

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1612-e-sn

TABLE 1-3: PIC16(L)F1613 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC1/AN5/C1IN1-/C2IN1-/T4IN/	RC1	TTL/ST	CMOS/OD	General purpose I/O.
SMTSIG2	AN5	AN	_	ADC Channel input.
	C1IN1-	AN	_	Comparator negative input.
	C2IN1-	AN	1	Comparator negative input.
	T4IN	TTL/ST	1	Timer4 input.
	SMTSIG2	TTL/ST	_	SMT2 signal input.
RC2/AN6/C1IN2-/C2IN2-/	RC2	TTL/ST	CMOS/OD	General purpose I/O.
CWG1D	AN6	AN	1	ADC Channel input.
	C1IN2-	AN	_	Comparator negative input.
	C2IN2-	AN	1	Comparator negative input.
	CWG1D	_	CMOS/OD	CWG complementary output D.
RC3/AN7/C1IN3-/C2IN3-/	RC3	TTL/ST	_	General purpose input with IOC and WPU.
CCP2 ⁽¹⁾ /CWG1C	AN7	AN	-	ADC Channel input.
	C1IN3-	AN	1	Comparator negative input.
	C2IN3-	AN	_	Comparator negative input.
	CCP2	TTL/ST	CMOS/OD	Capture/Compare/PWM2.
	CWG1C	_	CMOS/OD	CWG complementary output C.
RC4/C2OUT/CWG1B	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	C2OUT	_	CMOS/OD	Comparator output.
	CWG1B	_	CMOS/OD	CWG complementary output B.
RC5/CCP1/CWG1A	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	CCP1	TTL/ST	CMOS/OD	Capture/Compare/PWM1.
	CWG1A	_	CMOS/OD	CWG complementary output A.
VDD	Vdd	Power	_	Positive supply.
Vss	Vss	Power	_	Ground reference.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels 1^2 C

HV = High Voltage XTAL = Crystal Schmitt Trigger input with I²C

levels

Note 1: Alternate pin function selected with the APFCON register (Register 12-1).

TABLE 3-9:	SPECIAL	FUNCTION REGISTER	SUMMARY (CONTINUED)
IADLL 3-3.	SFLUIAL		SOMINARY (COM HINDED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	1										
08Ch	TRISA	_	_	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	_	Unimplemented								_	_
08Eh	TRISC ⁽⁴⁾	_	1	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
08Fh	_	Unimplemented								_	
090h	_	Unimplemented								_	_
091h	PIE1	TMR1GIE	ADIE	_		1	CCP1IE	TMR2IE	TMR1IE	00000	00000
092h	PIE2	_	C2IE ⁽⁴⁾	C1IE	1	1	TMR6IE	TMR4IE	CCP2IE	-00000	-00000
093h	PIE3	_	1	CWGIE	ZCDIE	1	_		1	00	00
094h	PIE4	SCANIE	CRCIE	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	0000 0000	0000 0000
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	_	Unimplemented								_	_
098h	OSCTUNE	_				TUN	I<5:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRCF	<3:0>		_	SCS-	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	_	PLLR	_	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0-0 0000	-d-d dddd
09Bh	ADRESL	ADC Result Reg	ADC Result Register Low							xxxx xxxx	uuuu uuuu
09Ch	ADRESH	ADC Result Reg	gister High							xxxx xxxx	uuuu uuuu
09Dh	ADCON0	_			CHS<4:0>			GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>			_	ADPRE	F<1:0>	000000	000000
09Fh	ADCON2		TRIGSI	EL<3:0>		_	_	_	_	0000	0000

 $\textbf{Legend:} \quad x = \text{unknown}, \ u = \text{unchanged}, \ q = \text{value depends on condition}, \ - = \text{unimplemented}, \ r = \text{reserved}. \ Shaded locations are unimplemented}, \ read as '0'.$

Note 1: PIC12F1612/16F1613 only.

2: Unimplemented, read as '1'.

3: PIC12(L)F1612 only.

4: PIC16(L)F1613 only.

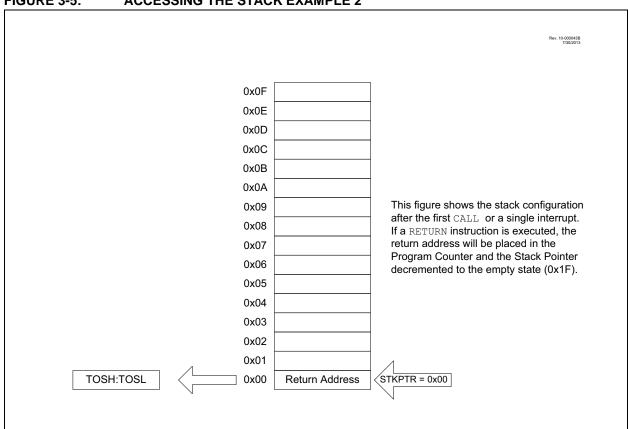
DS40001737C-page 37

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMA	.RY (CONTINUED)
--	-----------------

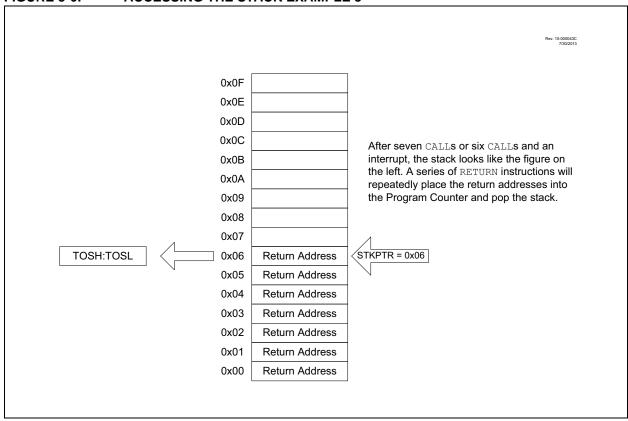
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank '	14										
70Ch to 710h	_	Unimplemented	nimplemented							_	_
711h	WDTCON0	_	_			WDTPS<4:0>			SEN	वव वववव	dd dddd
712h	WDTCON1	_	WDTCS<2:0> — WINDOW<2:0>						-ddd -ddd	-ddd -ddd	
713h	WDTPSL				PSCN ⁻	Γ<7:0>				0000 0000	0000 0000
714h	WDTPSH				PSCNT	<15:8>				0000 0000	0000 0000
715h	WDTTMR			WDTTMR<4:0>			STATE	PSCNT-	<17:16>	0000 0000	0000 0000
716h	_	Unimplemented	Unimplemented							_	_
717h	_	Unimplemented	Unimplemented							_	_
718h	SCANLADRL		LADR<7:0>							0000 0000	0000 0000
719h	SCANLADRH				LADR	<15:8>				0000 0000	0000 0000
71Ah	SCANHADRL		HADR<7:0> 1:							1111 1111	1111 1111
71Bh	SCANHADRH		HADR<15:8>							1111 1111	1111 1111
71Ch	SCANCON0	EN	SCANGO	BUSY	INVALID	INTM	_	MODE	<1:0>	0000 0-00	0000 0-00
71Dh	SCANTRIG					_	_	TSEL	<1:0>	00	00
71Eh	_	Unimplemented						_	_		
71Fh	_	Unimplemented									

PIC12(L)F1612/16(L)F1613

Legend: x = unknown, u = unchanged, q = value depends on condition, -= unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.


Note 1: PIC12F1612/16F1613 only.

2: Unimplemented, read as '1'.


3: PIC12(L)F1612 only.

4: PIC16(L)F1613 only.

FIGURE 3-5: ACCESSING THE STACK EXAMPLE 2

FIGURE 3-6: ACCESSING THE STACK EXAMPLE 3

5.2.2.3 Internal Oscillator Frequency Adjustment

The 500 kHz internal oscillator is factory calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 5-3). Since the HFINTOSC and MFINTOSC clock sources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), and peripherals, are *not* affected by the change in frequency.

5.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See Section5.2.2.8 "Internal Oscillator Clock Switch Timing" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)

The Low-Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running.

5.2.2.5 FRC

The FRC clock is an uncalibrated, nominal 600 kHz peripheral clock source.

The FRC is automatically turned on by the peripherals requesting the FRC clock.

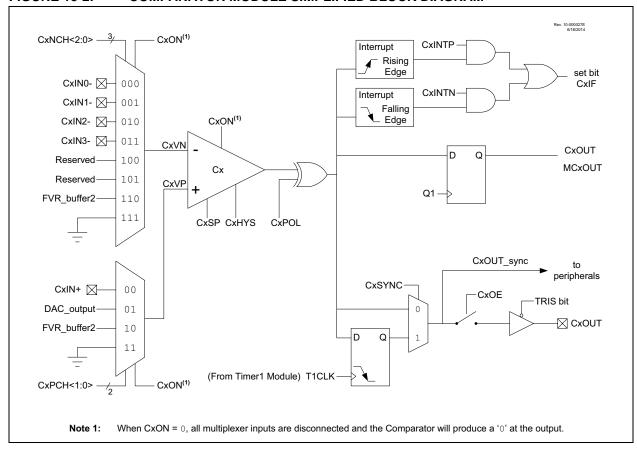
The FRC clock will continue to run during Sleep.

5.2.2.6 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The postscaler outputs of the 16 MHz HFINTOSC, 500 kHz MFINTOSC, and 31 kHz LFINTOSC output connect to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz


Note:

- 31 kHz (LFINTOSC)

Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

FIGURE 18-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

REGISTER 23-2: CCPTMRS: PWM TIMER SELECTION CONTROL REGISTER 0

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_	C2TSE	EL<1:0>	C1TSE	L<1:0>
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is cleared

bit 7-4 Unimplemented: Read as '0'

bit 3-2 C2TSEL<1:0>: CCP2 (PWM2) Timer Selection bits

11 = Reserved

10 = CCP2 is based off Timer6 in PWM mode

01 = CCP2 is based off Timer4 in PWM mode

00 = CCP2 is based off Timer2 in PWM mode

bit 1-0 C1TSEL<1:0>: CCP1 (PWM1) Timer Selection bits

11 = Reserved

10 = CCP1 is based off Timer6 in PWM mode

01 = CCP1 is based off Timer4 in PWM mode

00 = CCP1 is based off Timer2 in PWM mode

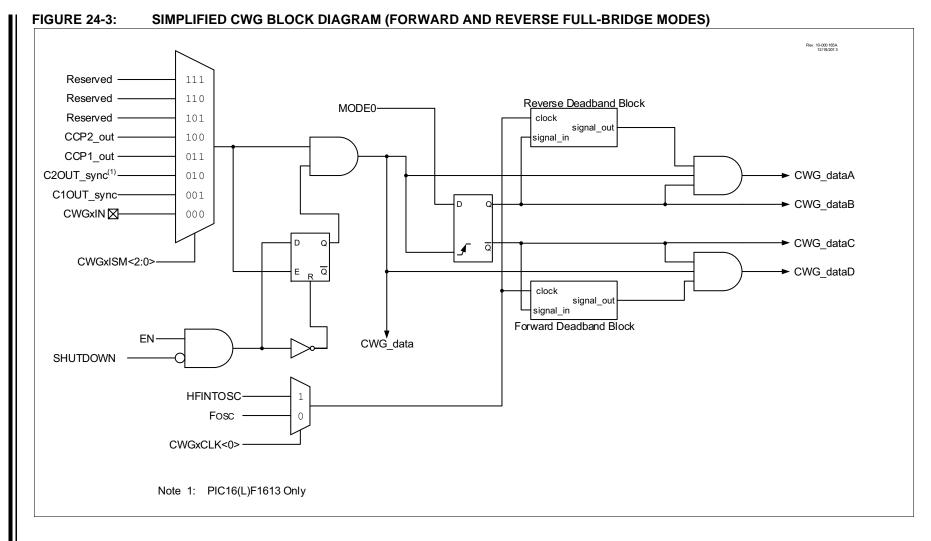
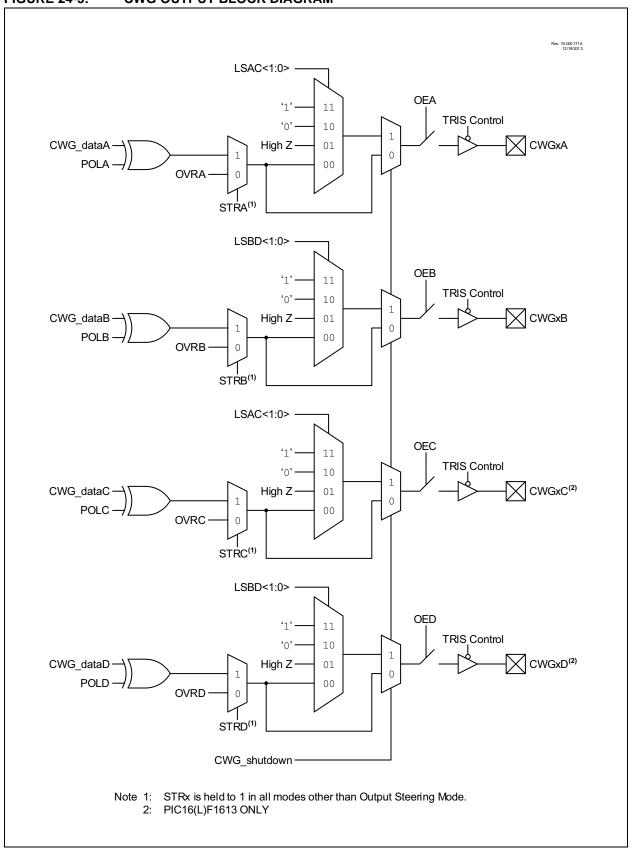
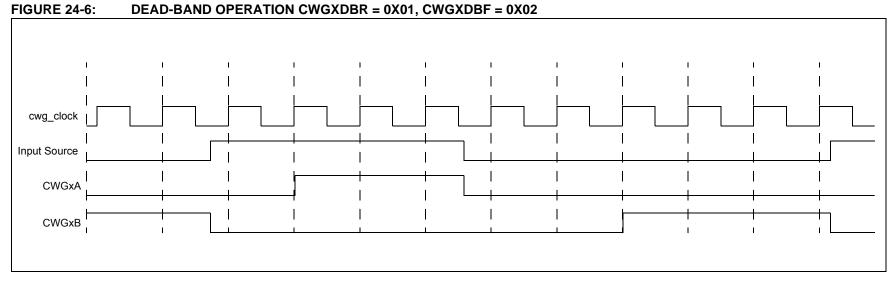
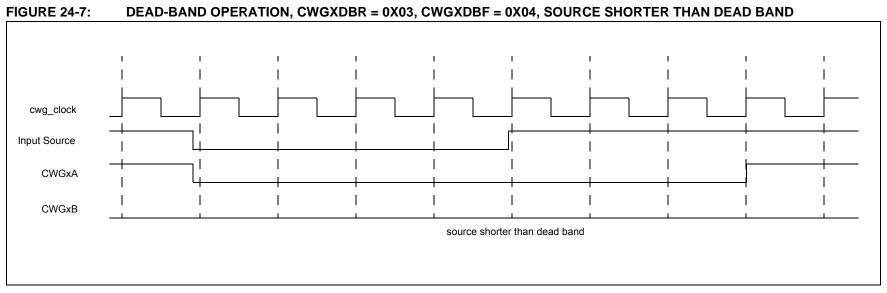
PIC12(L)F1612/16(L)F1613

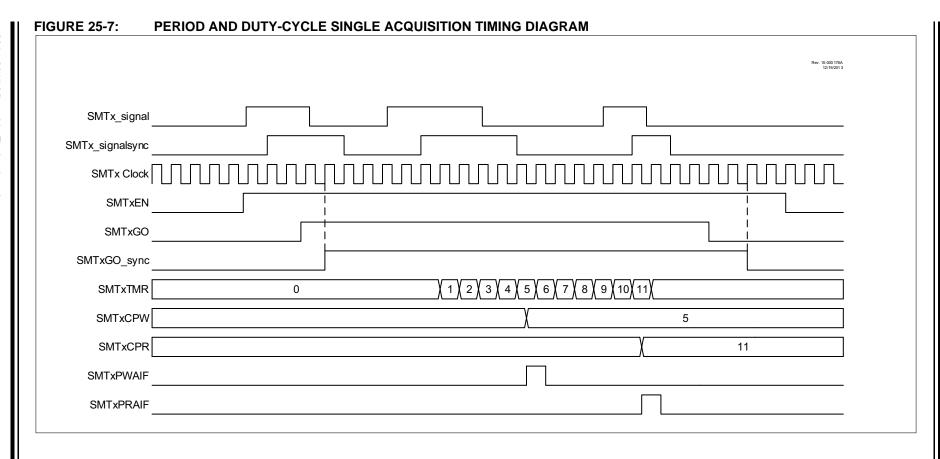
SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM **TABLE 23-3:**

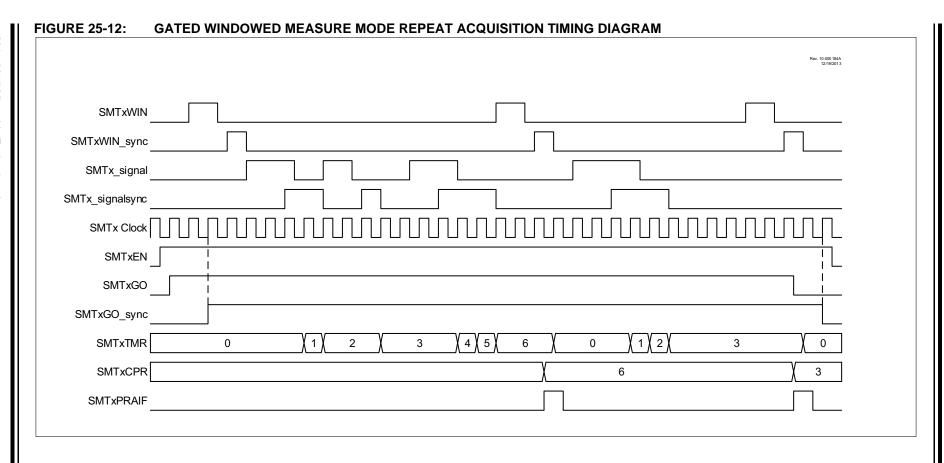
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	_	CWGASEL ⁽²⁾	CWGBSEL ⁽²⁾	_	T1GSEL	_	CCP2SEL ⁽³⁾	CCP1SEL ⁽²⁾	132
CCP1CON	EN	OE	OUT	FMT		MODE	E<3:0>		232
CCP2CON	EN	OE	OUT	FMT		MODE	E<3:0>		232
CCPRxL	Capture/Comp	are/PWM Regis	ter x (LSB)						234
CCPRxH	Capture/Comp	are/PWM Regis	ter x (MSB)						235
CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	233
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE		ı	_	CCP1IE	TMR2IE	TMR1IE	83
PIE2	_	C2IE ⁽¹⁾	C1IE	-	_	TMR6IE	TMR4IE	CCP2IE	84
PR2	Timer2 Period	Register							235*
T2CON	ON		CKPS<2:0>		OUTPS<3:0>				254
TMR2	Timer2 Module	Register			•				235*
PR4	Timer4 Period	Register							235*
T4CON	ON		CKPS<2:0>		OUTPS<3:0>				254
TMR4	Timer4 Module	Timer4 Module Register						235*	
PR6	Timer6 Period Register						235*		
T6CON	ON	ON CKPS<2:0> OUTPS<3:0>							254
TMR6	Timer6 Module	Timer6 Module Register						235*	
TRISA	_	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	135

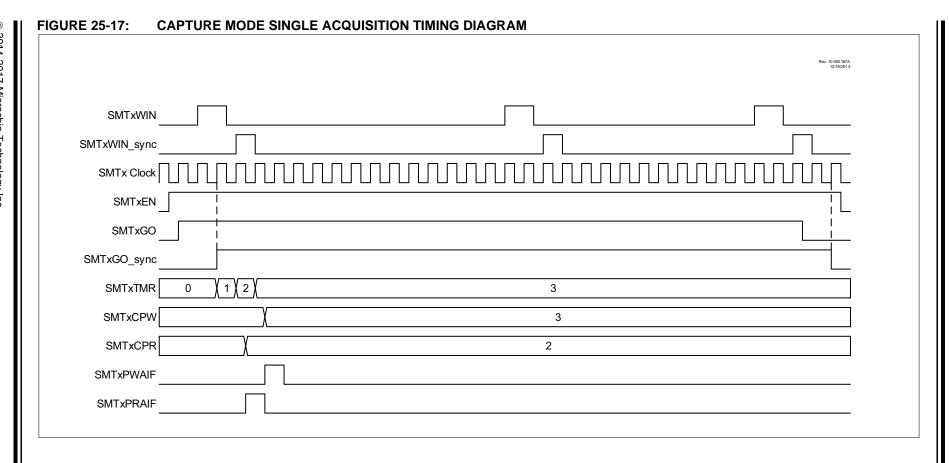
= Unimplemented location, read as '0'. Shaded cells are not used by the PWM.
 Page provides register information.

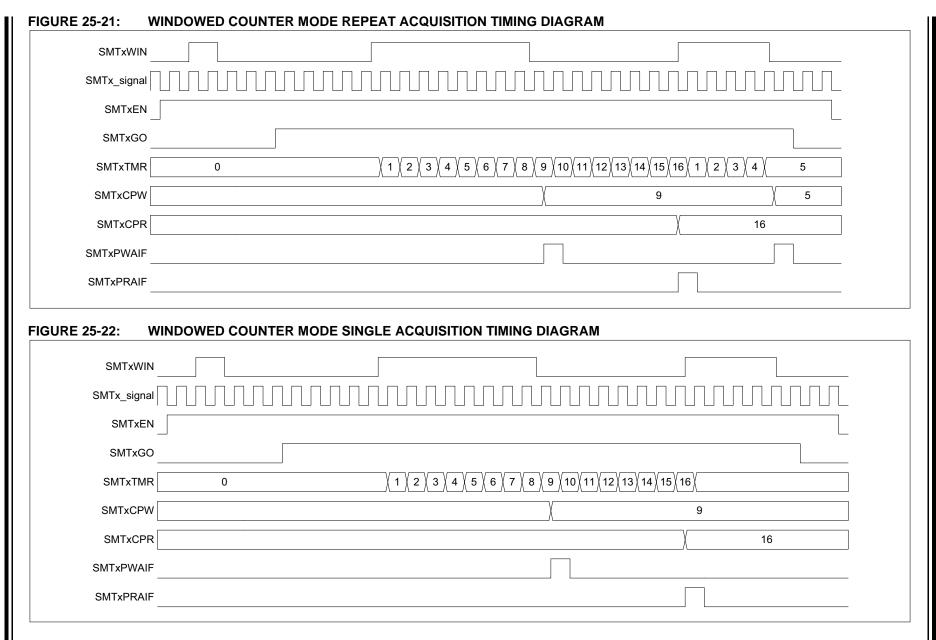
Unimplemented, read as '1'. 1:


FIGURE 24-5: CWG OUTPUT BLOCK DIAGRAM




DS40001737C-page 247



DS40001737C-page 294

FIGURE 27-1: GENERAL FORMAT FOR INSTRUCTIONS

.		
Byte-oriented file reg	•	ations 0
OPCODE	d d	f (FILE #)
d = 0 for destina d = 1 for destina f = 7-bit file regis	tion f	S
Bit-oriented file regis	ster operat	ions 6 0
OPCODE	b (BIT #)	f (FILE #)
b = 3-bit bit addr f = 7-bit file regis		3
Literal and control o	perations	
General	o -	_
13 OPCODE	8 7	k (literal)
k = 8-bit immedia	-4	K (interal)
CALL and GOTO instru	ctions only	0
OPCODE	k (literal)
k = 11-bit immed	iate value	
MOVLP instruction only	, 7 6	6 0
OPCODE		k (literal)
k = 7-bit immedia	ate value	
•	′	5 4 0
MOVLB instruction only 13 OPCODE	′	5 4 0 k (literal)
13		
13 OPCODE k = 5-bit immedia		
OPCODE k = 5-bit immedia	ate value	k (literal)
OPCODE k = 5-bit immedia BRA instruction only 13	ate value	k (literal)
13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia	ate value 9 8 ate value	k (literal)
13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedi FSR Offset instruction	ate value 9 8 ate value	k (literal) 0 k (literal)
A property of the second of th	ate value 9 8 ate value as 7 6 n	k (literal) 0 k (literal)
A property of the property of	9 8 ate value 9 8 ate value 7 6 n FSR ate value	k (literal) 0 k (literal)
New Property of the property o	9 8 ate value 9 8 ate value 7 6 n FSR ate value	k (literal) 0 k (literal) 5 0 k (literal)
A property of the property of	ate value 9 8 ate value s 7 6 n FSR ate value tions	k (literal) 6 6 7 8 (literal) 5 8 (literal) 3 2 1 0
A property of the property of	ate value 9 8 ate value s 7 6 n FSR ate value tions	k (literal) 6 6 7 8 (literal) 5 8 (literal) 3 2 1 0

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	$(PC) +1 \rightarrow TOS,$ $(W) \rightarrow PC<7:0>,$ $(PCLATH<6:0>) \rightarrow PC<14:8>$
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$00h \rightarrow (f)$ $1 \rightarrow Z$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f			
Syntax:	[label] DECF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) - 1 \rightarrow (destination)			
Status Affected:	Z			
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

CLRW	Clear W			
Syntax:	[label] CLRW			
Operands:	None			
Operation:	$00h \to (W)$ $1 \to Z$			
Status Affected:	Z			
Description:	W register is cleared. Zero bit (Z) is set.			

DECFSZ	Decrement f, Skip if 0				
Syntax:	[label] DECFSZ f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0				
Status Affected:	None				
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.				

CLRWDT	Clear Watchdog Timer			
Syntax:	[label] CLRWDT			
Operands:	None			
Operation:	$00h \rightarrow WDT$ $0 \rightarrow \underline{WDT} \text{ prescaler,}$ $1 \rightarrow \overline{\underline{TO}}$ $1 \rightarrow \overline{PD}$			
Status Affected:	TO, PD			
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status hits TO and PD are set			

GOTO	Unconditional Branch						
Syntax:	[label] GOTO k						
Operands:	$0 \leq k \leq 2047$						
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>						
Status Affected:	None						
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.						

INCF	Increment f					
Syntax:	[label] INCF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(f) + 1 \rightarrow (destination)					
Status Affected:	Z					
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

INCFSZ	Increment f, Skip if 0				
Syntax:	[label] INCFSZ f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0				
Status Affected:	None				
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.				

IORLW	Inclusive OR literal with W					
Syntax:	[label] IORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .OR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

IORWF	Inclusive OR W with f						
Syntax:	[label] IORWF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(W) .OR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						

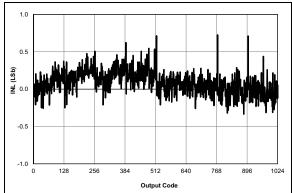
LSLF	Logical Left Shift					
Syntax:	[label] LSLF f {,d}					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	$(f<7>) \rightarrow C$ $(f<6:0>) \rightarrow dest<7:1>$ $0 \rightarrow dest<0>$					
Status Affected:	C, Z					
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.					
	C register f ←0					

LSRF	Logical Right Shift
Syntax:	[label] LSRF f {,d}
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$0 \rightarrow \text{dest<7>} $ $(f<7:1>) \rightarrow \text{dest<6:0>}, $ $(f<0>) \rightarrow C, $
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	0 1 1 1 1 1

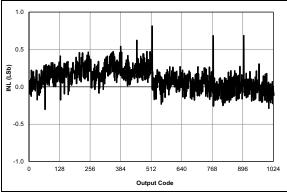
PIC12(L)F1612/16(L)F1613

TABLE 28-5: MEMORY PROGRAMMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

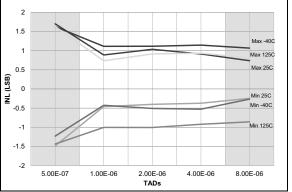

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)
D111	IDDP	Supply Current during Programming	_	_	10	mA	
D112	VBE	VDD for Bulk Erase	2.7		VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	٧	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	_	mA	
D115	IDDPGM	Current on VDD during Erase/ Write	_	5.0	_	mA	
		Program Flash Memory					
D121	ЕР	Cell Endurance	10K	_	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	VPRW	VDD for Read/Write	VDDMIN	_	VDDMAX	V	
D123	Tıw	Self-timed Write Cycle Time	_	2	2.5	ms	
D124	TRETD	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	_	_	E/W	0°C ≤ TA ≤ +60°C, lower byte last 128 addresses

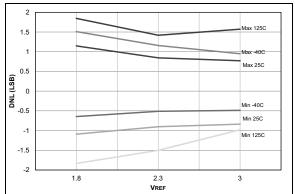
[†] Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Self-write and Block Erase.

^{2:} Required only if single-supply programming is disabled.

Note: Unless otherwise noted, VIN = 5V, FOSC = 500 kHz, CIN = 0.1 μ F, TA = 25°C.


FIGURE 29-65: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, $TAD = 1 \mu S$, $25^{\circ}C$.


FIGURE 29-66: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, $TAD = 4 \mu S$, $25^{\circ}C$.

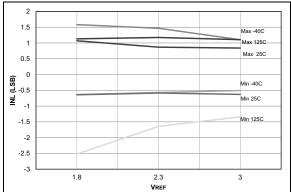

FIGURE 29-67: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, VREF = 3.0V.

FIGURE 29-68: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, VREF = 3.0V.

FIGURE 29-69: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, TAD = 1 μ S.

FIGURE 29-70: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, $TAD = 1 \mu S$.