

Welcome to E-XFL.COM

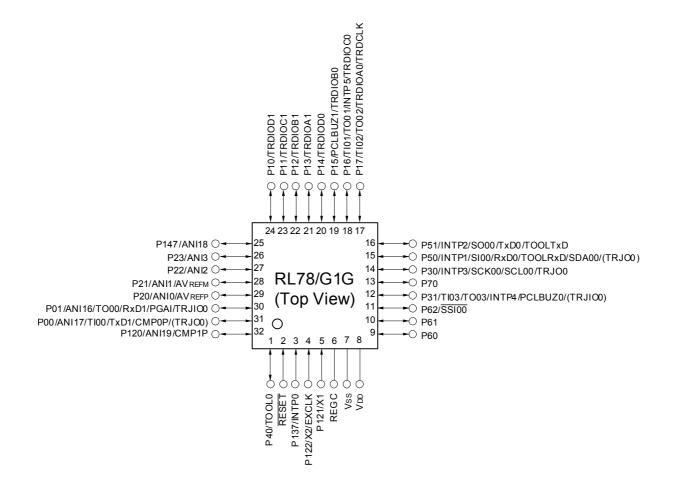
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11ef8afp-50


Email: info@E-XFL.COM

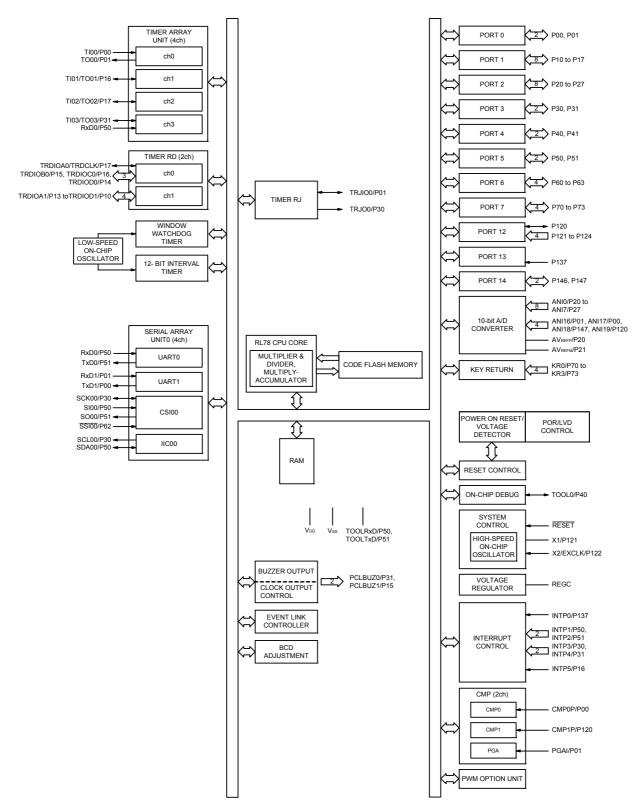
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 32-pin products

<R>

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)

- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** The functions in parentheses shown in the above figure can be assigned by setting peripheral I/O redirection register 1 (PIOR1).


1.4 Pin Identification

ANI0 to ANI7, ANI16 to ANI19: Analog input

AINIO IO AINI7, AINI TO IO A	IN 19. Analog input
AVREFM:	A/D converter reference potential (- side) input
AVREFP:	A/D converter reference potential (+ side) input
EXCLK:	External clock input (main system clock)
INTP0 to INTP5:	External interrupt input
KR0 to KR3:	Key Return
P00, P01:	Port 0
P10 to P17:	Port 1
P20 to P27:	Port 2
P30, P31:	Port 3
P40, P41:	Port 4
P50, P51:	Port 5
P60 to P63:	Port 6
P70 to P73:	Port 7
P120 to P124:	Port 12
P137:	Port 13
P146, P147:	Port 14
PCLBUZ0, PCLBUZ1:	Programmable clock output/buzzer output
REGC:	Regulator capacitance
RESET:	Reset
RxD0, RxD1:	Receive data
SCK00:	Serial clock input/output
SCL00:	Serial clock output
SDA00:	Serial data input/output
SI00:	Serial data input
SO00:	Serial data output
SSI00:	Serial interface chip select input
TI00 to TI03:	Timer input
TO00 to TO03, TRJO0:	Timer output
TOOL0:	Data input/output for tool
TOOLRxD, TOOLTxD:	Data input/output for external device
TRDCLK:	Timer external input clock
TRDIOA0, TRDIOB0, TR	DIOC0, TRDIOD0,:Timer input/output
TRDIOA1, TRDIOB1, TR	DIOC1, TRDIOD1,
TRJIO0	
TxD0, TxD1:	Transmit data
CMP0P, CMP1P:	Comparator input
PGAI:	PGA input
VDD:	Power supply
Vss:	Ground
X1, X2:	Crystal oscillator (main system clock)

1.5.3 44-pin products

1.6 **Outline of Functions**

[30-pin, 32-pin, 44-pin products (code flash memory 8 KB to 16 KB)]

Caution The above outline of the functions applies when peripheral I/O redirection register 1 (PIOR1) is set to 00H.

				(1/2)				
		30-pin	32-pin	44-pin				
	Item	R5F11EA8ASP, R5F11EAAASP	R5F11EB8AFP, R5F11EBAAFP	R5F11EF8AFP, R5F11EFAAFP				
Code flash m	emory (KB)		8 to 16					
RAM (KB)			1.5					
Address space	ce	1 MB						
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, e LS (low-speed main) mode: 1 to HS (high-speed main) mode: 1 t	8 MHz (VDD = 2.7 to 5.5 V),	(EXCLK)				
	High-speed on-chip oscillator clock (fiH)	· · /	S (low-speed main) mode: 1 to 8 MHz (VDD = 2.7 to 5.5 V) S (high-speed main) mode: 1 to 24 MHz (VDD = 2.7 to 5.5 V)					
Low-speed o	n-chip oscillator clock	15 kHz (TYP.): VDD = 2.7 to 5.5	V					
General-purp	oose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)						
Minimum instruction execution		0.04167 μ s (High-speed on-chip oscillator clock: fiH = 24 MHz operation)						
time		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)						
Instruction se	20	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 						
I/O port	Total	26	28	40				
	CMOS I/O	23	25	35				
	CMOS input	3	3	5				
	CMOS output							
	N-ch open-drain I/O (6 V tolerance)		_					
Timer	16-bit timer	7 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels)						
	Watchdog timer	1 channel						
	12-bit interval timer	1 channel						
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels						

Caution Since a library is used when rewriting the flash memory using the user program, flash ROM and RAM areas are used. Refer to the RL78 Family Flash Self-Programming Library Type01 User's Manual before using these products.

2.3 Oscillator Characteristics

2.3.1 X1 oscillator characteristics

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/ crystal resonator	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	1.0		20.0	MHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

2.3.2 On-chip oscillator characteristics

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator	fін		1		24	MHz
clock frequency Notes 1, 2	fносо		1		48	
High-speed on-chip oscillator clock frequency accuracy			-2		+2	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G1G User's Manual.

(1/2)

2.4.2 Supply current characteristics

(1) Flash ROM: 16 KB of 30- pin to 44-pin products

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

(17 = 40	10 +05 1	$\mathbf{O}, \mathbf{Z}, \mathbf{V} \ge \mathbf{V}$	$\mathbf{v} D D \leq \mathbf{J} \cdot \mathbf{J} \cdot \mathbf{v}, \ \mathbf{v} \mathbf{S} \mathbf{S} = 0$	•)						(1/2)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-speed	fHOCO = 48 MHz,	Basic	VDD = 5.0 V		1.8		mA
current		mode	main) mode Notes 3, 4	fін = 24 MHz	operation	VDD = 3.0 V		1.8		
Note 1			HS (high-speed	fносо = 48 MHz,	Normal	VDD = 5.0 V		3.9	6.9	mA
			main) mode Notes 3, 4	fін = 24 MHz	operation	VDD = 3.0 V		3.9	6.9	
				fносо = 24 MHz,	Normal	VDD = 5.0 V		3.7	6.3	
				fін = 24 MHz	operation	VDD = 3.0 V		3.7	6.3	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.6	
		fін = 16 MHz о	operation	VDD = 3.0 V		2.8	4.6			
			LS (low-speed main)	fiн = 8 MHz	Normal	VDD = 3.0 V		1.2	2.0	mA
			mode Notes 3, 4		operation					
			HS (high-speed	fмх = 20 MHz,	Normal	Square wave input		3.1	5.3	mA
			main) mode Notes 2, 4	VDD = 5.0 V	operation	Resonator connection		3.3	5.5	
				fмх = 20 MHz,	Normal	Square wave input		3.1	5.3	
				VDD = 3.0 V	operation	Resonator connection		3.3	5.5	
				fmx = 10 MHz,	Normal	Square wave input		2.0	3.1	
				VDD = 5.0 V	operation	Resonator connection		2.0	3.2	
				fmx = 10 MHz,	Normal	Square wave input		2.0	3.1	
				VDD = 3.0 V	operation	Resonator connection		2.0	3.2	1
			LS (low-speed main)	fmx = 8 MHz,	Normal	Square wave input		1.2	1.9	mA
			mode Notes 2, 4	VDD = 3.0 V	operation	Resonator connection		1.2	2.0	1

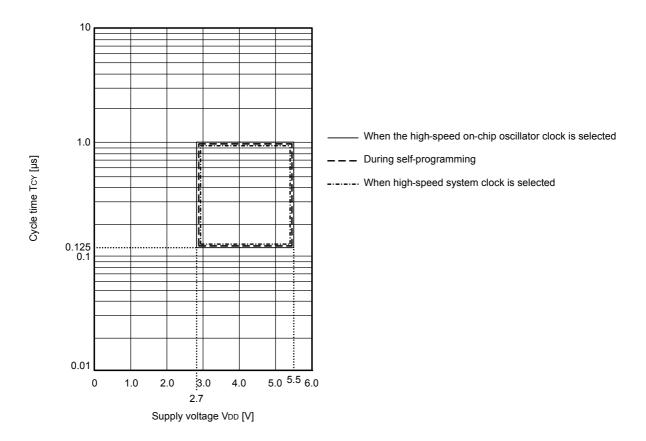
Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, watchdog timer, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.

Note 2. When high-speed on-chip oscillator is stopped.

Note 3. When high-speed system clock is stopped.

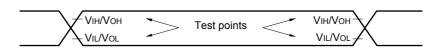
Note 4.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high speed main) mode: VDD = 2.7 V to 5.5 V@1 MHz to 24 MHz
LS (low speed main) mode: VDD = 2.7 V to 5.5 V@1 MHz to 8 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

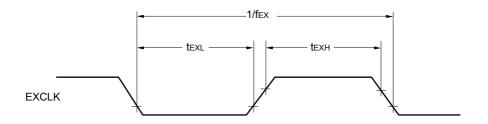

Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)

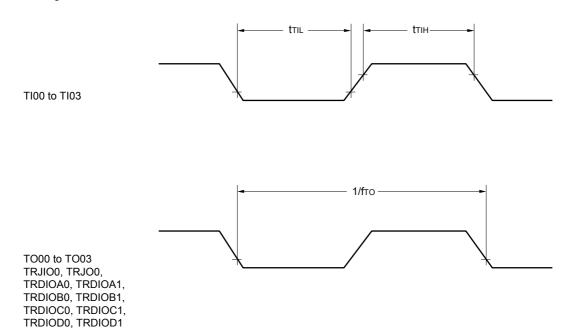
Remark 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)

Remark 4. Temperature condition of the TYP. value is TA = 25°C

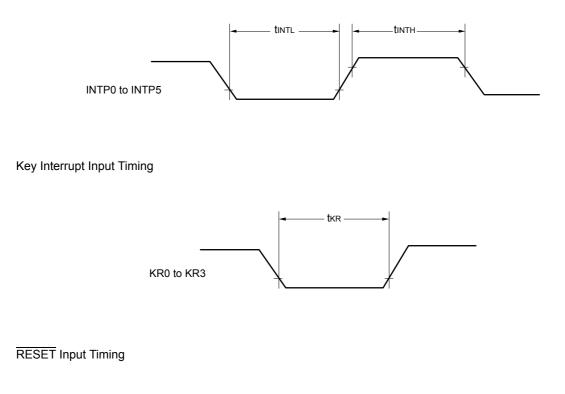


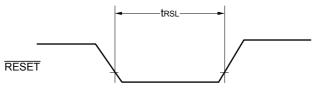
TCY vs VDD (LS (low-speed main) mode)




AC Timing Test Points

External System Clock Timing




TI/TO Timing

Interrupt Request Input Timing

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-spe mod	,	LS (low-spe mod	,	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/fмск		—		ns
			fмск ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	16 MHz < fмск	8/fмск		—		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		ns
SCKp high-/low-level width	tкн2,	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} \qquad \qquad t$		tксү2/2 - 7		tксү2/2 - 7		ns
	tĸ∟2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		tксү2/2 - 8		tксү2/2 - 8		ns
SIp setup time (to SCKp↑) Note 1	tsik2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		ns
SIp hold time (from SCKp [↑]) Note 2	tKSI2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110	ns
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	120		120		ns
		DAPmn = 1	$2.7~V \le V_{DD} \le 5.5~V$	1/fмск + 120		1/fмск + 120		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \le V_{\text{DD}} \le 5.5~V$	1/fмск + 120		1/fмск + 120		ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	120		120		ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(6) Communication at different potential (2.5 V, 3 V) (UART mode)

TA = -40 to -	⊦85°C, 2.	7 $V \leq VDD$	≤ 5.5 V, Vss = 0 V)					(1/2
Parameter	Symbol		Conditions	HS (high-sp	eed main) mode	LS (low-spe	ed main) mode	Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception			fмск/6 Note 1		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		4.0		1.3	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		fмск/6 Note 1		fмск/6 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		4.0		1.3	Mbp
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \end{array}$		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		4.0		1.3	Mbp

Transfer rate in the SNOOZE mode is 4800 bps only. Note 1.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. Use it with $VDD \ge Vb$.

- Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V) LS (low-speed main) mode: 8 MHz (2.7 V \leq VDD \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 5)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03)

Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in UART mode.

 $4.0~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V},~2.7~\text{V} \leq \text{V}\text{b} \leq 4.0~\text{V}\text{:}$ ViH = 2.2 V, ViL = 0.8 V

 $2.7~\text{V} \leq \text{VDD}$ < 4.0 V, 2.3 V $\leq \text{Vb} \leq 2.7$ V: VIH = 2.0 V, VIL = 0.5 V

 $2.7~\text{V} \leq \text{V}\text{DD}$ < $3.3~\text{V},~1.6~\text{V} \leq \text{V}\text{b} \leq 2.0~\text{V}\text{:}$ VIH = 1.50 V, VIL = 0.32 V

(0.0)

(6) Communication at different potential (2.5 V, 3 V) (UART mode)

Parameter	Symbol		Conditions	HS (high-spe	eed main) mode	LS (low-speed main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission			Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 Note 2		2.8 Note 2	Mbps
	$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		Note 3		Note 3	bps		
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4		1.2 Note 4	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \end{array}$		Note 5, 6		Note 5, 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 7		0.43 Note 7	Mbps

-40 to +85°C 27V < Von < 55V Vee - 0 //

Note 1. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}$$
Baud rate error (theoretical value) =
$$\frac{1}{(1 - \frac{2.2}{V_b})} \times 100 \ [\%]$$

Baud rate error (theoretical value) =

(
$$\frac{1}{\text{Transfer rate}}$$
) × Number of transferred bits

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

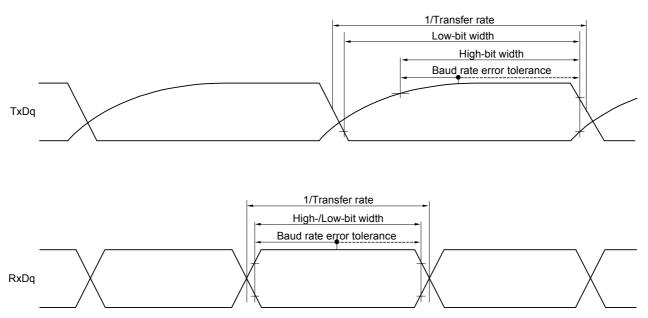
The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer Note 3. rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

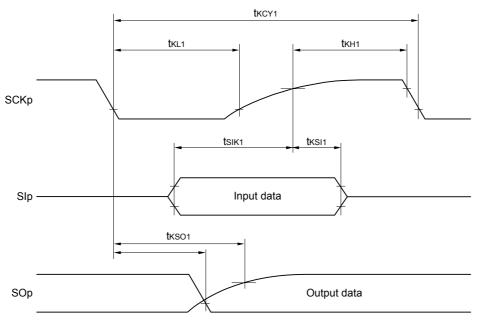
1

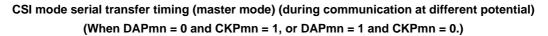

etical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

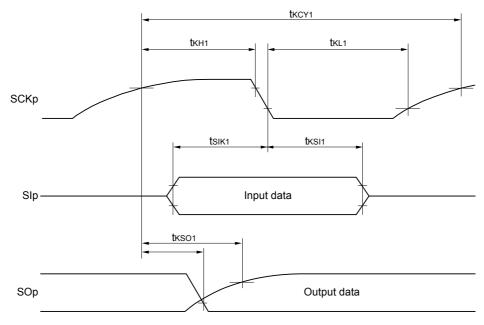
Baud rate error (theore

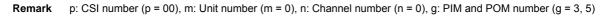
Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

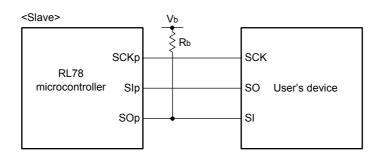
Note 5. Use it with $V_{DD} \ge V_b$.


RENESAS


UART mode bit width (during communication at different potential) (reference)


Remark 1. $R_b[\Omega]$: Communication line (TxDq) pull-up resistance, $V_b[V]$: Communication line voltage **Remark 2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 5)

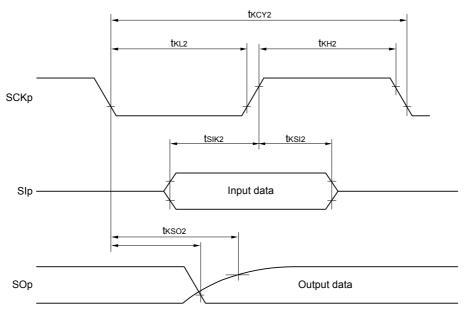



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

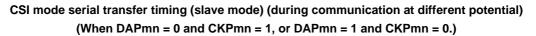
CSI mode connection diagram (during communication at different potential)

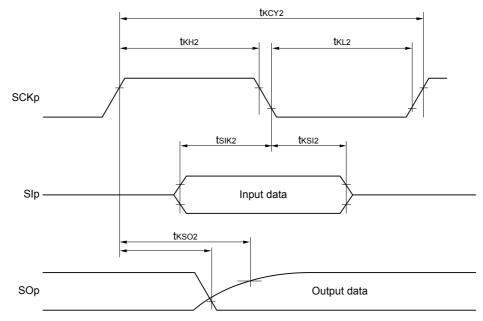
- **Note 1.** Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))


Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.

4.0 V \leq VDD \leq 5.5 V, 2.7 V \leq Vb \leq 4.0 V: VIH = 2.2 V, VIL = 0.8 V


$$2.7~V \leq V\text{DD}$$
 < $4.0~V,~2.3~V \leq V\text{b} \leq 2.7~V\text{:}$ ViH = $2.0~V,~\text{ViL}$ = $0.5~V$


Remark 5. Communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
 Remark 2. Communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

RENESAS

2.7 Analog Characteristics

2.7.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (-) = AV _{REFM}
ANI0 to ANI7	Refer to 2.7.1 (1).	Refer to 2.7.1 (3).	Refer to 2.7.1 (4).
ANI16 to ANI19	Refer to 2.7.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.7.1 (1) .		_

(1) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI2 to ANI7

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP = VDD	$2.7~V \leq V \text{DD} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		AVREFP = VDD	$2.7~V \le V_{DD} \le 5.5~V$	3.1875		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVREFP = VDD	$2.7~V \leq V \text{DD} \leq 5.5~V$			±0.25	% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP = VDD	$2.7~V \leq V \text{DD} \leq 5.5~V$			±0.25	% FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±1.5	LSB
Reference voltage (+)	AVREFP			2.7		Vdd	V
Analog input voltage	Vain			0		AVREFP	V
	Vbgr	Select internal refe 2.7 V \leq VDD \leq 5.5 VHS (high-speed matrix)	·	1.38	1.45	1.5	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

(2) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI16 to ANI19

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$		1.2	±5.0	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		AVREFP = VDD	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$			±0.35	% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP = VDD	$2.7~V \leq V_{DD} \leq 5.5~V$			±0.35	% FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD	$2.7~V \leq V_{DD} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±2.0	LSB
Reference voltage (+)	AVREFP			2.7		Vdd	V
Analog input voltage	VAIN			0		AVREFP	V
	Vbgr	Select internal reference of the select of the select internal reference of the select the select of the select o		1.38	1.45	1.5	V

Note 1. Excludes quantization error (±1/2 LSB).

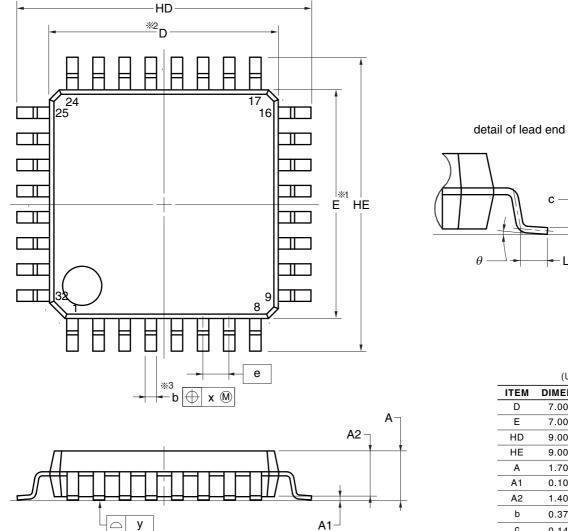
Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

(3) When AVREF (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), AVREF (-) = VSS (ADREFM = 0), target ANI pin: ANI0 to ANI7, ANI16 to ANI19

			• • •			• • • •	
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$2.7~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μs
			$2.7~V \le V_{DD} \le 5.5~V$	3.1875		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$2.7~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$			±0.60	% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$2.7~V \le V_{DD} \le 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.7~V \le V_{DD} \le 5.5~V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.7~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI7		0		Vdd	V
		ANI16 to ANI19		0		Vdd	V
	Vbgr	Select internal reference voltage output, 2.7 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode		1.38	1.45	1.5	V

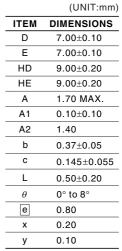
(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Note 1. Excludes quantization error (±1/2 LSB).


Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

32-pin Products 3.2

R5F11EB8AFP, R5F11EBAAFP


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

NOTE

1.Dimensions " \gg 1" and " \gg 2" do not include mold flash.

2.Dimension "%3" does not include trim offset.

- 1

