

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1612t-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-9:	SPECIAL FUNCTION REGISTER SUMMARY

								-			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	0										
00Ch	PORTA	—		RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	xx xxxx
00Dh	—	Unimplemented								—	—
00Eh	PORTC ⁽⁴⁾	—		RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	xx xxxx
00Fh	—	Unimplemented	l							_	—
010h	—	Unimplemented								—	—
011h	PIR1	TMR1GIF	ADIF	_	_		CCP1IF	TMR2IF	TMR1IF	00000	00000
012h	PIR2	—	C2IF ⁽⁴⁾	C1IF	_		TMR6IF	TMR4IF	CCP2IF	-00000	-00000
013h	PIR3	—		CWGIF	ZCDIF		—	_	—	00	00
014h	PIR4	SCANIF	CRCIF	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	0000 0000	0000 0000
015h	TMR0	Holding Registe	er for the 8-bit Tir	mer0 Count						xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Registe	er for the Least S	ignificant Byte o	f the 16-bit TMR	1 Count				xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Registe	er for the Most Si	gnificant Byte of	the 16-bit TMR1	Count				XXXX XXXX	uuuu uuuu
018h	T1CON	TMR1C	:S<1:0>	T1CKP	S<1:0>		T1SYNC	_	TMR10N	0000 -0-0	uuuu -u-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS	S<1:0>	0000 0x00	uuuu uxuu
01Ah	TMR2	Timer2 Module	Register							0000 0000	0000 0000
01Bh	PR2	Timer2 Period F	Register							1111 1111	1111 1111
01Ch	T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		0000 0000	0000 0000
01Dh	T2HLT	PSYNC	CKPOL	CKSYNC	—		MODE	=<3:0>		000- 0000	000- 0000
01Eh	T2CLKCON							T2CS<2:0>		000	000
01Fh	T2RST			_	_		RSEL	<3:0>		0000	0000

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC12F1612/16F1613 only.

2: Unimplemented, read as '1'.

3: PIC12(L)F1612 only.

4: PIC16(L)F1613 only.

POR

DC

BOR

С

SEN

Register on Page 71

75

21

99

TABLE 0-3. SOMMART OF REGISTERS ASSOCIATED WITH RESETS								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY

RWDT

TO

RMCLR

PD

WDTPS<4:0>

RI

Ζ

TABLE 6-5:SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented bit, reads as '0'. <u>Shaded</u> cells are not used by Resets.

STKUNF

WDTWV

PCON

STATUS

WDTCON0

STKOVF

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

TABLE 6-6: SUMMARY OF CONFIGURATION WORD WITH RESETS

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8					CLKOUTEN	BORE	N<1:0>	_	50
CONFIG1	7:0	CP	MCLRE	PWRTE	_	—	_	FOSC	<1:0>	52
	13:8	_	-	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	LEN
CONFIGZ	7:0	7:0 ZCD -	-	-	_	_	_	WRT	<1:0>	53
	13:8	_	_		WDTCCS<	<2:0>	WDTCWS<2:0>			50
CONFIGS	7:0	_	WDT	E<1:0>		WD	TCPS<4:0>			53

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

3: For minimum width of INT pulse, refer to AC specifications in Section28.0 "Electrical Specifications".

4: INTF is enabled to be set any time during the Q4-Q1 cycles.

U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	C2IE ⁽¹⁾	C1IE			TMR6IE	TMR4IE	CCP2IE
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is u	inchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is	set	'0' = Bit is clea	ared				
bit 7	Unimplemer	nted: Read as '	כ'				
bit 6	C2IE: Compa	arator C2 Interru	upt Enable bit	(1)			
	1 = Enables	the Comparator	C2 interrupt				
	0 = Disables	the Comparato	r C2 interrupt				
bit 5	C1IE: Compa	arator C1 Interru	upt Enable bit				
	1 = Enables	the Comparator	C1 interrupt				
hit 4 0			,				
DIL 4-3		Reau as					
DIT 2		R6 to PR6 Mate	n Interrupt Ei	nable bit			
	1 = Enables	the Timer6 to P	R6 match inte	errupt			
hit 1		R4 to PR4 Mate	h Interrunt Fi	nable bit			
	1 = Enables	the Timer4 to P	R4 match inte				
	0 = Disables	the Timer4 to F	R4 match inte	errupt			
bit 0	CCP2IE: CC	P2 Interrupt En	able bit	·			
	1 = The CCI	P2 interrupt is e	nabled				
	0 = The CCI	P2 interrupt is n	ot enabled				
Note 1:	PIC16(L)F1613 or	nly.					

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

17.0 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC1) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 256 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- · Comparator positive input
- · ADC input channel
- DACxOUT1 pin

The Digital-to-Analog Converter (DAC) is enabled by setting the DAC1EN bit of the DAC1CON0 register.

EQUATION 17-1: DAC OUTPUT VOLTAGE

 $\frac{IF DACIEN = 1}{VOUT} = \left((VSOURCE+ - VSOURCE-) \times \frac{DACIR[7:0]}{2^8} \right) + VSOURCE-$ VSOURCE+ = VDD, VREF, or FVR BUFFER 2 VSOURCE- = VSS

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section28.0 "Electrical Specifications"**.

17.3 DAC Voltage Reference Output

The DAC voltage can be output to the DACxOUT1 pin by setting the DAC1OE1 bit of the DAC1CON0 register. Selecting the DAC reference voltage for output on the DACxOUT1 pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACxOUT1 pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to either DACxOUT1 pin. Figure 17-2 shows an example buffering technique.

17.1 Output Voltage Selection

The DAC has 256 voltage level ranges. The 256 levels are set with the DAC1R<7:0> bits of the DAC1CON1 register.

The DAC output voltage is determined by Equation 17-1:

18.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section28.0 "Electrical Specifications"** for more details.

18.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

FIGURE 18-3: ANALOG INPUT MODEL

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8	_	—	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	53
	7:0	ZCD	_	_	_	_	_	WRT	<1:0>	

TABLE 19-2:	SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE
-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PSYNC ^{(1,}	2) CKPOL ⁽³⁾	CKSYNC ^{(4,} 5)			MODE<3:	0> (6, 7, 8)			
bit 7		•					bit 0		
Legend:									
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'			
u = Bit is ur	nchanged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is s	et	'0' = Bit is clea	ared						
bit 7 bit 6	PSYNC: Time 1 = TMRx Pr 0 = TMRx Pr CKPOL: Time 1 = Falling ec 0 = Rising ec	erx Prescaler S escaler Output escaler Output erx Clock Polar dge of input clo	ynchronization is synchronize is not synchro ity Selection b ck clocks time	e Enable bit ^{(1, 2} ed to Fosc/4 nized to Fosc/4 it ⁽³⁾ r/prescaler) 4				
bit 5 bit 4 bit 3-0	CKSYNC: Tin 1 = ON regis 0 = ON regis Unimplemen MODE<3:0>:	nerx Clock Syn ter bit is synchi ter bit is not syn ted: Read as 'f	chronization E ronized to TMF nchronized to 7 0'	inable bit ^(4, 5) R2_clk input TMR2_clk inpu	t				
	See Table 22-	1.							
Note 1:	Setting this bit en	sures that read	ling TMRx will	return a valid c	lata value.				
2:	When this bit is '1	', Timer2 cann	ot operate in S	leep mode.					
3:	CKPOL should no	ot be changed v	while ON = 1.						
4:	Setting this bit en	sures glitch-fre	e operation wh	nen the ON is e	enabled or disat	oled.			
5:	When this bit is se	et, the timer op	eration will be	delayed by two	o TMRx input cl	ocks after the	ON bit is set.		
6:	Unless otherwise affecting the value	e indicated, all e of TMRx).	modes start u	pon ON = 1 ar	nd stop upon C	DN = 0 (stops	occur without		
7:	When TMRx = PF	Rx, the next clo	ck clears TMR	x, regardless c	of the operating	mode.			
8:	In edge-triggered the counter will no	"One-Shot" m ot restart until a	odes, the trigg in input edge c	ered-start mec occurs.	hanism is reset	and rearmed	when ON = 0;		

REGISTER 22-3: TxHLT: TIMERx CLOCK SELECTION REGISTER

23.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains two standard Capture/ Compare/PWM modules (CCP1 and CCP2).

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

23.1 Capture Mode

The Capture mode function described in this section is available and identical for all CCP modules.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx input, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the MODE<3:0> bits of the CCPxCON register:

- Every edge (rising or falling)
- · Every falling edge
- Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

The CCPx capture input signal is configured by the CTS bits of the CCPxCAP register with the following options:

- CCPx pin
- Comparator 1 output (C1_OUT_sync)
- Comparator 2 output (C2_OUT_sync) (PIC16(L)F1613 only)
- Interrupt-on-change interrupt trigger (IOC_interrupt)

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 23-1 shows a simplified diagram of the capture operation.

23.1.1 CCP PIN CONFIGURATION

In Capture mode, select the interrupt source using the CTS bits of the CCPxCAP register. If the CCPx pin is chosen, it should be configured as an input by setting the associated TRIS control bit.

Also, the CCP2 pin function can be moved to alternative pins using the APFCON register. Refer to **Section12.1 "Alternate Pin Function"** for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

REGISTER 24-9: CWGxCLKCON: CWGx CLOCK SELECTION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	_	—	—	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

'0'
'(

bit 0

CS: CWGx Clock Selection bit

1 = HFINTOSC 16 MHz is selected

0 = Fosc is selected

REGISTER 24-10: CWGxISM: CWGx INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	—		IS<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-3	Unimplemented: Read as '0'
---------	----------------------------

bit 2-0 GxIS<2:0>: CWGx Input Selection bits

111 = Reserved, do not use

110 = Reserved, do not use

101 = Reserved, do not use

100 = CCP2_out

011 = CCP1_out

- 010 = C2_OUT_sync⁽¹⁾
- 001 = C1_OUT_sync
- 000 = CWGxIN pin

Note 1: PIC16(L)F1613 only.

FIGURE 25-10: WINDOWED MEASURE MODE REPEAT ACQUISITION TIMING DIAGRAM

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
SMTxTMR<7:0>										
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	I = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							

REGISTER 25-7: SMTxTMRL: SMT TIMER REGISTER – LOW BYTE

bit 7-0 SMTxTMR<7:0>: Significant bits of the SMT Counter – Low Byte

REGISTER 25-8: SMTxTMRH: SMT TIMER REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
SMTxTMR<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxTMR<15:8>: Significant bits of the SMT Counter – High Byte

REGISTER 25-9: SMTxTMRU: SMT TIMER REGISTER – UPPER BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
SMTxTMR<23:16>									
bit 7							bit 0		
Legend:									

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxTMR<23:16>: Significant bits of the SMT Counter – Upper Byte

-n/n = Value at POR and BOR/Value at all other Resets

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxI	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpler	mented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all othe			
'1' = Bit is set		'0' = Bit is clear	ed				

REGISTER 25-16: SMTxPRL: SMT PERIOD REGISTER – LOW BYTE

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 25-17: SMTxPRH: SMT PERIOD REGISTER - HIGH BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1		
SMTxPR<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 25-18: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE

x = Bit is unknown

'0' = Bit is cleared

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1			
SMTxPR<23:16>										
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable bi	t	U = Unimple	mented bit, read	d as '0'				

bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

u = Bit is unchanged

'1' = Bit is set

MOVF	Move f	MOVIW	Move INDFn to W	
Syntax:	[<i>label</i>] MOVF f,d	Syntax:	[<i>label</i>] MOVIW ++FSRn	
Operands:	$0 \le f \le 127$		[label] MOVIWF	-SRn SRn++
Onenetien	$\mathbf{d} \in [0,1]$		[label] MOVIW FSRn	
Operation:	$(f) \rightarrow (dest)$		[label] MOVIW k[FSRn]
Description:	Z The contents of register f is moved to a destination dependent upon the	Operands:	$\begin{split} n &\in [0,1] \\ mm &\in [00,01,10,11] \\ -32 &\leq k \leq 31 \\ \\ INDFn &\rightarrow W \\ Effective address is determined by \\ \bullet \ FSR + 1 (preincrement) \\ \bullet \ FSR - 1 (predecrement) \\ \bullet \ FSR + k (relative offset) \end{split}$	
	status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.	Operation:		
Words:	1		After the Move, the either	FSR value will be
Cycles:	1		FSR + 1 (all increments)	
Example.	xample: MOVF FSR, 0		 FSR - 1 (all decrements) Unchanged 	
	W = value in FSR register $Z = 1$	Status Affected:	Z	
		Mode	Syntax	mm
		Preincrement	++FSRn	00
		Predecrement	FSRn	01
		Postincrement	FSRn++	10
		Postdecrement	FSRn	11
		Description:	This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it. Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn. FSRn is limited to the range 0000h - FFFFh. Incrementing/decrementing it beyond these bounds will cause it to	
		MOVLB	Move literal to E	BSR
		Syntax:	[<i>label</i>]MOVLB k	
		Operands:	0 ≤ k ≤ 31	
	$\begin{array}{c} \text{Operation:} & \text{V} \rightarrow \text{BSR} \end{array}$		$k \to BSR$	
		Status Affected:	None	
		Description:	The 5-bit literal 'k' i Bank Select Regisi	is loaded into the ter (BSR).

NOP	No Operation	RETFIE	Return from Interrupt	
Syntax:	[label] NOP	Syntax:	[label] RETFIE	
Operands:	None	Operands:	None	
Operation:	No operation	Operation:	$TOS \rightarrow PC$,	
Status Affected:	None		$1 \rightarrow \text{GIE}$	
Description:	No operation.	Status Affected:	None	
Words:	1	Description:	Return from Interrupt. Stack	
Cycles:	1		and Top-of-Stack (TOS) is le	
Example:	NOP		setting Global Interrupt Ena GIE (INTCON<7>). This is a instruction.	
		Words:	1	

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.

RESET	Software Reset	
Syntax:	[label] RESET	
Operands:	None	
Operation:	Execute a device Reset. Resets the \overline{RI} flag of the PCON register.	
Status Affected:	None	
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.	

	Return nom interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1
RETLW	Return with literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC
Status Affected:	None
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	CALL TABLE;W contains table
	; offset value
TABLE	<pre>; w now has table value ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>
	Before Instruction W = 0x07
	W = value of k8

Note: Unless otherwise noted, VIN = 5V, FOSC = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 29-7: IDD Typical, EC Oscillator MP Mode, PIC12F1612/16F1613 Only.

FIGURE 29-8: IDD Maximum, EC Oscillator MP Mode, PIC12F1612/16F1613 Only.

FIGURE 29-9: IDD Typical, EC Oscillator HP Mode, PIC12LF1612/16F1613 Only.

FIGURE 29-10: IDD Maximum, EC Oscillator HP Mode, PIC12LF1612/16F1613 Only.

FIGURE 29-11: IDD Typical, EC Oscillator HP Mode, PIC12F1612/16F1613 Only.

FIGURE 29-12: IDD Maximum, EC Oscillator HP Mode, PIC12F1612/16F1613 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 29-31: IPD, Timer1 Oscillator, Fosc = 32 kHz, PIC12LF1612/16F1613 Only.

FIGURE 29-32: IPD, Timer1 Oscillator, Fosc = 32 kHz, PIC12F1612/16F1613 Only.

FIGURE 29-33: IPD, ADC Non-Converting, PIC12LF1612/16F1613 Only.

FIGURE 29-34: IPD, ADC Non-Converting, PIC12F1612/16F1613 Only.

31.0 PACKAGING INFORMATION

31.1 Package Marking Information

8-Lead PDIP (300 mil)

8-Lead SOIC (3.90 mm)

Legenc	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2