

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, MMC/SD, SPI, UART/USART, USB OTG, USIC
Peripherals	DMA, I ² S, LED, POR, Touch-Sense, WDT
Number of I/O	73
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-25
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4300f100k256aaxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Table 9 Package Pin Mapping (cont'd)							
Function	LQFP-100	Pad Type	Notes				
P1.0	79	A1+					
P1.1	78	A1+					
P1.2	77	A2					
P1.3	76	A2					
P1.4	75	A1+					
P1.5	74	A1+					
P1.6	83	A2					
P1.7	82	A2					
P1.8	81	A2					
P1.9	80	A2					
P1.10	73	A1+					
P1.11	72	A1+					
P1.12	71	A2					
P1.13	70	A2					
P1.14	69	A2					
P1.15	68	A2					
P2.0	52	A2					
P2.1	51	A2	After a system reset, via HWSEL this pin selects the DB.TDO function.				
P2.2	50	A2					
P2.3	49	A2					
P2.4	48	A2					
P2.5	47	A2					
P2.6	54	A1+					
P2.7	53	A1+					
P2.8	46	A2					
P2.9	45	A2					
P2.10	44	A2					
P2.14	41	A2					
P2.15	40	A2					
P3.0	7	A2					
P3.1	6	A2					

General Device Information

2.2.2 Port I/O Functions

The following general scheme is used to describe each Port pin:

Table 10 Port I/O Function Description

Function		Outputs		Inputs				
	ALT1	ALTn	HWO0	HWI0	Input	Input		
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA			
Pn.y	MODA.OUT				MODA.INA	MODC.INB		

Figure 4 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL it is possible to select between different hardware "masters" (HWO0/HWI0). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

Table 11 Port I/O Functions (CONt'd)

Data	
Shee	
¥	

Subject to Agreemer	
nt on the Use of Prod	<
uct Information	1.0, 2016-02

24

Function			Output	ut Input										
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input
P14.12								VADC. G1CH4						ECAT0. P1_RXD1B
P14.13								VADC. G1CH5						ECAT0. P1_RXD2B
P14.14								VADC. G1CH6					G1ORC6	ECAT0. P1_RXD3B
P14.15								VADC. G1CH7					G1ORC7	ECAT0. P1_RX_DVB
P15.2														ECAT0. P1_RX_ERRB
P15.3														ECAT0. P1_LINKB
P15.8											ETH0. CLK_RMIIC			ETH0. CLKRXC
P15.9											ETH0. CRS_DVC			ETH0. RXDVC
HIB_IO_0	HIBOUT	WWDT. SERVICE_OUT					WAKEUPA							
HIB_IO_1	HIBOUT	WWDT. SERVICE_OUT					WAKEUPB							
USB_DP														
USB_DM														
тск						DB.TCK/ SWCLK								
TMS					DB.TMS/ SWDIO									
PORST														
XTAL1							U0C0. DX0F	U0C1. DX0F	U1C0. DX0F	U1C1. DX0F				
XTAL2														
RTC_XTAL1									ERU0. 1B1					
RTC_XTAL2														

XMC4300 XMC4000 Family

2.3 Power Connection Scheme

Figure 5. shows a reference power connection scheme for the XMC4300.

Figure 5 Power Connection Scheme

Every power supply pin needs to be connected. Different pins of the same supply need also to be externally connected. As example, all $V_{\rm DDP}$ pins must be connected externally to one $V_{\rm DDP}$ net. In this reference scheme one 100 nF capacitor is connected at each supply pin against $V_{\rm SS}$. An additional 10 µF capacitor is connected to the $V_{\rm DDP}$ nets and an additional 10 µF capacitor to the $V_{\rm DDP}$ nets.

The XMC4300 has a common ground concept, all $V_{\rm SS}$, $V_{\rm SSA}$ and $V_{\rm SSO}$ pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well.

 $V_{\rm AGND}$ is the low potential to the analog reference $V_{\rm AREF}$. Depending on the application it can share the common ground or have a different potential. In devices with shared $V_{\rm DDA}/V_{\rm AREF}$ and $V_{\rm SSA}/V_{\rm AGND}$ pins the reference is tied to the supply. Some analog channels can optionally serve as "Alternate Reference"; further details on this operating mode are described in the Reference Manual.

When V_{DDP} is supplied, V_{BAT} must be supplied as well. If no other supply source (e.g. battery) is connected to V_{BAT} , the V_{BAT} pin can also be connected directly to V_{DDP} .

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition	
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-	
Junction temperature	T_{J}	SR	-40	-	150	°C	-	
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-	
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	$V_{\sf IN}$	V _{IN} SR		-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Voltage on any analog input pin with respect to V_{AGND}	$\begin{array}{c} V_{\rm AIN} \\ V_{\rm AREF} \end{array}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA		
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\sf IN}$	SR	-25	_	+25	mA		
Absolute maximum sum of all $\Sigma I_{\rm IN}$ SR input circuit currents during overload condition		SR	-100	-	+100	mA		

Table 12 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 16**.

Figure 6 explains the input voltage ranges of $V_{\rm IN}$ and $V_{\rm AIN}$ and its dependency to the supply level of $V_{\rm DDP}$. The input voltage must not exceed 4.3 V, and it must not be more than 1.0 V above $V_{\rm DDP}$. For the range up to $V_{\rm DDP}$ + 1.0 V also see the definition of the overload conditions in Section 3.1.3.

3.2 DC Parameters

3.2.1 Input/Output Pins

The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins.

The Pull-up on the PORST pin is identical to the Pull-up on the standard digital input/output pins.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Val	ues	Unit	Note / Test Condition	
		Min.	Ma	x.		
Pin capacitance (digital inputs/outputs)	C _{IO} CC	-	10	pF		
Pull-down current	$ I_{\rm PDL} $	150	-	μA	$^{1)}V_{\rm IN} \ge 0.6 \times V_{\rm DDP}$	
	SR	-	10	μA	$^{2)}V_{\mathrm{IN}} \leq 0.36 imes V_{\mathrm{DDP}}$	
Pull-Up current	$ I_{\rm PUH} $	-	10	μA	$^{2)}V_{\rm IN} \ge 0.6 \times V_{\rm DDP}$	
	SR	100	-	μA	$^{1)}V_{\mathrm{IN}} \leq 0.36 imes V_{\mathrm{DDP}}$	
Input Hysteresis for pads of all A classes ³⁾	HYSA CC	$0.1 \times V_{\text{DDP}}$	-	V		
PORST spike filter always blocked pulse duration	t _{SF1} CC	_	10	ns		
PORST spike filter pass-through pulse duration	t _{SF2} CC	100	-	ns		
PORST pull-down current	I _{PPD} CC	13	-	mA	V _{IN} = 1.0 V	

Table 19 Standard Pad Parameters

Current required to override the pull device with the opposite logic level ("force current").
 With active pull device, at load currents between force and keep current the input state is undefined.

Load current at which the pull device still maintains the valid logic level ("keep current").
 With active pull device, at load currents between force and keep current the input state is undefined.

 Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

34

Table 21 Standard Pads Class_A1+

Parameter	Symbol	Va	lues	Unit	Note /	
		Min.	Max.		Test Condition	
Output high voltage,	$V_{\rm OHA1+}$	V_{DDP} - 0.4	-	V	$I_{OH} \ge$ -400 μ A	
$POD^{1} = weak$	CC	2.4	-	V	<i>I</i> _{OH} ≥ -500 μA	
Output high voltage,		V _{DDP} - 0.4	-	V	I _{OH} ≥ -1.4 mA	
$POD^{1} = medium$		2.4	-	V	$I_{\rm OH}$ \ge -2 mA	
Output high voltage,		$V_{\rm DDP}$ - 0.4	_	V	$I_{\rm OH} \ge$ -1.4 mA	
$POD^{(1)} = strong$		2.4	_	V	$I_{\rm OH}$ \ge -2 mA	
Output low voltage	V _{OLA1+} CC	-	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = strong	
Fall time	t _{FA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium	
		-	28	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = strong; edge = slow	
		-	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft;	
Rise time	t _{RA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium	
		-	28	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow	
		-	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft	

1) POD = Pin Out Driver

Table 22 Standard Pads Class_A2

Parameter	Symbol	Va	lu	es	Unit	Note / Test Condition	
		Min.		Max.			
Input Leakage current	I _{OZA2} CC	-6		6	μΑ	$\begin{array}{l} 0 \ {\sf V} \leq V_{\sf IN} < \\ 0.5^* V_{\sf DDP} - 1 \ {\sf V}; \\ 0.5^* V_{\sf DDP} + 1 \ {\sf V} \\ < V_{\sf IN} \leq V_{\sf DDP} \end{array}$	
		-3		3	μA	$0.5^*V_{DDP} - 1 V < V_{IN} < 0.5^*V_{DDP} + 1 V$	
Input high voltage	$V_{\rm IHA2}$ SR	$0.6 imes V_{ extsf{DDP}}$		V _{DDP} + 0.3	V	max. 3.6 V	
Input low voltage	$V_{ILA2}SR$	-0.3		$0.36 \times V_{ m DDP}$	V		
Output high voltage,	V_{OHA2}	$V_{\rm DDP}$ - 0.4		-	V	$I_{OH} \ge$ -400 μ A	
POD = weak	CC	2.4		-	V	$I_{OH} \ge$ -500 μ A	
Output high voltage,		$V_{\rm DDP}$ - 0.4		-	V	$I_{\rm OH} \ge$ -1.4 mA	
POD = medium		2.4		-	V	<i>I</i> _{OH} ≥ -2 mA	
Output high voltage,		$V_{\rm DDP}$ - 0.4		-	V	$I_{\rm OH} \ge$ -1.4 mA	
POD = strong		2.4		-	V	<i>I</i> _{OH} ≥ -2 mA	
Output low voltage, POD = weak	$V_{\rm OLA2}$ CC	-		0.4	V	<i>I</i> _{OL} ≤ 500 μA	
Output low voltage, POD = medium		-		0.4	V	$I_{\rm OL} \le 2 \ {\rm mA}$	
Output low voltage, POD = strong		-		0.4	V	$I_{\rm OL} \le 2 \ {\rm mA}$	

Table 22 Standard Pads Class_A2

Parameter	Symbol	,	Values	Unit	Note /
		Min.	Max.		Test Condition
Fall time	t _{FA2} CC	_	150	ns	$C_{\rm L}$ = 20 pF; POD = weak
		_	50	ns	$C_{L} = 50 \text{ pF};$ POD = medium
		_	3.7	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = sharp
		_	7	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = medium
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = soft
Rise time	t _{RA2} CC	_	150	ns	$C_{L} = 20 \text{ pF};$ POD = weak
		_	50	ns	$C_{L} = 50 \text{ pF};$ POD = medium
		_	3.7	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = sharp
		_	7.0	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = medium
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = soft

3.2.2 Analog to Digital Converters (VADC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	J	Values	5	Unit	Note /	
	2	Min.	Typ. Max.			Test Condition	
Analog reference voltage ⁵⁾	V_{AREF} SR	V _{AGND} + 1	-	$V_{\rm DDA}^{}+$ 0.05 ¹⁾	V		
Analog reference ground ⁵⁾	$V_{ m AGND}$ SR	V _{SSM} - 0.05	-	V _{AREF} - 1	V		
Analog reference voltage range ²⁾⁵⁾	V_{AREF} - V_{AGND} SR	1	_	V _{DDA} + 0.1	V		
Analog input voltage	$V_{\rm AIN}~{\rm SR}$	$V_{\rm AGND}$	-	V_{DDA}	V		
Input leakage at analog inputs ³⁾	I _{OZ1} CC	-100	-	200	nA	$\begin{array}{l} 0.03 \times V_{\rm DDA} < \\ V_{\rm AIN} < 0.97 \times V_{\rm DDA} \end{array}$	
		-500	-	100	nA	$\begin{array}{l} 0 \ V \leq V_{AIN} \leq 0.03 \\ \times \ V_{DDA} \end{array}$	
		-100	_	500	nA	$\begin{array}{l} \textbf{0.97} \times V_{DDA} \\ \leq V_{AIN} \leq V_{DDA} \end{array}$	
Input leakage current at VAREF	I _{OZ2} CC	-1	-	1	μΑ	$\begin{array}{l} 0 \ V \leq V_{AREF} \\ \leq V_{DDA} \end{array}$	
Input leakage current at VAGND	I _{OZ3} CC	-1	-	1	μΑ	$\begin{array}{l} 0 \ V \leq V_{AGND} \\ \leq V_{DDA} \end{array}$	
Internal ADC clock	$f_{\sf ADCI}\sf CC$	2	-	36	MHz	$V_{\rm DDA}$ = 3.3 V	
Switched capacitance at the analog voltage inputs ⁴⁾	C _{AINSW} CC	-	4	6.5	pF		
Total capacitance of an analog input	C _{AINTOT} CC	-	12	20	pF		
Switched capacitance at the positive reference voltage input ⁵⁾⁶⁾	C_{AREFSW} CC	_	15	30	pF		
Total capacitance of the voltage reference inputs ⁵⁾	C_{AREFTOT} CC	-	20	40	pF		

 Table 24
 VADC Parameters (Operating Conditions apply)

Conditions apply)								
Parameter	Symbol			Values	S	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
Input low voltage	V_{IL}	SR	-	-	0.8	V		
Input high voltage (driven)	V_{IH}	SR	2.0	-	-	V		
Input high voltage (floating) ¹⁾	V_{IHZ}	SR	2.7	-	3.6	V		
Differential input sensitivity	V_{DIS}	CC	0.2	-	-	V		
Differential common mode range	V_{CM}	СС	0.8	-	2.5	V		
Output low voltage	V_{OL}	СС	0.0	-	0.3	V	1.5 kOhm pull- up to 3.6 V	
Output high voltage	V_{OH}	СС	2.8	-	3.6	V	15 kOhm pull- down to 0 V	
DP pull-up resistor (idle bus)	R _{PUI}	CC	900	-	1 575	Ohm		
DP pull-up resistor (upstream port receiving)	R _{PUA}	CC	1 425	-	3 090	Ohm		
DP, DM pull-down resistor	R _{PD}	СС	14.25	-	24.8	kOhm		
Input impedance DP, DM	$Z_{\rm INP}$	СС	300	-	-	kOhm	$0 \ V \leq V_{IN} \leq V_{DDP}$	
Driver output resistance DP, DM	$Z_{\rm DRV}$	СС	28	-	44	Ohm		

Table 30 USB OTG Data Line (USB_DP, USB_DM) Parameters (Operating Conditions apply)

 Measured at A-connector with 1.5 kOhm ± 5% to 3.3 V ± 0.3 V connected to USB_DP or USB_DM and at Bconnector with 15 kOhm ± 5% to ground connected to USB_DP and USB_DM.

3.2.7 Oscillator Pins

- Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.

The oscillator pins can be operated with an external crystal (see Figure 16) or in direct input mode (see Figure 17).

Figure 16 Oscillator in Crystal Mode

3.2.8 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 $V_{\rm DDP}$ = 3.3 V, $T_{\rm A}$ = 25 °C

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾¹¹⁾ Peripherals enabled Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz	I _{DDPA}	CC	_	135	-	mA	144 / 144 / 144
			_	125	-		144 / 72 / 72
			_	97	-		72 / 72 / 144
			_	80	-		24 / 24 / 24
			_	68	-		1/1/1
Active supply current Code execution from RAM Flash in Sleep mode	I _{DDPA}	CC	_	108	-	mA	144 / 144 / 144
			-	98	-		144 / 72 / 72
Active supply current ²⁾ Peripherals disabled Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz	I _{DDPA}	CC	_	86	-	mA	144 / 144 / 144
			_	85	-	-	144 / 72 / 72
			_	70	-		72 / 72 / 144
			_	55	-		24 / 24 / 24
			_	50	-		1/1/1
Sleep supply current ³⁾ Peripherals enabled Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz	I _{DDPS}	CC	_	127	-	mA	144 / 144 / 144
			_	115	-	-	144 / 72 / 72
			_	93	-		72 / 72 / 144
			_	57	-		24 / 24 / 24
			-	47	-	1	1/1/1
$f_{CPU}/f_{PERIPH}/f_{CCU}$ in kHz	1		_	48	-	1	100 / 100 / 100

Table 33 Power Supply Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 33 Power Supply Parameters

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.	-	
Sleep supply current ⁴⁾	I _{DDPS} CC	-	77	-	mA	144 / 144 / 144
Peripherals disabled		-	76	-		144 / 72 / 72
form / formul / foot in MHz		-	65	-		72 / 72 / 144
JCPU, JPERIPH, JCCU		-	53	-		24 / 24 / 24
		-	46	-		1/1/1
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	47	-		100 / 100 / 100
Deep Sleep supply	I _{DDPD} CC	-	11	-	mA	24 / 24 / 24
current ⁵⁾		-	7.0	-		4 / 4 / 4
Fiash in Sieep mode Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz		-	6.6	-	-	1/1/1
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz	+	-	7.6	-		100 / 100 / 100 ₆₎
Hibernate supply current RTC on ⁷⁾	I _{DDPH} CC	-	8.7	-	μA	$V_{\rm BAT}$ = 3.3 V
		-	6.5	-		$V_{\rm BAT}$ = 2.4 V
		-	5.7	-		$V_{\rm BAT}$ = 2.0 V
Hibernate supply current RTC off ⁸⁾	I _{DDPH} CC	-	8.0	-	μA	$V_{\rm BAT}$ = 3.3 V
		-	6.0	-		$V_{\rm BAT}$ = 2.4 V
		-	- 5.0 –		$V_{\rm BAT}$ = 2.0 V	
Hibernate off ⁹⁾	I _{DDPH} CC	-	4.4	-	μA	$V_{\rm BAT}$ = 3.3 V
		-	3.5	-		$V_{\rm BAT}$ = 2.4 V
		-	3.1	-		$V_{\rm BAT}$ = 2.0 V
Worst case active supply current ¹⁰⁾	I _{DDPA} CC	-	-	250 11)	mA	$V_{\rm DDP} = 3.6 \text{ V},$ $T_{\rm J} = 150 \text{ °C}$
$V_{\rm DDA}$ power supply current	I _{DDA} CC	-	-	_12)	mA	
I _{DDP} current at PORST Low	I _{DDP_PORST}	-	5	10	mA	$V_{\rm DDP} = 3.3 \text{ V},$ $T_{\rm J} = 25 \text{ °C}$
		-	13	55	mA	$V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 \text{ °C}$
Power Dissipation	P _{DISS} CC	_	-	1.4	W	$V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 \text{ °C}$

Figure 27 USIC IIC Stand and Fast Mode Timing

3.3.8.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₁ CC	33.3	-	_	ns	
Clock high time	t ₂ CC	0.35 x	_	_	ns	
		t _{1min}				
Clock low time	t ₃ CC	0.35 x	_	-	ns	
		t _{1min}				
Hold time	$t_4 \mathrm{CC}$	0	-	-	ns	
Clock rise time	t ₅ CC	-	_	0.15 x	ns	
				t _{1min}		

78

Table 47 USIC IIS Master Transmitter Timing

High-Speed Read Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

(12)

 $t_{CLK_DELAY} + t_{OH} + t_{DATA_DELAY} + t_{TAP_DELAY} > t_{IH_H}$

 $t_{\mathrm{CLK_DELAY}} + t_{\mathrm{DATA_DELAY}} > t_{\mathrm{IH_H}} - t_{\mathrm{OH}} - t_{\mathrm{TAP_DELAY}}$

 $t_{\text{CLK}_\text{DELAY}} + t_{\text{DATA}_\text{DELAY}} > 2 - 2\text{,}5 - t_{\text{TAP}_\text{DELAY}}$

 $t_{CLK_DELAY} + t_{DATA_DELAY} > -0.5 - t_{TAP_DELAY}$

The data + clock delay must be greater than -0.5 ns for a 20 ns clock cycle. This is always fulfilled.

3.3.11.5 Sync/Latch Timings

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
SYNC0/1	t _{DC_SYNC_} _{Jitter} SR	-	-	11 + m ¹⁾	ns	
LATCH0/1	t _{DC_LATCH}	12 + n ²⁾	-	-	ns	

1) additional delay form logic and pad, number is added after characterization

2) additional shaping delay, number is added after characterization

Note: SYNC0/1 pulse length are initially loaded by EEPROM content ADR 0x0002. The actual used value can be read back from Register DC_PULSE_LEN.

Figure 42 Sync/Latch Timings

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OI}} \times I_{\text{OI}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Package and Reliability

4.2 Package Outlines

The exposed die pad dimensions are listed in Table 60.

Figure 43 PG-LQFP-100-25 (Plastic Green Low Profile Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages