u>
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	<u>64</u>
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	<u>64</u>
FC6	Interrupt Request 2	IRQ2	00	<u>61</u>
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	<u>65</u>
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	<u>66</u>
FC9-FCC	Reserved	_	XX	
FCD	Interrupt Edge Select	IRQES	00	<u>67</u>
FCE	Shared Interrupt Select	IRQSS	00	<u>67</u>
FCF	Interrupt Control	IRQCTL	00	<u>68</u>
GPIO Port A				
FD0	Port A Address	PAADDR	00	40
FD1	Port A Control	PACTL	00	<u>42</u>
FD2	Port A Input Data	PAIN	XX	<u>43</u>
FD3	Port A Output Data	PAOUT	00	<u>43</u>
GPIO Port B				_
FD4	Port B Address	PBADDR	00	<u>40</u>
FD5	Port B Control	PBCTL	00	<u>42</u>

Note: XX=Undefined.

Table 8. Register File Address Map (Continued)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No.
GPIO Port B (co	nt'd)			
FD6	Port B Input Data	PBIN	XX	<u>43</u>
FD7	Port B Output Data	PBOUT	00	<u>43</u>
GPIO Port C				
FD8	Port C Address	PCADDR	00	<u>40</u>
FD9	Port C Control	PCCTL	00	<u>42</u>
FDA	Port C Input Data	PCIN	XX	<u>43</u>
FDB	Port C Output Data	PCOUT	00	<u>43</u>
FDC-FEF	Reserved	_	XX	
Watchdog Time	r (WDT)			
FF0	Reset Status	RSTSTAT	XX	<u>94</u>
	Watchdog Timer Control	WDTCTL	XX	<u>94</u>
FF1	Watchdog Timer Reload Upper Byte	WDTU	FF	<u>95</u>
FF2	Watchdog Timer Reload High Byte	WDTH	FF	<u>95</u>
FF3	Watchdog Timer Reload Low Byte	WDTL	FF	<u>95</u>
FF4–FF5	Reserved	_	XX	
Trim Bit Control				
FF6	Trim Bit Address	TRMADR	00	<u>148</u>
FF7	Trim Data	TRMDR	XX	<u>149</u>
Flash Memory C	Controller			
FF8	Flash Control	FCTL	00	<u>141</u>
FF8	Flash Status	FSTAT	00	<u>142</u>
FF9	Flash Page Select	FPS	00	<u>143</u>
	Flash Sector Protect	FPROT	00	<u>144</u>
FFA	Flash Programming Frequency High Byte	FFREQH	00	<u>145</u>
FFB	Flash Programming Frequency Low Byte	FFREQL	00	<u>145</u>

Note: XX=Undefined.

Reset and Stop Mode Recovery

The Reset Controller within the Z8 Encore! XP F0823 Series controls Reset and Stop Mode Recovery operation and provides indication of low supply voltage conditions. In typical operation, the following events cause a Reset:

- Power-On Reset (POR)
- Voltage Brown-Out (VBO)
- Watchdog Timer time-out (when configured by the WDT_RES Flash Option Bit to initiate a reset)
- External RESET pin assertion (when the alternate RESET function is enabled by the GPIO register)
- On-chip Debugger initiated Reset (OCDCTL[0] set to 1)

When the device is in STOP Mode, a Stop Mode Recovery is initiated by either of the following:

- Watchdog Timer time-out
- GPIO port input pin transition on an enabled Stop Mode Recovery source

The VBO circuitry on the device performs the following function:

Generates the VBO reset when the supply voltage drops below a minimum safe level

Reset Types

F0823 Series MCUs provide several different types of Reset operations. Stop Mode Recovery is considered a form of Reset. Table 9 lists the types of Reset and their operating characteristics. The duration of a System Reset is longer if the external crystal oscillator is enabled by the Flash option bits; this configuration allows additional time for oscillator startup.

Table 9. Reset and Stop Mode Recovery Characteristics and Latency

	Reset Characteristics and Latency					
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)			
System Reset	Reset (as applicable)	Reset	66 Internal Precision Oscillator Cycles			
Stop Mode Recovery	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	66 Internal Precision Oscillator Cycles + IPO startup time			

Table 17. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B ³	PB03	Reserved		AFS1[0]: 0
		ANA0	ADC Analog Input	AFS1[0]: 1
	PB1	Reserved		AFS1[1]: 0
		ANA1	ADC Analog Input	AFS1[1]: 1
	PB2	Reserved		AFS1[2]: 0
		ANA2	ADC Analog Input	AFS1[2]: 1
	PB3	CLKIN	External Clock Input	AFS1[3]: 0
		ANA3	ADC Analog Input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC Analog Input	AFS1[4]: 1
	PB5	Reserved		AFS1[5]: 0
		V _{REF} ⁴	ADC Voltage Reference	AFS1[5]: 1
	PB6	Reserved		AFS1[6]: 0
		Reserved		AFS1[6]: 1
	PB7	Reserved		AFS1[7]: 0
		Reserved		AFS1[7]: 1

Notes:

- 1. Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in the Port A—C Alternate Function Subregisters section on page 43 automatically enables the associated alternate function.
- 2. Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in the <u>Timer Pin Signal Operation</u> section on page 83.
- 3. Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, alternate function selection as described in the Port A—C Alternate Function Subregisters section on page 43 must also be enabled.
- 4. V_{REF} is available on PB5 in 28-pin products only.
- 5. Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, Alternate Function selection as described in the Port A-C Alternate Function Subregisters section on page 43 must also be enabled.
- 6. V_{REF} is available on PC2 in 20-pin parts only.

Table 40. IRQ0 Enable High Bit Register (IRQ0ENH)

Bit	7	6	5	4	3	2	1	0
Field	Reserved	T1ENH	T0ENH	U0RENH	U0TENH	Rese	erved	ADCENH
RESET	0	0	0	0	0	()	0
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Address		FC1H						

Bit	Description
[7]	Reserved
	This bit is reserved and must be programmed to 0.
[6] T1ENH	Timer 1 Interrupt Request Enable High Bit
[5] T0ENH	Timer 0 Interrupt Request Enable High Bit
[4] U0RENH	UART 0 Receive Interrupt Request Enable High Bit
[3] U0TENH	UART 0 Transmit Interrupt Request Enable High Bit
[2:1]	Reserved
	These bits are reserved and must be programmed to 00.
[0] ADCENH	ADC Interrupt Request Enable High Bit

Table 41. IRQ0 Enable Low Bit Register (IRQ0ENL)

Bit	7	6	5	4	3	2	1	0	
Field	Reserved	T1ENL	T0ENL	U0RENL	U0TENL	Rese	erved	ADCENL	
RESET	0	0	0	0	0	()	0	
R/W	R	R/W	R/W	R/W	R/W	F	₹	R/W	
Address		FC2H							

Bit	Description
[7]	Reserved This bit is reserved and must be programmed to 0 when read.
[6] T1ENL	Timer 1 Interrupt Request Enable Low Bit

Caution: The frequency of the comparator output signal must not exceed one-fourth the system clock frequency.

After reaching the reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer reload.

Observe the following steps to configure a timer for COMPARATOR COUNTER Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer.
 - Configure the timer for COMPARATOR COUNTER Mode.
 - Select either the rising edge or falling edge of the comparator output signal for the count. This also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This action only affects the first pass in COMPARATOR COUNTER Mode. After the first timer reload in COMPARATOR COUNTER Mode, counting always begins at the reset value of 0001H. Generally, in COMPARATOR COUNTER Mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control Register to enable the timer.

In COMPARATOR COUNTER Mode, the number of comparator output transitions since the timer start is computed via the following equation:

Comparator Output Transitions = Current Count Value - Start Value

- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control Register to enable the timer.
- 7. Assert the Timer Input signal to initiate the counting.

CAPTURE/COMPARE Mode

In CAPTURE/COMPARE Mode, the timer begins counting on the first external Timer Input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control Register. The timer input is the system clock.

Every subsequent acceptable transition (after the first) of the Timer Input signal captures the current count value. The capture value is written to the Timer PWM High and Low Byte registers. When the capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. The INPCAP bit in TxCTL1 Register is set to indicate the timer interrupt is caused by an input capture event.

If no capture event occurs, the timer counts up to the 16-bit compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 Register is cleared to indicate the timer interrupt is not because of an input capture event.

Observe the following steps to configure a timer for CAPTURE/COMPARE Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for CAPTURE/COMPARE Mode
 - Set the prescale value
 - Set the capture edge (rising or falling) for the Timer Input
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the compare value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt are generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 Register.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control Register to enable the timer.

causes the value in TxL to be stored in a temporary holding register. A read from TxL always returns this temporary register when the timers are enabled. When the timer is disabled, reads from the TxL reads the register directly.

Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations, so simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low Byte) at the next clock edge. The counter continues counting from the new value.

Table 51. Timer 0–1 High Byte Register (TxH)

Bit	7	6	5	4	3	2	1	0
Field		TH						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F00H,	F08H			

Table 52. Timer 0–1 Low Byte Register (TxL)

Bit	7	6	5	4	3	2	1	0						
Field		TL												
RESET	0 0 0 0 0 0 1													
R/W	R/W R/W R/W R/W R/W R/W R/W													
Address				F01H,	F09H									

Bit	Description
[7:0]	Timer High and Low Bytes
TH, TL	These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.

Timer Reload High and Low Byte Registers

The Timer 0-1 Reload High and Low Byte (TxRH and TxRL) registers (Table 53 and Table 54) store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte register are stored in a temporary holding register. When a write to the Timer Reload Low Byte register occurs, the temporary holding register value is written to the Timer High Byte register. This operation allows simultaneous updates of the 16-bit Timer reload value. In COMPARE Mode, the Timer Reload High and Low Byte registers store the 16-bit compare value.

Bit	Description	(Continued)
-----	-------------	-------------

[6] **COUNTER Mode**

TPOL

If the timer is enabled the Timer Output signal is complemented after timer reload. (cont'd.) 0 = Count occurs on the rising edge of the Timer Input signal.

1 = Count occurs on the falling edge of the Timer Input signal.

PWM SINGLE OUTPUT Mode

- 0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon reload.
- 1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon reload.

CAPTURE Mode

- 0 = Count is captured on the rising edge of the Timer Input signal.
- 1 = Count is captured on the falling edge of the Timer Input signal.

COMPARE Mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer reload.

GATED Mode

- 0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.
- 1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

CAPTURE/COMPARE Mode

- 0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.
- 1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.

PWM DUAL OUTPUT Mode

- 0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon reload. When enabled, the Timer Output Complement is forced Low (0) upon PWM count match and forced High (1) upon reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to High (1).
- 1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon reload. When enabled, the Timer Output Complement is forced High (1) upon PWM count match and forced Low (0) upon reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to Low (0).

CAPTURE RESTART Mode

- 0 = Count is captured on the rising edge of the Timer Input signal.
- 1 = Count is captured on the falling edge of the Timer Input signal.

The window remains open until the count again reaches 8 (that is, 24 baud clock periods since the previous pulse was detected), giving the endec a sampling window of minus four baud rate clocks to plus eight baud rate clocks around the expected time of an incoming pulse. If an incoming pulse is detected inside this window this process is repeated. If the incoming data is a logical 1 (no pulse), the endec returns to the initial state and waits for the next falling edge. As each falling edge is detected, the endec clock counter is reset, resynchronizing the endec to the incoming signal, allowing the endec to tolerate jitter and baud rate errors in the incoming datastream. Resynchronizing the endec does not alter the operation of the UART, which ultimately receives the data. The UART is only synchronized to the incoming data stream when a Start bit is received.

Infrared Encoder/Decoder Control Register Definitions

All infrared endec configuration and status information is set by the UART control registers as defined in the Universal Asynchronous Receiver/Transmitter chapter on page 97.

Caution: To prevent spurious signals during IrDA data transmission, set the IREN bit in the UART Control 1 Register to 1 to enable the endec before enabling the GPIO port alternate function for the corresponding pin.

bits can only be set to 1. Thus, sectors can be protected, but not unprotected, via register write operations. Writing a value other than 5EH to the Flash Control Register deselects the Flash Sector Protect Register and reenables access to the Page Select Register.

Observe the following procedure to setup the Flash Sector Protect Register from user code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write 5EH to the Flash Control Register to select the Flash Sector Protect Register.
- 3. Read and/or write the Flash Sector Protect Register which is now at Register File address FF9H.
- 4. Write 00H to the Flash Control Register to return the Flash Controller to its reset state.

The Sector Protect Register is initialized to 0 on reset, putting each sector into an unprotected state. When a bit in the Sector Protect Register is written to 1, the corresponding sector can no longer be written or erased by the CPU. External Flash programming through the OCD or via the Flash Controller Bypass mode are unaffected. After a bit of the Sector Protect Register has been set, it cannot be cleared except by powering down the device.

Byte Programming

The Flash Memory is enabled for byte programming after unlocking the Flash Controller and successfully enabling either Mass Erase or Page Erase. When the Flash Controller is unlocked and Mass Erase is successfully completed, all Program Memory locations are available for byte programming. In contrast, when the Flash Controller is unlocked and Page Erase is successfully enabled, only the locations of the selected page are available for byte programming. An erased Flash byte contains all 1's (FFH). The programming operation can only be used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1 requires execution of either the Page Erase or Mass Erase commands.

Byte Programming is accomplished using the On-Chip Debugger's Write Memory command or eZ8 CPU execution of the LDC or LDCI instructions. For a description of the LDC and LDCI instructions, refer to the eZ8 CPU Core User Manual (UM0128), available for download at www.zilog.com. While the Flash Controller programs the Flash memory, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. To exit programming mode and lock the Flash, write any value to the Flash Control Register, except the Mass Erase or Page Erase commands.

Caution: The byte at each address of the Flash memory cannot be programmed (any bits written to 0) more than twice before an erase cycle occurs. Doing so may result in corrupted data at the target byte.

Table 107. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43H,	R8	(ADD dst, src)
Object Code	04	E8	43	(OPC src, dst)

See the device-specific Z8 Encore! XP Product Specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition codes, status flags, and address modes are represented by a notational shorthand that is noted in Table 108.

Table 108. Notational Shorthand

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
CC	Condition Code	_	See the Condition Codes overview in the <u>eZ8 CPU</u> Core User Manual (UM0128).
DA	Direct Address	Addrs	Addrs represents a number in the range of 0000H to FFFFH.
ER	Extended Addressing Register	Reg	Reg represents a number in the range of 000H to FFFH.
IM	Immediate Data	#Data	Data is a number between 00H to FFH.
Ir	Indirect Working Register	@Rn	n = 0–15.
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH.
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14.
IRR	Indirect Register Pair	@Reg	Reg represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0–15.
R	Register	Reg	Reg. represents a number in the range of 00H to FFH.

Table 118. eZ8 CPU Instruction Summary (Continued)

Assembly			ress ode	_ Opcode(s)	Flags						Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Z	S	٧	D	Н		Cycles
ADD dst, src	dst ← dst + src	r	r	02	*	*	*	*	0	*	2	3
		r	lr	03							2	4
		R	R	04	•						3	3
		R	IR	05	•						3	4
		R	IM	06	•						3	3
		IR	IM	07	•						3	4
ADDX dst, src	dst ← dst + src	ER	ER	08	*	*	*	*	0	*	4	3
		ER	IM	09	•						4	3
AND dst, src	dst ← dst AND src	r	r	52	-	*	*	0	-	-	2	3
		r	lr	53	•						2	4
		R	R	54	•						3	3
		R	IR	55	•						3	4
		R	IM	56							3	3
		IR	IM	57	•						3	4
ANDX dst, src	dst ← dst AND src	ER	ER	58	-	*	*	0	-	-	4	3
		ER	IM	59	•						4	3
ATM	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	_	_	_	-	_	-	1	2
BCLR bit, dst	dst[bit] ← 0	r		E2	_	_	_	_	_	_	2	2
BIT p, bit, dst	dst[bit] ← p	r		E2	-	-	_	0	_	_	2	2
BRK	Debugger Break			00	_	-	_	_	_	_	1	1
BSET bit, dst	dst[bit] ← 1	r		E2	-	-	-	0	-	-	2	2
BSWAP dst	dst[7:0] ← dst[0:7]	R		D5	Χ	*	*	0	-	-	2	2
BTJ p, bit, src,	if src[bit] = p		r	F6	_	-	-	-	_	-	3	3
dst	PC ← PC + X		lr	F7	-						3	4

Note: Flags Notation:

^{* =} Value is a function of the result of the operation.

⁻ = Unaffected.

X = Undefined.

^{0 =} Reset to 0.

^{1 =} Set to 1.

AC Characteristics

The section provides information about the AC characteristics and timing. All AC timing information assumes a standard load of 50 pF on all outputs.

Table 123. AC Characteristics

		T _A = -40°C (unless o	V to 3.6V to +105°C otherwise ted)		Conditions	
Symbol	Parameter	Minimum	Maximum	Units		
F _{SYSCLK}	System Clock Frequency	_	20.0*	MHz	Read-only from Flash memory	
		0.032768	20.0 ¹	MHz	Program or erasure of the Flash memory.	
T _{XIN}	System Clock Period	50	_	ns	T _{CLK} = 1/F _{SYSCLK} .	
T _{XINH}	System Clock High Time	20	30	ns	T _{CLK} = 50ns.	
T _{XINL}	System Clock Low Time	20	30	ns	T _{CLK} = 50ns.	
T _{XINR}	System Clock Rise Time	_	3	ns	T _{CLK} = 50ns.	
T _{XINF}	System Clock Fall Time	_	3	ns	$T_{CLK} = 50$ ns.	

Table 124. Internal Precision Oscillator Electrical Characteristics

 V_{DD} = 2.7V to 3.6V $T_A = -40^{\circ}C \text{ to } +105^{\circ}C$ (unless otherwise stated) **Symbol Parameter Minimum Maximum Units Conditions Typical** Internal Precision Oscillator 5.53 MHz $V_{DD} = 3.3V$ F_{IPO} $T_A = 30$ °C Frequency (High Speed) F_{IPO} Internal Precision Oscillator 32.7 kHz $V_{DD} = 3.3 V$ Frequency (Low Speed) $T_A = 30$ °C Internal Precision Oscillator F_{IPO} % <u>+</u>1 <u>+</u>4 Error T_{IPOST} Internal Precision Oscillator 3 μs Startup Time

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)

						9					
Part Number	Flash RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description				
Z8 Encore! XP F0823	Series with	8 KB FI	lash								
Standard Temperature: 0°C to 70°C											
Z8F0813PB005SG	8 KB 1 K	B 6	12	2	0	1	PDIP 8-pin package				
Z8F0813QB005SG	8 KB 1 K	B 6	12	2	0	1	QFN 8-pin package				
Z8F0813SB005SG	8 KB 1 K	В 6	12	2	0	1	SOIC 8-pin package				
Z8F0813SH005SG	8 KB 1 K	B 16	18	2	0	1	SOIC 20-pin package				
Z8F0813HH005SG	8 KB 1 K	B 16	18	2	0	1	SSOP 20-pin package				
Z8F0813PH005SG	8 KB 1 K	B 16	18	2	0	1	PDIP 20-pin package				
Z8F0813SJ005SG	8 KB 1 K	B 24	18	2	0	1	SOIC 28-pin package				
Z8F0813HJ005SG	8 KB 1 K	B 24	18	2	0	1	SSOP 28-pin package				
Z8F0813PJ005SG	8 KB 1 K	B 24	18	2	0	1	PDIP 28-pin package				
Extended Temperatu	ıre: –40°C to	105°C									
Z8F0813PB005EG	8 KB 1 K	В 6	12	2	0	1	PDIP 8-pin package				
Z8F0813QB005EG	8 KB 1 K	В 6	12	2	0	1	QFN 8-pin package				
Z8F0813SB005EG	8 KB 1 K	В 6	12	2	0	1	SOIC 8-pin package				
Z8F0813SH005EG	8 KB 1 K	B 16	18	2	0	1	SOIC 20-pin package				
Z8F0813HH005EG	8 KB 1 K	B 16	18	2	0	1	SSOP 20-pin package				
Z8F0813PH005EG	8 KB 1 K	B 16	18	2	0	1	PDIP 20-pin package				
Z8F0813SJ005EG	8 KB 1 K	B 24	18	2	0	1	SOIC 28-pin package				
Z8F0813HJ005EG	8 KB 1 K	B 24	18	2	0	1	SSOP 28-pin package				
Z8F0813PJ005EG	8 KB 1 K	B 24	18	2	0	1	PDIP 28-pin package				

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP F0823	Series w	ith 4	KB Fla	sh, 10	-Bit An	alog-1	o-Digi	tal Converter
Standard Temperatu	re: 0°C to	70°C						
Z8F0423PB005SG	4 KB	1 KB	6	12	2	4	1	PDIP 8-pin package
Z8F0423QB005SG	4 KB	1 KB	6	12	2	4	1	QFN 8-pin package
Z8F0423SB005SG	4 KB	1 KB	6	12	2	4	1	SOIC 8-pin package
Z8F0423SH005SG	4 KB	1 KB	16	18	2	7	1	SOIC 20-pin package
Z8F0423HH005SG	4 KB	1 KB	16	18	2	7	1	SSOP 20-pin package
Z8F0423PH005SG	4 KB	1 KB	16	18	2	7	1	PDIP 20-pin package
Z8F0423SJ005SG	4 KB	1 KB	22	18	2	8	1	SOIC 28-pin package
Z8F0423HJ005SG	4 KB	1 KB	22	18	2	8	1	SSOP 28-pin package
Z8F0423PJ005SG	4 KB	1 KB	22	18	2	8	1	PDIP 28-pin package
Extended Temperatu	ıre: –40°C	to 10	5°C					
Z8F0423PB005EG	4 KB	1 KB	6	12	2	4	1	PDIP 8-pin package
Z8F0423QB005EG	4 KB	1 KB	6	12	2	4	1	QFN 8-pin package
Z8F0423SB005EG	4 KB	1 KB	6	12	2	4	1	SOIC 8-pin package
Z8F0423SH005EG	4 KB	1 KB	16	18	2	7	1	SOIC 20-pin package
Z8F0423HH005EG	4 KB	1 KB	16	18	2	7	1	SSOP 20-pin package
Z8F0423PH005EG	4 KB	1 KB	16	18	2	7	1	PDIP 20-pin package
Z8F0423SJ005EG	4 KB	1 KB	22	18	2	8	1	SOIC 28-pin package
Z8F0423HJ005EG	4 KB	1 KB	22	18	2	8	1	SSOP 28-pin package
Z8F0423PJ005EG	4 KB	1 KB	22	18	2	8	1	PDIP 28-pin package

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)

							<u> </u>
Part Number	Flash RAM	VO Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP F0823	Series with	2 KB FI	ash				
Standard Temperatu	re: 0°C to 70	°C					
Z8F0213PB005SG	2 KB 512	B 6	12	2	0	1	PDIP 8-pin package
Z8F0213QB005SG	2 KB 512	B 6	12	2	0	1	QFN 8-pin package
Z8F0213SB005SG	2 KB 512	B 6	12	2	0	1	SOIC 8-pin package
Z8F0213SH005SG	2 KB 512	B 16	18	2	0	1	SOIC 20-pin package
Z8F0213HH005SG	2 KB 512	B 16	18	2	0	1	SSOP 20-pin package
Z8F0213PH005SG	2 KB 512	B 16	18	2	0	1	PDIP 20-pin package
Z8F0213SJ005SG	2 KB 512	B 24	18	2	0	1	SOIC 28-pin package
Z8F0213HJ005SG	2 KB 512	B 24	18	2	0	1	SSOP 28-pin package
Z8F0213PJ005SG	2 KB 512	B 24	18	2	0	1	PDIP 28-pin package
Extended Temperatu	ıre: –40°C to	105°C					
Z8F0213PB005EG	2 KB 512	B 6	12	2	0	1	PDIP 8-pin package
Z8F0213QB005EG	2 KB 512	B 6	12	2	0	1	QFN 8-pin package
Z8F0213SB005EG	2 KB 512	B 6	12	2	0	1	SOIC 8-pin package
Z8F0213SH005EG	2 KB 512	B 16	18	2	0	1	SOIC 20-pin package
Z8F0213HH005EG	2 KB 512	B 16	18	2	0	1	SSOP 20-pin package
Z8F0213PH005EG	2 KB 512	B 16	18	2	0	1	PDIP 20-pin package
Z8F0213SJ005EG	2 KB 512	B 24	18	2	0	1	SOIC 28-pin package
Z8F0213HJ005EG	2 KB 512	B 24	18	2	0	1	SSOP 28-pin package
Z8F0213PJ005EG	2 KB 512	B 24	18	2	0	1	PDIP 28-pin package

Table 135. Z8 Encore! XP F0823 Series Ordering Matrix (Continued)

							5	(
Part Number	Flash	RAM	VO Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP F0823 Se	eries	Develo	pmen	t Kit				
Z8F08A28100KITG		Z8 En	core! X	(P F08	2A Seri	es Dev	elopme	nt Kit (20- and 28-Pin)
Z8F04A28100KITG		Z8 En	core! X	(P F04	2A Seri	es Dev	elopme	nt Kit (20- and 28-Pin)
Z8F04A08100KITG		Z8 En	core! X	(P F04	2A Seri	es Dev	elopme	nt Kit (8-Pin)
ZUSBSC00100ZACG		USB S	Smart C	Cable A	Accesso	ry Kit		
ZUSBOPTSC01ZACG		Opto-l	Isolated	d USB	Smart 0	Cable A	Accesso	ry Kit
ZENETSC0100ZACG		Etherr	net Sm	art Cal	ble Acce	essory	Kit	_

Customer Support

To share comments, get your technical questions answered, or report issues you may be experiencing with our products, please visit Zilog's Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other facets about Zilog product offerings, please visit the Zilog Knowledge Base at http://zilog.com/forum. zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the Zilog website at http://www.zilog.com.

PS024315-1011 PRELIMINARY Customer Support