

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1612-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADEE	<u>- 5-5.</u> 51 L										
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	nk 2										
10Ch	LATA	—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
10Dh	—	Unimplemented	1				_		_	_	_
10Eh	LATC ⁽⁴⁾	—	—	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xx xxxx	uu uuuu
10Fh	—	Unimplemented	1							—	—
110h	—	Unimplemented	1						_	_	_
111h	CM1CON0	C10N	C1OUT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PCH	H<1:0>	—		C1NCH<2:0>		0000 -000	0000 -000
113h	CM2CON0 ⁽⁴⁾	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
114h	CM2CON1 ⁽⁴⁾	C2INTP	C2INTN	C2PCH	1<1:0>	_		C2NCH<2:0>		0000 -000	0000 -000
115h	CMOUT	—	—	—	_	—	_	MC2OUT ⁽⁴⁾	MC1OUT	00	00
116h	BORCON	SBOREN	BORFS	—	_	—	_	—	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADEVE	R<1:0>	0000 00p0	0000 00p0
118h	DAC1CON0	DAC1EN		DAC10E1		DAC1PS	SS<1:0>		—	0-0- 00	0-0- 00
119h	DAC1CON1				DAC1	R<7:0>				0000 0000	0000 0000
11Ah	_	Unimplemented	1							_	_
11Bh	—	Unimplemented							—	—	
11Ch	ZCD1CON	ZCD1EN	ZCD10E	ZCD10UT	ZCD1POL	_	_	ZCD1INTP	ZCD1INTN	000000	000000
11Dh	APFCON	- CWGASEL ⁽³⁾ CWGBSEL ⁽³⁾ - T1GSEL - CCP2SEL ⁽⁴⁾ CCP1SEL ⁽³⁾						CCP1SEL ⁽³⁾	-00- 0-00	-00- 0-00	
11Eh	_	Unimplemented	Jnimplemented							—	—
11Fh	—	Unimplemented	1							—	—

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC12F1612/16F1613 only.

2: Unimplemented, read as '1'.

3: PIC12(L)F1612 only.

4: PIC16(L)F1613 only.

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	14										
70Ch to 710h	_	Unimplemented	implemented							—	_
711h	WDTCON0	—	_			WDTPS<4:0>			SEN	dd dddd	dd dddd
712h	WDTCON1	—		WDTCS<2:0>		—		WINDOW<2:0>		-ঀঀঀ -ঀঀঀ	-ddd -ddd
713h	WDTPSL				PSCN	T<7:0>				0000 0000	0000 0000
714h	WDTPSH		PSCNT<15:8>							0000 0000	0000 0000
715h	WDTTMR			WDTTMR<4:0>			STATE	PSCNT	<17:16>	0000 0000	0000 0000
716h	—	Unimplemented								—	—
717h	—	Unimplemented								—	—
718h	SCANLADRL				LADR	2<7:0>				0000 0000	0000 0000
719h	SCANLADRH				LADR	<15:8>				0000 0000	0000 0000
71Ah	SCANHADRL				HADF	R<7:0>				1111 1111	1111 1111
71Bh	SCANHADRH				HADR	<15:8>				1111 1111	1111 1111
71Ch	SCANCON0	EN	EN SCANGO BUSY INVALID INTM - MODE<1:0>					0000 0-00	0000 0-00		
71Dh	SCANTRIG					—	_	TSEL	<1:0>	00	00
71Eh	—	Unimplemented —							—		
71Fh	—	Unimplemented	Inimplemented —							—	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC12F1612/16F1613 only.

2: Unimplemented, read as '1'.

3: PIC12(L)F1612 only.

4: PIC16(L)F1613 only.

4.6 Device ID and Revision ID

The 14-bit Device ID word is located at 8006h and the 14-bit Revision ID is located at 8005h. These locations are read-only and cannot be erased or modified. See **Section 10.4 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

4.7 Register Definitions: Device ID

REGISTER 4-4: DEVID: DEVICE ID REGISTER

		R	R	R	R	R	R
				DEV<	13:8>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
			DEV	<7:0>			
bit 7							bit 0

Legend:

R = Readable bit

'1' = Bit is set

bit 13-0 **DEV<13:0>:** Device ID bits

Device	DEVID<13:0> Values			
PIC12F1612	11 0000 0101 1000 (3058h)			
PIC12LF1612	11 0000 0101 1001 (3059h)			
PIC16F1613	11 0000 0100 1100 (304Ch)			
PIC16LF1613	11 0000 0100 1101 (304Dh)			

'0' = Bit is cleared

REGISTER 4-5: REVID: REVISION ID REGISTER

		R	R	R	R	R	R
				REV<	:13:8>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
			REV	<7:0>			
bit 7							bit 0

Legend:

R = Readable bit '1' = Bit is set

'0' = Bit is cleared

bit 13-0 **REV<13:0>:** Revision ID bits

6.0 RESETS

There are multiple ways to reset this device:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- Low-Power Brown-Out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- · Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-chip Reset Circuit is shown in Figure 6-1.

R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	—	—	—	CCP1IE	TMR2IE	TMR1IE
bit 7		•					bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	TMR1GIE: Tir	mer1 Gate Inte	rrupt Enable b	bit			
	1 = Enables th	he Timer1 gate	acquisition in	terrupt			
	0 = Disables t	ine Timer1 gate	e acquisition in	nterrupt			
bit 6	ADIE: Analog	-to-Digital Con	verter (ADC) I	nterrupt Enabl	e bit		
	1 = Enables th	he ADC interru	pt				
	0 = Disables t	ine ADC Interru	ipt				
bit 5-3	Unimplement	ted: Read as ')'				
bit 2	CCP1IE: CCF	P1 Interrupt Ena	able bit				
	1 = Enables th	he CCP1 interr	upt				
	0 = Disables t	the CCP1 interi	rupt				
bit 1	TMR2IE: TMF	R2 to PR2 Mate	h Interrupt Er	nable bit			
	1 = Enables th	he Timer2 to Pl	R2 match inte	rrupt			
	0 = Disables the Timer2 to PR2 match interrupt						
bit 0	TMR1IE: Time	er1 Overflow In	terrupt Enable	e bit			
	1 = Enables th	he Timer1 over	flow interrupt				
	0 = Disables the Timer1 overflow interrupt						

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

11.10.6 WDT INTERACTION

Operation of the WDT is not affected by scanner activity. Hence, it is possible that long scans, particularly in Burst mode, may exceed the WDT time-out period and result in an undesired device Reset. This should be considered when performing memory scans with an application that also utilizes WDT.

11.10.7 IN-CIRCUIT DEBUG (ICD) INTERACTION

The scanner freezes when an ICD halt occurs, and remains frozen until user-mode operation resumes. The debugger may inspect the SCANCON0 and SCANLADR registers to determine the state of the scan.

The ICD interaction with each operating mode is summarized in Table 11-3.

		Scanner Operating Mode		
ICD Halt	Peek	Concurrent Triggered	Burst	
External Halt		If external halt is asserted during a scan cycle, the instruction (delayed by scan) may or may not execute before ICD entry, depending on external halt timing.		
	If Scanner would peek an instruction that is not executed (because of ICD	If external halt is asserted during the cycle immediately prior to the scan cycle, both scan and instruction execution happen after the ICD exits.	If external halt is asserted during the burst, the burst is suspended and will resume with ICD exit.	
PC Breakpoint		Scan cycle occurs before ICD entry and instruction execution happens after the ICD exits.	If PCPB (or single step) is on	
Data Breakpoint	exit, when the instruction executes.	The instruction with the dataBP executes and ICD entry occurs immediately after. If scan is requested during that cycle, the scan cycle is postponed until the ICD exits.	BSF (SCANCON.GO), the ICD is entered before execution; execution of the burst will occur at ICD exit, and the burst will run to completion.	
Single Step		If a scan cycle is ready after the debug instruction is executed, the scan will read PFM and then the ICD is re-entered.	Note that the burst can be interrupted by an external halt.	
SWBP and ICDINST		If scan would stall a SWBP, the scan cycle occurs and the ICD is entered.	If SWBP replaces BSF (SCANCON.GO), the ICD will be entered; instruction execution will occur at ICD exit (from ICDINSTR register), and the burst will run to completion.	

TABLE 11-3: ICD AND SCANNER INTERACTIONS

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
	—	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	כ'				
bit 5-4	SLRA<5:4>:	PORTA Slew F	ate Enable b	its			
	For RA<5:4>	pins, respectiv	ely				
	1 = Port pin s 0 = Port pin s	lew rate is limit lews at maximi	ed Im rate				
hit 3		ted: Read as '	n'				
bit 2-0	SLRA<2:0>: PORTA Slew Rate Enable bits For RA<2:0> pine, respectively						
	$FUERA > 2.0 - \mu Hs, Tespecuvery$ $1 - Port nin slow rate is limited$						
	\perp = Port pin siew rate is influed α = Port pin slews at maximum rate						

REGISTER 12-8: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

REGISTER 12-9: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 INLVLA<5:0>: PORTA Input Level Select bits

For RA<5:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section16.0 "Analog-to-Digital Converter (ADC) Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section18.0 "Comparator Module"** for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See Figure 36-64: FVR Stabilization Period, Only.

FIGURE 14-1: VOLTAGE REFERENCE BLOCK DIAGRAM

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.
LDO	All PIC12F1612/16F1613 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

 TABLE 14-1:
 PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

15.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

15.1 Circuit Operation

Figure 15-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 15-1 describes the output characteristics of the temperature indicator.

EQUATION 15-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section14.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 15-1: TEMPERATURE CIRCUIT DIAGRAM

15.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 15-1 shows the recommended minimum VDD vs. range setting.

TABLE 15-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0				
3.6V	1.8V				

15.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section16.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

16.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

16.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

FIGURE 16-3: 10-BIT ADC CONVERSION RESULT FORMAT

16.3 Register Definitions: ADC Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—			CHS<4:0>			GO/DONE	ADON		
bit 7							bit (
l egend:									
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is ι	unchanged	x = Bit is unki	nown	-n/n = Value a	other Resets				
'1' = Bit is	set	'0' = Bit is cle	ared						
bit 7	Unimpleme	nted: Read as '	0'						
bit 6-2	CHS<4:0>:	Analog Channe	I Select bits		<i>(</i> -)				
	11111 = FV	R (Fixed Voltag	e Reference) I	Buffer 1 Output	(3)				
	11110 = DA	C (Digital-to-An	alog Converte	r)(2)					
	11101 = Iei	served No cha	nnel connecter	4					
	•								
	•								
	•								
	01000 = Re	served. No cha	nnel connecte	d.					
	00111 = AN	I/(4)							
00110 = AN 00101 = AN 00100 = AN 00011 = AN 00010 = AN		15 ⁽⁴⁾							
		4 ⁽⁴⁾							
		13							
		12							
00001 = AN1									
bit 1		IU ADC Conversio	n Status hit						
	1 = ADC cor	version cycle ir	n olaius bii	tting this hit sta	rts an ADC co	nversion cycle			
	This bit i	s automatically	cleared by har	dware when the	e ADC conversion	sion has comple	eted.		
	0 = ADC cor	version comple	eted/not in prog	gress		· · · · · ·			
bit 0	ADON: ADO	Enable bit							
	1 = ADC is e	enabled							
	0 = ADC is c	lisabled and co	nsumes no ope	erating current					
Note 1:	See Section15.0	"Temperature	Indicator Mo	dule".					
2:	See Section17.0	"8-bit Digital-t	o-Analog Cor	nverter (DAC1)) Module" for	more informatio	n.		
3:	See Section14.0	"Fixed Voltage	e Reference (I	FVR)" for more	information.				
4:	AN<7:4> availabl	e on PIC16(L)F	1613 only.						

REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0

21.6 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

21.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

FIGURE 21-2: TIMER1 INCREMENTING EDGE

21.7.1 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section12.1** "Alternate Pin Function" for more information.

PIC12(L)F1612/16(L)F1613

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

FIGURE 21-6:	TIMER1 GATE SINGLE	-PULSE AND TOGGLE COMBINED MODE
TMR1GE		
T1GPOL		
T1GSPM		
T1GTM		
T1GG <u>O/</u> DONE	← Set by software Counting enabled rising edge of T10	Cleared by hardware on falling edge of T1GVAL
T1G_in		
т1СКІ		
T1GVAL		
Timer1	Ν	N + 1 N + 2 N + 3 N + 4
TMR1GIF	 Cleared by software 	Set by hardware on Cleared by falling edge of T1GVAL

25.6.6 GATED WINDOW MEASURE MODE

This mode measures the duty cycle of the SMTx_signal input over a known input window. It does so by incrementing the timer on each pulse of the clock signal while the SMTx_signal input is high, updating the SMTxCPR register and resetting the timer on every rising edge of the SMTWINx input after the first. See Figure 25-12 and Figure 25-13.

PIC12(L)F1612/16(L)F1613

TABLE 28-10:	CLKOUT	AND I/O	TIMING	PARAMETERS
--------------	--------	---------	--------	------------

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	_	70	ns	$3.3V \le V\text{DD} \le 5.0V$
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	—	72	ns	$3.3V \le V\text{DD} \le 5.0V$
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	_		ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)	50	—		ns	$3.3V \le V\text{DD} \le 5.0V$
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	_	ns	
OS18*	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V
			—	15	32		$3.3V \leq V\text{DD} \leq 5.0V$
OS19*	TioF	Port output fall time	—	28	55	ns	VDD = 1.8V
			—	15	30		$3.3V \le V\text{DD} \le 5.0V$
OS20*	Tinp	INT pin input high or low time	25	_	_	ns	
OS21*	Tioc	Interrupt-on-change new input level time	25	_	_	ns	

* These parameters are characterized but not tested.

 \dagger Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 29-77: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 1.8V, PIC12LF1612/16F1613 Only.

FIGURE 29-78: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC12LF1612/16F1613 Only.

FIGURE 29-79: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC12LF1612/16F1613 Only.

FIGURE 29-80: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values.

FIGURE 29-81: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values at 25°C.

FIGURE 29-82: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values From -40°C to 125°C.

31.0 PACKAGING INFORMATION

31.1 Package Marking Information

8-Lead PDIP (300 mil)

8-Lead SOIC (3.90 mm)

Legenc	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057C Sheet 1 of 2