Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 32MHz | | Connectivity | - | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 6 | | Program Memory Size | 3.5KB (2K x 14) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 256 x 8 | | Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V | | Data Converters | A/D 4x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Through Hole | | Package / Case | 8-DIP (0.300", 7.62mm) | | Supplier Device Package | 8-PDIP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1612-i-p | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## 3.0 MEMORY ORGANIZATION These devices contain the following types of memory: - · Program Memory - Configuration Words - Device ID - User ID - Flash Program Memory - · Data Memory - Core Registers - Special Function Registers - General Purpose RAM - Common RAM The following features are associated with access and control of program memory and data memory: - PCL and PCLATH - Stack - · Indirect Addressing # 3.1 Program Memory Organization The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (See Figure 3-1). ## 3.2 High-Endurance Flash This device has a 128-byte section of high-endurance Program Flash Memory (PFM) in lieu of data EEPROM. This area is especially well suited for nonvolatile data storage that is expected to be updated frequently over the life of the end product. See Section 10.2 "Flash Program Memory Overview" for more information on writing data to PFM. See Section 3.2.1.2 "Indirect Read with FSR" for more information about using the FSR registers to read byte data stored in PFM. | Device | Program Memory Space
(Words) | Last Program Memory
Address | High-Endurance Flash
Memory Address
Range ⁽¹⁾ | |--------------------------|---------------------------------|--------------------------------|--| | PIC12(L)F1612/16(L)F1613 | 2,048 | 07FFh | 0780h-07FFh | Note 1: High-endurance Flash applies to low byte of each address in the range. TABLE 3-3: PIC16(L)F1613 MEMORY MAP, BANK 0-7 | | BANK 0 | | BANK 1 | | BANK 2 | | BANK 3 | | BANK 4 | | BANK 5 | | BANK 6 | | BANK 7 | |--------------|--|--------------|--|--------------|--|--------------|---------------------------------------|--------------|---------------------------------------|--------------|---------------------------------------|--------------|---------------------------------------|--------------|---------------------------------------| | 000h | Core Registers
(Table 3-1) | 080h | Core Registers
(Table 3-1) | 100h | Core Registers
(Table 3-1) | 180h | Core Registers
(Table 3-1) | 200h | Core Registers
(Table 3-1) | 280h | Core Registers
(Table 3-1) | 300h | Core Registers
(Table 3-1) | 380h | Core Registers
(Table 3-1) | | 00Bh | | 08Bh | | 10Bh | | 18Bh | | 20Bh | | 28Bh | | 30Bh | | 38Bh | | | 00Ch | PORTA | 08Ch | TRISA | 10Ch | LATA | 18Ch | ANSELA | 20Ch | WPUA | 28Ch | ODCONA | 30Ch | SLRCONA | 38Ch | INLVLA | | 00Dh | _ | 08Dh | _ | 10Dh | _ | 18Dh | 1 | 20Dh | _ | 28Dh | _ | 30Dh | I | 38Dh | _ | | 00Eh | PORTC | 08Eh | TRISC | 10Eh | LATC | 18Eh | ANSELC | 20Eh | WPUC | 28Eh | ODCONC | 30Eh | SLRCONC | 38Eh | INLVLC | | 00Fh | | 08Fh | | 10Fh | | 18Fh | _ | 20Fh | _ | 28Fh | _ | 30Fh | _ | 38Fh | _ | | 010h | _ | 090h | _ | 110h | | 190h | _ | 210h | | 290h | _ | 310h | _ | 390h | _ | | 011h | PIR1 | 091h | PIE1 | 111h | CM1CON0 | 191h | PMADRL | 211h | _ | 291h | CCPR1L | 311h | | 391h | IOCAP | | 012h | PIR2 | 092h | PIE2 | 112h | CM1CON1 | 192h | PMADRH | 212h | _ | 292h | CCPR1H | 312h | _ | 392h | IOCAN | | 013h | PIR3 | 093h | PIE3 | 113h | CM2CON0 | 193h | PMDATL | 213h | _ | 293h | CCP1CON | 313h | 1 | 393h | IOCAF | | 014h | PIR4 | 094h | PIE4 | 114h | CM2CON1 | 194h | PMDATH | 214h | _ | 294h | CCP1CAP | 314h | 1 | 394h | _ | | 015h | TMR0 | 095h | OPTION_REG | 115h | CMOUT | 195h | PMCON1 | 215h | _ | 295h | _ | 315h | _ | 395h | _ | | 016h | TMR1L | 096h | PCON | 116h | BORCON | 196h | PMCON2 | 216h | _ | 296h | _ | 316h | _ | 396h | _ | | 017h | TMR1H | 097h | _ | 117h | FVRCON | 197h | VREGCON | 217h | _ | 297h | _ | 317h | _ | 397h | IOCCP | | 018h | T1CON | 098h | OSCTUNE | 118h | DAC1CON0 | 198h | _ | 218h | _ | 298h | CCPR2L | 318h | _ | 398h | IOCCN | | 019h | T1GCON | 099h | OSCCON | 119h | DAC1CON1 | 199h | | 219h | _ | 299h | CCPR2H | 319h | - | 399h | IOCCF | | 01Ah | TMR2 | 09Ah | OSCSTAT | 11Ah | _ | 19Ah | _ | 21Ah | _ | 29Ah | CCP2CON | 31Ah | _ | 39Ah | _ | | 01Bh | PR2 | 09Bh | ADRESL | 11Bh | _ | 19Bh | _ | 21Bh | _ | 29Bh | CCP2CAP | 31Bh | _ | 39Bh | _ | | 01Ch | T2CON | 09Ch | ADRESH | 11Ch | ZCD1CON | 19Ch | | 21Ch | _ | 29Ch | _ | 31Ch | | 39Ch | _ | | 01Dh | T2HLT | 09Dh | ADCON0 | 11Dh | APFCON | 19Dh | _ | 21Dh | _ | 29Dh | _ | 31Dh | _ | 39Dh | _ | | 01Eh | T2CLKCON | 09Eh | ADCON1 | 11Eh | _ | 19Eh | _ | 21Eh | _ | 29Eh | CCPTMRS | 31Eh | _ | 39Eh | _ | | 01Fh | T2RST | 09Fh | ADCON2 | 11Fh | _ | 19Fh | _ | 21Fh | _ | 29Fh | _ | 31Fh | _ | 39Fh | _ | | 020h | | 0A0h | | 120h | | 1A0h | | 220h | | 2A0h | | 320h | | 3A0h | | | | General
Purpose
Register
80 Bytes | | General
Purpose
Register
80 Bytes | | General
Purpose
Register
80 Bytes | | Unimplemented
Read as '0' | | 06Fh | | 0EFh | | 16Fh | | 1EFh | | 26Fh | | 2EFh | | 36Fh | | 3EFh | | | 070h
07Fh | Common RAM | 0F0h
0FFh | Common RAM
(Accesses
70h – 7Fh) | 170h
17Fh | Common RAM
(Accesses
70h – 7Fh) | 1F0h
1FFh | Common RAM
(Accesses
70h – 7Fh) | 270h
27Fh | Common RAM
(Accesses
70h – 7Fh) | 2F0h
2FFh | Common RAM
(Accesses
70h – 7Fh) | 370h
37Fh | Common RAM
(Accesses
70h – 7Fh) | 3F0h
3FFh | Common RAM
(Accesses
70h – 7Fh) | **Legend:** = Unimplemented data memory locations, read as '0'. # 8.3 Register Definitions: Voltage Regulator Control # REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾ | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0/0 | R/W-1/1 | |-------|-----|-----|-----|-----|-----|---------|----------| | _ | _ | _ | _ | _ | _ | VREGPM | Reserved | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7-2 **Unimplemented:** Read as '0' bit 1 VREGPM: Voltage Regulator Power Mode Selection bit 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up 0 = Normal Power mode enabled in Sleep⁽²⁾ Draws higher current in Sleep, faster wake-up bit 0 Reserved: Read as '1'. Maintain this bit set. Note 1: PIC12F1612/16F1613 only. 2: See Section 28.0 "Electrical Specifications". TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register on
Page | |----------------------|---------|---------------------|-----------|-----------|------------|-----------|-----------|--------|---------------------| | INTCON | GIE | PEIE | TMR0IE | INTE | IOCIE | TMR0IF | INTF | IOCIF | 82 | | IOCAF | _ | _ | IOCAF5 | IOCAF4 | IOCAF3 | IOCAF2 | IOCAF1 | IOCAF0 | 148 | | IOCAN | _ | _ | IOCAN5 | IOCAN4 | IOCAN3 | IOCAN2 | IOCAN1 | IOCAN0 | 148 | | IOCAP | - | _ | IOCAP5 | IOCAP4 | IOCAP3 | IOCAP2 | IOCAP1 | IOCAP0 | 148 | | IOCCP ⁽¹⁾ | _ | _ | IOCCP5 | IOCCP4 | IOCCP3 | IOCCP2 | IOCCP1 | IOCCP0 | 148 | | IOCCN ⁽¹⁾ | _ | _ | IOCCN5 | IOCCN4 | IOCCN3 | IOCCN2 | IOCCN1 | IOCCN0 | 148 | | IOCCF ⁽¹⁾ | - | _ | IOCCF5 | IOCCF4 | IOCCF3 | IOCCF2 | IOCCF1 | IOCCF0 | 148 | | PIE1 | TMR1GIE | ADIE | _ | _ | _ | CCP1IE | TMR2IE | TMR1IE | 83 | | PIE2 | _ | C2IE ⁽¹⁾ | C1IE | _ | _ | TMR6IE | TMR4IE | CCP2IE | 84 | | PIE3 | - | _ | CWGIE | ZCDIE | _ | _ | - | _ | 85 | | PIE4 | SCANIE | CRCIE | SMT2PWAIE | SMT2PRAIE | SMT2IE | SMT1PWAIE | SMT1PRAIE | SMT1IF | 86 | | PIR1 | TMR1GIF | ADIF | _ | _ | _ | CCP1IF | TMR2IF | TMR1IF | 87 | | PIR2 | _ | C2IF ⁽¹⁾ | C1IF | _ | _ | TMR6IF | TMR4IF | CCP2IF | 88 | | PIR3 | _ | _ | CWGIF | ZCDIF | _ | _ | _ | _ | 89 | | PIR4 | SCANIF | CRCIF | SMT2PWAIF | SMT2PRAIF | SMT2IF | SMT1PWAIF | SMT1PRAIF | SMT1IF | 90 | | STATUS | _ | _ | _ | TO | PD | Z | DC | С | 21 | | WDTCON0 | | ı | | | WDTPS<4:0> | | | SEN | 99 | **Legend:** — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode. **Note 1:** PIC16(L)F1613 only. ## 9.1 Independent Clock Source The WDT can derive its time base from either the 31 kHz LFINTOSC or 31.25 kHz MFINTOSC internal oscillators, depending on the value of either the WDTCCS<2:0> configuration bits or the WDTCS<2:0> bits of WDTCON1. Time intervals in this chapter are based on a minimum nominal interval of 1 ms. See **Section28.0** "Electrical Specifications" for LFINTOSC and MFINTOSC tolerances. ## 9.2 WDT Operating Modes The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1. ### 9.2.1 WDT IS ALWAYS ON When the WDTE bits of Configuration Words are set to '11', the WDT is always on. WDT protection is active during Sleep. ### 9.2.2 WDT IS OFF IN SLEEP When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep. WDT protection is not active during Sleep. ## 9.2.3 WDT CONTROLLED BY SOFTWARE When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SEN bit of the WDTCON0 register. WDT protection is unchanged by Sleep. See Table 9-1 for more details. TABLE 9-1: WDT OPERATING MODES | WDTE<1:0> | WDTE<1:0> SEN | | WDT
Mode | | | | | | | | |-----------|---------------|-------|-------------|--|--|--|--|--|--|--| | 11 | Х | Х | Active | | | | | | | | | 1.0 | | Awake | Active | | | | | | | | | 10 | X | Sleep | Disabled | | | | | | | | | 0.1 | 1 | Х | Active | | | | | | | | | 01 | 0 | Х | Disabled | | | | | | | | | 00 | Х | Х | Disabled | | | | | | | | ## 9.3 Time-Out Period The WDTPS bits of the WDTCON0 register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds. ## 9.4 Watchdog Window The Watchdog Timer has an optional Windowed mode that is controlled by the WDTCWS<2:0> Configuration bits and WINDOW<2:0> bits of the WDTCON1 register. In the Windowed mode, the CLRWDT instruction must occur within the allowed window of the WDT period. Any CLRWDT instruction that occurs outside of this window will trigger a window violation and will cause a WDT Reset, similar to a WDT time out. See Figure 9-2 for an example. The window size is controlled by the WDTCWS<2:0> Configuration bits, or the WINDOW<2:0> bits of WDTCON1, if WDTCWS<2:0> = 111. In the event of a window violation, a Reset will be generated and the \overline{WDTWV} bit of the PCON register will be cleared. This bit is set by a POR or can be set in firmware. # 9.5 Clearing the WDT The WDT is cleared when any of the following conditions occur: - · Any Reset - · Valid CLRWDT instruction is executed - · Device enters Sleep - · Device wakes up from Sleep - · WDT is disabled - · Oscillator Start-up Timer (OST) is running - · Any write to the WDTCON0 or WDTCON1 registers # 9.5.1 CLRWDT CONSIDERATIONS (WINDOWED MODE) When in Windowed mode, the WDT must be armed before a CLRWDT instruction will clear the timer. This is performed by reading the WDTCON0 register. Executing a CLRWDT instruction without performing such an arming action will trigger a window violation. See Table 9-2 for more information. ## 9.6 Operation During Sleep When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section5.0** "Oscillator Module" for more information on the OST. When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See **Section3.0** "**Memory Organization**" for more information. # 10.0 FLASH PROGRAM MEMORY CONTROL The Flash program memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are: - PMCON1 - PMCON2 - PMDATL - PMDATH - PMADRL - PMADRH When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 15-bit address of the program memory location being read. The write time is controlled by an on-chip timer. The write/ erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device. The Flash program memory can be protected in two ways; by code protection (CP bit in Configuration Words) and write protection (WRT<1:0> bits in Configuration Words). Code protection $(\overline{CP} = 0)^{(1)}$, disables access, reading and writing, to the Flash program memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash program memory, Configuration bits and User IDs. Write protection prohibits self-write and erase to a portion or all of the Flash program memory, as defined by the bits WRT<1:0>. Write protection does not affect a device programmers ability to read, write or erase the device. **Note 1:** Code protection of the entire Flash program memory array is enabled by clearing the $\overline{\mathsf{CP}}$ bit of Configuration Words. # 10.1 PMADRL and PMADRH Registers The PMADRH:PMADRL register pair can address up to a maximum of 16K words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register. # 10.1.1 PMCON1 AND PMCON2 REGISTERS PMCON1 is the control register for Flash program memory accesses. Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation. The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine. The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all '0's. To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash program memory. ## 10.2 Flash Program Memory Overview It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software. After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair. Note: If the user wants to modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, new data and retained data can be written into the write latches to reprogram the row of Flash program memory. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations. See Table 10-1 for Erase Row size and the number of write latches for Flash program memory. TABLE 10-1: FLASH MEMORY ORGANIZATION BY DEVICE | Device | Row Erase
(words) | Write
Latches
(words) | | |---------------|----------------------|-----------------------------|--| | PIC12(L)F1612 | 16 | 16 | | | PIC16(L)F1613 | 10 | 10 | | ## **REGISTER 11-16: SCANTRIG: SCAN TRIGGER SELECTION REGISTER** | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0/0 | R/W-0/0 | | | |-------|-----|-----|-----|-----------|-----|---------|---------|--|--| | _ | _ | _ | _ | TSEL<3:0> | | | | | | | bit 7 | | | | | | | bit 0 | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7-4 Unimplemented: Read as '0' bit 3-0 TSEL<3:0>: Scanner Data Trigger Input Selection bits 1111-1010 **=** Reserved 1001 = SMT2 Match 1000 = SMT1_Match 0111 = TMR0_Overflow 0110 = TMR5_Overflow 0101 = TMR3_Overflow 0100 = TMR1_Overflow 0011 = TMR6_postscaled 0010 = TMR4_postscaled 0001 = TMR2_postscaled 0000 = LFINTOSC ### TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH CRC | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register on Page | |-----------|------------|---------------------|-----------|-----------|--------|-----------|-----------|--------|------------------| | CRCACCH | | | | ACC< | 15:8> | | | | 125 | | CRCACCL | | | | ACC< | 7:0> | | | | 125 | | CRCCON0 | EN | CRCGO | BUSY | ACCM | _ | _ | SHIFTM | FULL | 124 | | CRCCON1 | | DLEN<3:0> PLEN<3:0> | | | | | | | | | CRCDATH | | DAT<15:8> | | | | | | | | | CRCDATL | | DAT<7:0> | | | | | | | | | CRCSHIFTH | | SHIFT<15:8> | | | | | | | | | CRCSHIFTL | | SHIFT<7:0> | | | | | | | | | CRCXORH | | XOR<15:8> | | | | | | | | | CRCXORL | | | | XOR<7:1> | | | | _ | 126 | | INTCON | GIE | PEIE | TMR0IE | INTE | IOCIE | TMR0IF | INTF | IOCIF | 82 | | PIR4 | SCANIF | CRCIF | SMT2PWAIF | SMT2PRAIF | SMT2IF | SMT1PWAIF | SMT1PRAIF | SMT1IF | 90 | | PIE4 | SCANIE | CRCIE | SMT2PWAIE | SMT2PRAIE | SMT2IE | SMT1PWAIE | SMT1PRAIE | SMT1IE | 86 | | SCANCON0 | EN | SCANGO | BUSY | INVALID | INTM | _ | MODE< | 1:0> | 127 | | SCANHADRH | | | | HADR< | :15:8> | | | | 129 | | SCANHADRL | | | | HADR• | <7:0> | | | | 129 | | SCANLADRH | LADR<15:8> | | | | | | | | 128 | | SCANLADRL | | | | LADR | <7:0> | | | | 128 | | SCANTRIG | | | | | | TSEL | <3:0> | | 130 | **Legend:** — = unimplemented location, read as '0'. Shaded cells are not used for the CRC module. Page provides register information. #### **IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER**(1) **REGISTER 13-4:** | U-0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | |-------|-----|---------|---------|---------|---------|---------|---------| | _ | _ | IOCCP5 | IOCCP4 | IOCCP3 | IOCCP2 | IOCCP1 | IOCCP0 | | bit 7 | | | | | | | bit 0 | | Legend: | | | |----------------------|----------------------|---| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read as '0' | | u = Bit is unchanged | x = Bit is unknown | -n/n = Value at POR and BOR/Value at all other Resets | | '1' = Bit is set | '0' = Bit is cleared | | bit 7-6 Unimplemented: Read as '0' IOC_CP<5:0>: Interrupt-on-Change PORTC Positive Edge Enable bits bit 5-0 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge. _ 0 = Interrupt-on-Change disabled for the associated pin. Note 1: PIC16(L)F1613 only. #### **IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER**(1) REGISTER 13-5: | U-0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | |-------|-----|---------|---------|---------|---------|---------|---------| | _ | _ | IOCCN5 | IOCCN4 | IOCCN3 | IOCCN2 | IOCCN1 | IOCCN0 | | bit 7 | | | | | | | bit 0 | | Legend: | | | |----------------------|----------------------|---| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read as '0' | | u = Bit is unchanged | x = Bit is unknown | -n/n = Value at POR and BOR/Value at all other Resets | | '1' = Bit is set | '0' = Bit is cleared | | bit 7-6 Unimplemented: Read as '0' IOC_CN<5:0>: Interrupt-on-Change PORTC Negative Edge Enable bits bit 5-0 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge. $_{ m 0}$ = Interrupt-on-Change disabled for the associated pin. Note 1: PIC16(L)F1613 only. #### IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER⁽¹⁾ **REGISTER 13-6:** | U-0 | U-0 | R/W/HS-0/0 | R/W/HS-0/0 | R/W/HS-0/0 | R/W/HS-0/0 | R/W/HS-0/0 | R/W/HS-0/0 | |-------|-----|------------|------------|------------|------------|------------|------------| | _ | _ | IOCCF5 | IOCCF4 | IOCCF3 | IOCCF2 | IOCCF1 | IOCCF0 | | bit 7 | | | | | | | bit 0 | | Legend: | | | |----------------------|----------------------|---| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read as '0' | | u = Bit is unchanged | x = Bit is unknown | -n/n = Value at POR and BOR/Value at all other Resets | | '1' = Bit is set | '0' = Bit is cleared | HS - Bit is set in hardware | bit 7-6 Unimplemented: Read as '0' IOC_CF<5:0>: Interrupt-on-Change PORTC Flag bits bit 5-0 > An enabled change was detected on the associated pin. Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx. $_{\rm 0}$ = No change was detected, or the user cleared the detected change. Note 1: PIC16(L)F1613 only. ## REGISTER 22-3: TxHLT: TIMERx CLOCK SELECTION REGISTER | Ī | R/W-0/0 | R/W-0/0 | R/W-0/0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | |---|-------------------------|----------------------|--------------------------|-----|---------|---------|--------------|---------| | | PSYNC ^(1, 2) | CKPOL ⁽³⁾ | CKSYNC ^{(4,} 5) | _ | | MODE<3 | :0>(6, 7, 8) | | | | bit 7 | | | | | _ | _ | bit 0 | | Legend: | | | |----------------------|----------------------|---| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read as '0' | | u = Bit is unchanged | x = Bit is unknown | -n/n = Value at POR and BOR/Value at all other Resets | | '1' = Bit is set | '0' = Bit is cleared | | | bit 7 | PSYNC: Timerx Prescaler Synchronization Enable bit ^(1, 2) 1 = TMRx Prescaler Output is synchronized to Fosc/4 0 = TMRx Prescaler Output is not synchronized to Fosc/4 | |---------|---| | bit 6 | CKPOL: Timerx Clock Polarity Selection bit ⁽³⁾ 1 = Falling edge of input clock clocks timer/prescaler 0 = Rising edge of input clock clocks timer/prescaler | | bit 5 | CKSYNC: Timerx Clock Synchronization Enable bit ^(4, 5) 1 = ON register bit is synchronized to TMR2_clk input 0 = ON register bit is not synchronized to TMR2_clk input | | bit 4 | Unimplemented: Read as '0' | | bit 3-0 | MODE<3:0>: Timerx Control Mode Selection bits ^(6, 7, 8) See Table 22-1. | **Note 1:** Setting this bit ensures that reading TMRx will return a valid data value. - 2: When this bit is '1', Timer2 cannot operate in Sleep mode. - 3: CKPOL should not be changed while ON = 1. - 4: Setting this bit ensures glitch-free operation when the ON is enabled or disabled. - 5: When this bit is set, the timer operation will be delayed by two TMRx input clocks after the ON bit is set. - **6:** Unless otherwise indicated, all modes start upon ON = 1 and stop upon ON = 0 (stops occur without affecting the value of TMRx). - 7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode. - **8:** In edge-triggered "One-Shot" modes, the triggered-start mechanism is reset and rearmed when ON = 0; the counter will not restart until an input edge occurs. # PIC12(L)F1612/16(L)F1613 ## 23.2 Compare Mode The Compare mode function described in this section is available and identical for all CCP modules. Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur: - · Toggle the CCPx output - · Set the CCPx output - · Clear the CCPx output - · Pulse the CCPx output - · Generate a Software Interrupt - · Optionally Reset TMR1 The action on the pin is based on the value of the MODE<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set. All Compare modes can generate an interrupt. Figure 23-2 shows a simplified diagram of the compare operation. ## 23.2.1 CCPx PIN CONFIGURATION The user must configure the CCPx pin as an output by clearing the associated TRIS bit. The CCPx pin function can be moved to alternate pins using the APFCON register (Register 12-1). Refer to **Section12.1 "Alternate Pin Function"** for more details. Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch. ### FIGURE 23-2: COMPARE MODE OPERATION BLOCK DIAGRAM ## 23.5 Register Definitions: CCP Control ## REGISTER 23-1: CCPxCON: CCPx CONTROL REGISTER | R/W-0/0 | R/W-0/0 | R-x | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | |---------|---------|-----|---------|-----------|---------|---------|---------| | EN | OE | OUT | FMT | MODE<3:0> | | | | | bit 7 | | | | | | | bit 0 | | Legend: | | | |----------------------|----------------------|--| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read as '0' | | u = Bit is unchanged | x = Bit is unknown | -n/n = Value at POR and BOR/Value at all other Reset | | '1' = Bit is set | '0' = Bit is cleared | | bit 7 **EN:** CCPx Module Enable bit 1 = CCPx is enabled0 = CCPx is disabled bit 6 **OE:** CCPx Output Enable bit 1 = CxOUT is present on the CxOUT pin. Requires that the associated TRIS bit be cleared to drive the pin. Not affected by CxON. 0 = CxOUT is internal only bit 5 **OUT:** CCPx Output Data bit (read-only) bit 4 FMT: CCPW (Pulse-Width) Alignment bit If MODE = PWM Mode: 1 = Left-aligned format, CCPRxH <7> is the MSb of the PWM duty cycle 0 = Right-aligned format, CCPRxL<0> is the LSb of the PWM duty cycle bit 3-0 MODE<3:0>: CCPx Mode Selection bit 11xx = PWM mode 1011 = Compare mode: Pulse output, clear TMR1 1010 = Compare mode: Pulse output (0 - 1 - 0) 1001 = Compare mode: clear output on compare match 1000 = Compare mode: set output on compare match 0111 = Capture mode: every 16th rising edge 0110 = Capture mode: every 4th rising edge 0101 = Capture mode: every rising edge 0100 = Capture mode: every falling edge 0011 = Capture mode: every rising or falling edge 0010 = Compare mode: toggle output on match 0001 = Compare mode: Toggle output and clear TMR1 on match 0000 = Capture/Compare/PWM off (resets CCPx module) (reserved for backwards compatibility) DS40001737C-page 253 ## REGISTER 24-9: CWGxCLKCON: CWGx CLOCK SELECTION CONTROL REGISTER | U-0 R/W-0/0 | |-------|-----|-----|-----|-----|-----|-----|---------| | _ | _ | _ | _ | _ | _ | _ | CS | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared q = Value depends on condition bit 7-1 **Unimplemented:** Read as '0' bit 0 **CS:** CWGx Clock Selection bit 1 = HFINTOSC 16 MHz is selected 0 = Fosc is selected ## REGISTER 24-10: CWGxISM: CWGx INPUT SELECTION REGISTER | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | |-------|-----|-----|-----|-----|---------|---------|---------| | _ | _ | _ | _ | _ | | IS<2:0> | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared q = Value depends on condition bit 7-3 **Unimplemented:** Read as '0' bit 2-0 GxIS<2:0>: CWGx Input Selection bits 111 = Reserved, do not use 110 = Reserved, do not use 101 = Reserved, do not use 100 = CCP2_out 011 = CCP1 out 010 = C2_OUT_sync⁽¹⁾ 001 = C1_OUT_sync 000 = CWGxIN pin **Note 1:** PIC16(L)F1613 only. ## REGISTER 25-6: SMT1SIG: SMT1 SIGNAL INPUT SELECT REGISTER | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | |-------|-----|-----|-----|-----|---------|-----------|---------| | _ | _ | _ | _ | _ | | SSEL<2:0> | | | bit 7 | | | | | | | bit 0 | Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared q = Value depends on condition bit 7-3 **Unimplemented**: Read as '0' bit 2-0 SSEL<2:0>: SMT1 Signal Selection bits 111 = Reserved 110 = TMR6_postscaled 101 = TMR4_postscaled 100 = TMR2 postscaled 011 = ZCD1_out $010 = C2OUT_sync^{(1)}$ 001 = C1OUT_sync 000 = SMTxSIG pin Note 1: PIC16(L)F1613 only. Reserved on PIC12(L)F1612. # 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | |-------------------------|-------------|-----|----------|------| | Dimension | MIN | NOM | MAX | | | Contact Pitch | Е | | 1.27 BSC | | | Contact Pad Spacing | С | | 5.40 | | | Contact Pad Width (X8) | X1 | | | 0.60 | | Contact Pad Length (X8) | Y1 | | | 1.55 | ## Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2057A # 14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | MILLIMETERS | | | |--------------------------|-------|-------------|-----|------| | Dimension Limits | | MIN | NOM | MAX | | Number of Pins | N | 14 | | | | Pitch | е | 1.27 BSC | | | | Overall Height | Α | - | - | 1.75 | | Molded Package Thickness | A2 | 1.25 | - | - | | Standoff § | A1 | 0.10 | - | 0.25 | | Overall Width | E | 6.00 BSC | | | | Molded Package Width | E1 | 3.90 BSC | | | | Overall Length | D | 8.65 BSC | | | | Chamfer (Optional) | h | 0.25 | - | 0.50 | | Foot Length | L | 0.40 | - | 1.27 | | Footprint | L1 | 1.04 REF | | | | Lead Angle | Θ | 0° | - | - | | Foot Angle | φ | 0° | - | 8° | | Lead Thickness | С | 0.10 | - | 0.25 | | Lead Width | b | 0.31 | - | 0.51 | | Mold Draft Angle Top | α | 5° | - | 15° | | Mold Draft Angle Bottom | β | 5° | - | 15° | ### Notes - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. § Significant Characteristic - Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side. - 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. 5. Datums A & B to be determined at Datum H. Microchip Technology Drawing No. C04-065C Sheet 2 of 2 # APPENDIX A: DATA SHEET REVISION HISTORY # Revision A (01/2014) Original release. ## Revision B (05/2016) Added Section 1.1 Register and Bit Naming Conventions. Added Register 12-14 WPUC register. Updated SMT Chapter. Minor typos corrected. Added High endurance column to Table 1: PIC12/16(L)F161x Family Types. Added Sections 22.1.1 and 22.1.2. Added Tables 22-1 and 22-3. Updated the High-Endurance Flash data memory information on the cover page. Updated Figures 18-2, 21-1, 22-8, 23-2, and 23-3; Registers 19-1, 21-1, 22-3, 22-4, and 25-6; Sections 18,6, 18.7, 22.0, 22.1, 22.4, 22.5, 22.5.1, 22.5.2, 22.5.4, 22.5.5, 22.5.8, 23.1.7, 23.2.6, and 25.0; Tables 5-1, 7-1, 8-1, 22-1 and 25-3. Updated Package Drawings C04-018, C04-127. Deleted Section 24.1.1 and Registers 22-5 and 22-6. # **Revision C (01/2017)** Updated Figure 16-1; Updated Registers 18-1, 19-1, and 23-1; Sections 11.3, 11.5, and 23.1; Tables 18-3, 22-4, 23-3, and 24-2. Added Register 24-8.