

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	65
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-UFBGA, CSPBGA
Supplier Device Package	81-CSP (4.35x4.27)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32lg360f128g-e-csp81r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM.

3.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32LG.

3.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32LG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

3.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32LG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

3.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

3.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

3.1.10 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.

3.1.11 TFT Direct Drive

The EBI contains a TFT controller which can drive a TFT via a 565 RGB interface. The TFT controller supports programmable display and port sizes and offers accurate control of frequency and setup and hold timing. Direct Drive is supported for TFT displays which do not have their own frame buffer. In that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers through the EBI interface.

3.1.12 Universal Serial Bus Controller (USB)

The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device, On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both fullspeed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated Descriptor-Based Scatter/Gather DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for supplying 5V to VBUS when operating as host.

Module	Configuration	Pin Connections
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx
AES	Full configuration	NA
GPIO	83 pins	Available pins are shown in 5.9.3 GPIO Pinout Overview

Module	Configuration	Pin Connections
AES	Full configuration	NA
GPIO	56 pins	Available pins are shown in 5.12.3 GPIO Pinout Overview
LCD	Full configuration	LCD_SEG[19:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

Module	Configuration	Pin Connections
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx
AES	Full configuration	NA
GPIO	81 pins	Available pins are shown in 5.20.3 GPIO Pinout Overview
LCD	Full configuration	LCD_SEG[33:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

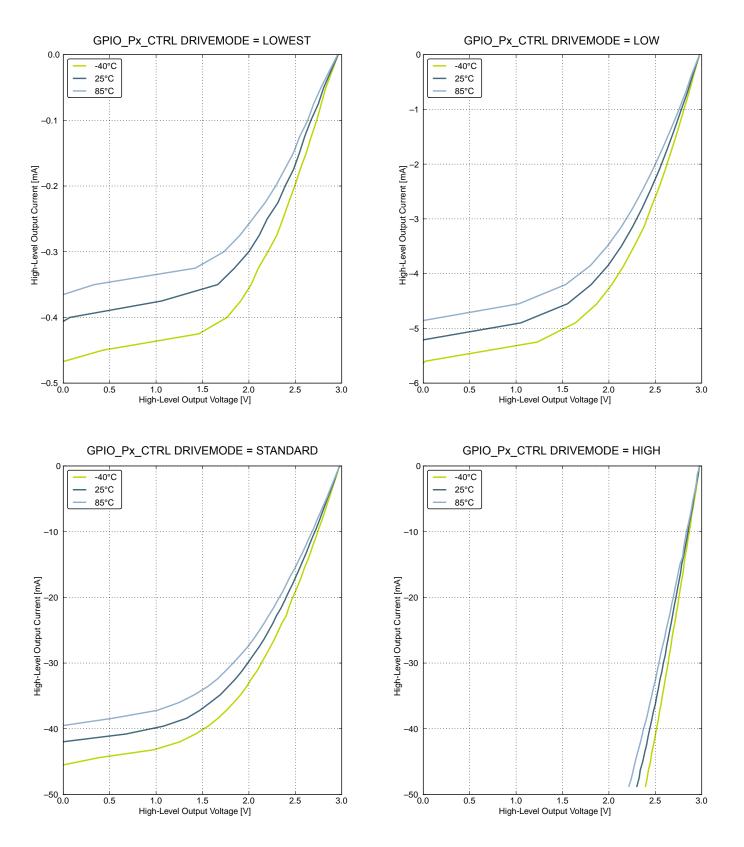


Figure 4.13. Typical High-Level Output Current, 3 V Supply Voltage

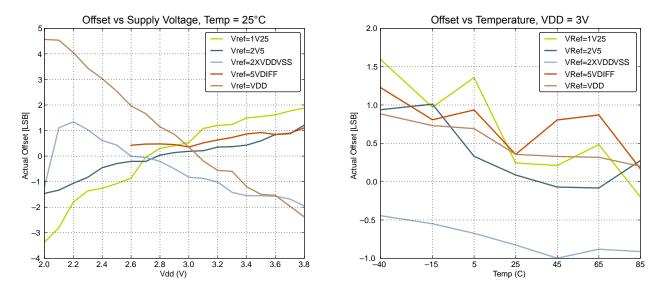


Figure 4.28. ADC Absolute Offset, Common Mode = VDD/2

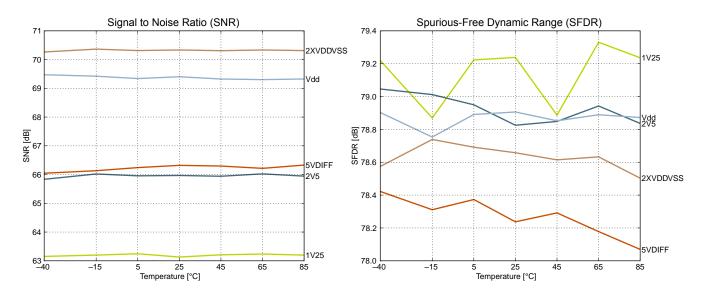


Figure 4.29. ADC Dynamic Performance vs Temperature for all ADC References, VDD = 3 V

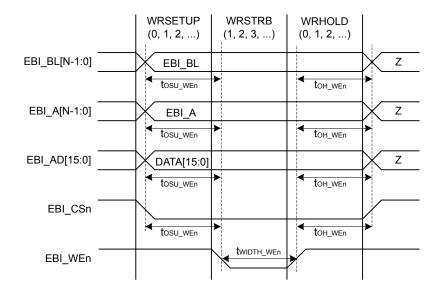


Figure 4.37. EBI Write Enable Timing

Table 4.19.	EBI Write	Enable	Timing
-------------	-----------	--------	--------

Parameter	Symbol	Min	Тур	Max	Unit
Output hold time, from trailing EBI_WEn/EBI_NAND-WEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid	t _{OH_WEn} ^{1 2 3 4}	-6.00 + (WRHOLD × t _{HFCORECLK})	_	_	ns
Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn/EBI_NANDWEn edge	t _{OSU_WEn} 12345	-14.00 + (WRSETUP × t _{HFCORECLK})	_	_	ns
EBI_WEn/EBI_NANDWEn pulse width	twiDTH_WEn ^{1 2 3 4} 5	-7.00 + ((WRSTRB + 1) × t _{HFCORECLK})		_	ns

Note:

1. Applies for all addressing modes (figure only shows D16 addressing mode)

2. Applies for both EBI_WEn and EBI_NANWEn (figure only shows EBI_WEn)

3. Applies for all polarities (figure only shows active low signals)

4. Measurement done at 10% and 90% of V_{DD} (figure shows 50% of $V_{\text{DD}})$

5. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of t_{WIDTH_WEn} and increases the length of t_{OSU_WEn} by 1/2 × $t_{HFCLKNODIV}$.

Table 4.24. LCD

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frame rate	f _{LCDFR}		30	_	200	Hz
Number of segments supported	NUM _{SEG}		_	36×8	_	seg
LCD supply voltage range	V _{LCD}	Internal boost circuit enabled	2.0	—	3.8	V
Steady state current consumption.	I _{LCD}	Display disconnected, static mode, framerate 32 Hz, all segments on.	_	250	_	nA
		Display disconnected, quad- ruplex mode, framerate 32 Hz, all segments on, bias mode to ONETHIRD in LCD_DISPCTRL register.		550		nA
Steady state Current contribution	ILCDBOOST	Internal voltage boost off	_	0	_	μA
of internal boost.		Internal voltage boost on, boosting from 2.2 V to 3.0 V.	—	8.4	_	μA
Boost Voltage	V _{BOOST}	VBLEV of LCD_DISPCTRL register to LEVEL0	—	3.02	_	V
		VBLEV of LCD_DISPCTRL register to LEVEL1		3.15		V
		VBLEV of LCD_DISPCTRL register to LEVEL2	_	3.28	_	V
		VBLEV of LCD_DISPCTRL register to LEVEL3	_	3.41		V
		VBLEV of LCD_DISPCTRL register to LEVEL4		3.54		V
		VBLEV of LCD_DISPCTRL register to LEVEL5		3.67		V
		VBLEV of LCD_DISPCTRL register to LEVEL6		3.73	_	V
		VBLEV of LCD_DISPCTRL register to LEVEL7	_	3.74	—	V

The total LCD current is given by the following equation. $I_{LCDBOOST}$ is zero if internal boost is off.

 $I_{LCDTOTAL} = I_{LCD} + I_{LCDBOOST}$

QFP64 Pin# and Name Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	Timers	Communication	Other			
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0 ETM_TD0 #3			
4	PA3		TIM0_CDTI0 #0		LES_ALTEX2 #0 ETM_TD1 #3			
5	PA4		TIM0_CDTI1 #0		LES_ALTEX3 #0 ETM_TD2 #3			
6	PA5		TIM0_CDTI2 #0	LEU1_TX #1	LES_ALTEX4 #0 ETM_TD3 #3			
7	IOVDD_0	Digital IO power supply 0.						
8	VSS	Ground.						
9	PC0	ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT	TIM0_CC1 #4 PCNT0_S0IN #2	US0_TX #5 US1_TX #0 I2C0_SDA #4	LES_CH0 #0 PRS_CH2 #0			
10	PC1	ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT	TIM0_CC2 #4 PCNT0_S1IN #2	US0_RX #5 US1_RX #0 I2C0_SCL #4	LES_CH1 #0 PRS_CH3 #0			
11	PC2	ACMP0_CH2 DAC0_OUT0ALT #2/ OPAMP_OUT0ALT	TIM0_CDTI0 #4	US2_TX #0	LES_CH2 #0			
12	PC3	ACMP0_CH3DAC0_OU T0ALT #3/ OPAMP_OUT0ALT	TIM0_CDTI1 #4	US2_RX #0	LES_CH3 #0			
13	PC4	ACMP0_CH4 OPAMP_P0	TIM0_CDTI2 #4 LE- TIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0 I2C1_SDA #0	LES_CH4 #0			
14	PC5	ACMP0_CH5 OPAMP_N0	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0 I2C1_SCL #0	LES_CH5 #0			
15	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4 US1_CLK #0				
16	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4 US1_CS #0				
17	PA8		TIM2_CC0 #0					
18	PA9		TIM2_CC1 #0					
19	PA10		TIM2_CC2 #0					
20	RESETn	Reset input, active low. To low during reset, and let the		source to this pin, it is requi that reset is released.	red to only drive this pin			
21	PB11	DAC0_OUT0 / OPAMP_OUT0	TIM1_CC2 #3 LE- TIM0_OUT0 #1	I2C1_SDA #1				
22	VSS	Ground.						
23	AVDD_1	Analog power supply 1.						
24	PB13	HFXTAL_P		US0_CLK #4/5 LEU0_TX #1				
25	PB14	HFXTAL_N		US0_CS #4/5 LEU0_RX #1				
26	IOVDD_3	Digital IO power supply 3.						

5.6 EFM32LG330 (QFN64)

5.6.1 Pinout

The EFM32LG330 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the * ROUTE register in the module in question.

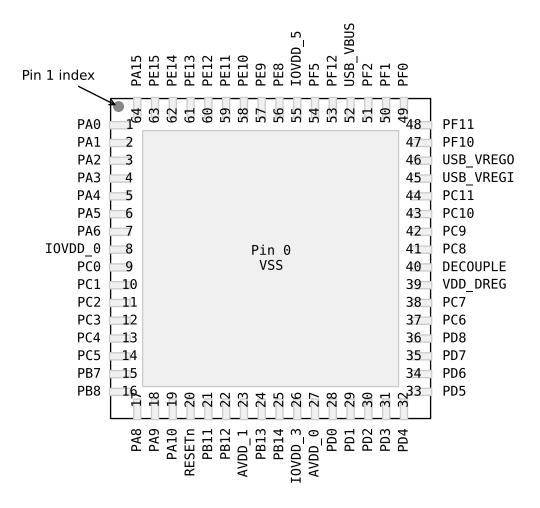


Figure 5.11. EFM32LG330 Pinout (top view, not to scale)

QFN					
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PA0		TIM0_CC0 #0/1/4	LEU0_RX #4 I2C0_SDA #0	PRS_CH0 #0 GPIO_EM4WU0

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
PCNT1_S0IN	PC4							Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5							Pulse Counter PCNT1 input number 1.
PCNT2_S0IN	PD0	PE8						Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9						Pulse Counter PCNT2 input number 1.
PRS_CH0	PA0							Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1							Peripheral Reflex System PRS, channel 1.
PRS_CH2	PC0	PF5						Peripheral Reflex System PRS, channel 2.
PRS_CH3	PC1	PE8						Peripheral Reflex System PRS, channel 3.
ТІМ0_СС0	PA0	PA0		PD1	PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	PC0	PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	PC1	PF2		Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	PA3				PC2			Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1	PA4				PC3			Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5		PF5		PC4	PF5		Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0		PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1		PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2		PE12		PB11				Timer 1 Capture Compare input / output channel 2.
TIM2_CC0	PA8		PC8					Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9		PC9					Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10		PC10					Timer 2 Capture Compare input / output channel 2.
TIM3_CC0	PE14							Timer 3 Capture Compare input / output channel 0.
TIM3_CC1	PE15							Timer 3 Capture Compare input / output channel 1.
US0_CLK	PE12		PC9		PB13	PB13		USART0 clock input / output.
US0_CS	PE13		PC8		PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX	PE11		PC10	PE12	PB8	PC1		USART0 Synchronous mode Master Input / Slave Output (MISO).
LISO TY	PE10		PC11	PE13	PB7	PC0		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX				FE13		FUU		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.
								USART1 Asynchronous Receive.
US1_RX	PC1	PD1	PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).

Alternate	E LOCATION							
Functionality	0	1	2	3	4	5	6	Description
US1 TX	PC0	PD0	PD7					USART1 Asynchronous Transmit. Also used as re- ceive input in half duplex communication.
								USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4							USART2 clock input / output.
US2_CS	PC5							USART2 chip select input / output.
								USART2 Asynchronous Receive.
US2_RX	PC3							USART2 Synchronous mode Master Input / Slave Output (MISO).
US2 TX	PC2							USART2 Asynchronous Transmit.Also used as re- ceive input in half duplex communication.
032_17	FG2							USART2 Synchronous mode Master Output / Slave Input (MOSI).
USB_DM	PF10							USB D- pin.
USB_DMPU	PD2							USB D- Pullup control.
USB_DP	PF11							USB D+ pin.
USB_ID	PF12							USB ID pin. Used in OTG mode.
USB_VBUS	USB_V BUS							USB 5 V VBUS input.
USB_VBUSEN	PF5							USB 5 V VBUS enable.
USB_VREGI	USB_V REGI							USB Input to internal 3.3 V regulator
USB_VREGO	USB_V REGO							USB Decoupling for internal 3.3 V USB regulator and regulator output

5.7.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32LG332 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.21. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	PA10	PA9	PA8	-	-	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	-	-	-	-	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	-	-	-	-	-	-	-	-
Port F	-	-	-	PF12	PF11	PF10	-	-	-	-	PF5	-	-	PF2	PF1	PF0

Alternate				LOCATIO	ON				
Functionality	0	1	2	3	4	5	6	Description	
ETM_TD3	PD5		PD5	PA5				Embedded Trace Module ETM data 3.	
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4	
GPIO_EM4WU1	PA6							Pin can be used to wake the system up from EM4	
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4	
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4	
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4	
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4	
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.	
HFXTAL_P	PB13							High Frequency Crystal positive pin.	
I2C0_SCL	PA1	PD7	PC7	PD15	PC1	PF1	PE13	I2C0 Serial Clock Line input / output.	
I2C0_SDA	PA0	PD6	PC6	PD14	PC0	PF0	PE12	I2C0 Serial Data input / output.	
I2C1_SCL	PC5	PB12	PE1					I2C1 Serial Clock Line input / output.	
I2C1_SDA	PC4	PB11	PE0					I2C1 Serial Data input / output.	
LES_ALTEX0	PD6							LESENSE alternate exite output 0.	
LES_ALTEX1	PD7							LESENSE alternate exite output 1.	
LES_ALTEX2	PA3							LESENSE alternate exite output 2.	
LES_ALTEX3	PA4							LESENSE alternate exite output 3.	
LES_ALTEX4	PA5							LESENSE alternate exite output 4.	
LES_ALTEX5	PE11							LESENSE alternate exite output 5.	
LES_ALTEX6	PE12							LESENSE alternate exite output 6.	
LES_ALTEX7	PE13							LESENSE alternate exite output 7.	
LES_CH0	PC0							LESENSE channel 0.	
LES_CH1	PC1							LESENSE channel 1.	
LES_CH2	PC2							LESENSE channel 2.	
LES_CH3	PC3							LESENSE channel 3.	
LES_CH4	PC4							LESENSE channel 4.	
LES_CH5	PC5							LESENSE channel 5.	
LES_CH6	PC6							LESENSE channel 6.	
LES_CH7	PC7							LESENSE channel 7.	
LES_CH8	PC8							LESENSE channel 8.	
LES_CH9	PC9							LESENSE channel 9.	
LES_CH10	PC10							LESENSE channel 10.	
LES_CH11	PC11							LESENSE channel 11.	
LETIM0_OUT0	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.	
LETIM0_OUT1	PD7	PB12	PF1	PC5				Low Energy Timer LETIM0, output channel 1.	

QFN	64 Pin# and Name	Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	Timers	Communication	Other				
27	AVDD_0	Analog power supply 0.							
28	PD0	ADC0_CH0 DAC0_OUT0ALT #4/ OPAMP_OUT0ALT OPAMP_OUT2 #1	PCNT2_S0IN #0	US1_TX #1					
29	PD1	ADC0_CH1 DAC0_OUT1ALT #4/ OPAMP_OUT1ALT	TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1	DBG_SWO #2				
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1	DBG_SWO #3				
31	PD3	ADC0_CH3 OPAMP_N2	TIM0_CC2 #3	US1_CS #1	ETM_TD1 #0/2				
32	PD4	ADC0_CH4 OPAMP_P2		LEU0_TX #0	ETM_TD2 #0/2				
33	PD5	ADC0_CH5 OPAMP_OUT2 #0		LEU0_RX #0	ETM_TD3 #0/2				
34	PD6	ADC0_CH6 OPAMP_P1	TIM1_CC0 #4 LE- TIM0_OUT0 #0 PCNT0_S0IN #3	US1_RX #2 I2C0_SDA #1	LES_ALTEX0 #0 ACMP0_O #2 ETM_TD0 #0				
35	PD7	ADC0_CH7 OPAMP_N1	TIM1_CC1 #4 LE- TIM0_OUT1 #0 PCNT0_S1IN #3	US1_TX #2 I2C0_SCL #1	CMU_CLK0 #2 LES_ALTEX1 #0 ACMP1_O #2 ETM_TCLK #0				
36	PD8	BU_VIN			CMU_CLK1 #1				
37	PC6	ACMP0_CH6		LEU1_TX #0 I2C0_SDA #2	LES_CH6 #0 ETM_TCLK #2				
38	PC7	ACMP0_CH7		LEU1_RX #0 I2C0_SCL #2	LES_CH7 #0 ETM_TD0 #2				
39	VDD_DREG	Power supply for on-chip	voltage regulator.						
40	DECOUPLE	Decouple output for on-ch at this pin.	ip voltage regulator. An e	xternal capacitance of size	C _{DECOUPLE} is required				
41	PE4	LCD_COM0		US0_CS #1					
42	PE5	LCD_COM1		US0_CLK #1					
43	PE6	LCD_COM2		US0_RX #1					
44	PE7	LCD_COM3		US0_TX #1					
45	PC12	ACMP1_CH4 DAC0_OUT1ALT #0/ OPAMP_OUT1ALT			CMU_CLK0 #1 LES_CH12 #0				
46	PC13	ACMP1_CH5 DAC0_OUT1ALT #1/ OPAMP_OUT1ALT	TIM0_CDTI0 #1/3 TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0		LES_CH13 #0				
47	PC14	ACMP1_CH6 DAC0_OUT1ALT #2/ OPAMP_OUT1ALT	TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	US0_CS #3	LES_CH14 #0				
48	PC15	ACMP1_CH7 DAC0_OUT1ALT #3/ OPAMP_OUT1ALT	TIM0_CDTI2 #1/3 TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0 DBG_SWO #1				

5.13.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate			L	OCATIC	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5							Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6							Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7							Analog comparator ACMP0, channel 7.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12							Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH0	PD0							Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1							Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2							Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3							Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
BU_VIN	PD8							Battery input for Backup Power Domain
CMU_CLK0	PA2	PC12	PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8	PE12					Clock Management Unit, clock output number 1.
OPAMP_N0	PC5							Operational Amplifier 0 external negative input.
OPAMP_N1	PD7							Operational Amplifier 1 external negative input.

Table 5.38. Alternate functionality overview

Alternate					ON				
Functionality	0	1	2	3	4	5	6	Description	
LES_ALTEX6	PE12							LESENSE alternate exite output 6.	
LES_ALTEX7	PE13							LESENSE alternate exite output 7.	
LES_CH0	PC0							LESENSE channel 0.	
LES_CH1	PC1							LESENSE channel 1.	
LES_CH2	PC2							LESENSE channel 2.	
LES_CH3	PC3							LESENSE channel 3.	
LES_CH4	PC4							LESENSE channel 4.	
LES_CH5	PC5							LESENSE channel 5.	
LES_CH6	PC6							LESENSE channel 6.	
LES_CH7	PC7							LESENSE channel 7.	
LES_CH8	PC8							LESENSE channel 8.	
LES_CH9	PC9							LESENSE channel 9.	
LES_CH10	PC10							LESENSE channel 10.	
LES_CH11	PC11							LESENSE channel 11.	
LES_CH12	PC12							LESENSE channel 12.	
LES_CH13	PC13							LESENSE channel 13.	
LES_CH14	PC14							LESENSE channel 14.	
LES_CH15	PC15							LESENSE channel 15.	
LETIM0_OUT0	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.	
LETIM0_OUT1	PD7	PB12	PF1	PC5				Low Energy Timer LETIM0, output channel 1.	
LEU0_RX	PD5	PB14	PE15	PF1	PA0			LEUART0 Receive input.	
LEU0_TX	PD4	PB13	PE14	PF0	PF2			LEUART0 Transmit output. Also used as receive in- put in half duplex communication.	
LEU1_RX	PC7	PA6						LEUART1 Receive input.	
LEU1_TX	PC6	PA5						LEUART1 Transmit output. Also used as receive in- put in half duplex communication.	
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) nega- tive pin. Also used as an optional external clock in- put pin.	
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) posi- tive pin.	
PCNT0_S0IN	PC13	PE0	PC0	PD6				Pulse Counter PCNT0 input number 0.	
PCNT0_S1IN	PC14	PE1	PC1	PD7				Pulse Counter PCNT0 input number 1.	
PCNT1_S0IN	PC4	PB3						Pulse Counter PCNT1 input number 0.	
PCNT1_S1IN	PC5	PB4						Pulse Counter PCNT1 input number 1.	
PCNT2_S0IN	PD0	PE8						Pulse Counter PCNT2 input number 0.	
PCNT2_S1IN	PD1	PE9						Pulse Counter PCNT2 input number 1.	
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.	

Alternate	LOCATION				N			
Functionality	0	1	2	3	4	5	6	Description
LCD_SEG4	PE8							LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG5	PE9							LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10							LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11							LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12							LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13							LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14							LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15							LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG12	PA15							LCD segment line 12. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG13	PA0							LCD segment line 13. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG14	PA1							LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2							LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG16	PA3							LCD segment line 16. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG17	PA4							LCD segment line 17. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG18	PA5							LCD segment line 18. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG19	PA6							LCD segment line 19. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG20/ LCD_COM4	PB3							LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 4
LCD_SEG21/ LCD_COM5	PB4							LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 5
LCD_SEG22/ LCD_COM6	PB5							LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 6
LCD_SEG23/ LCD_COM7	PB6							LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 7
LCD_SEG24	PF6							LCD segment line 24. Segments 24, 25, 26 and 27 are controlled by SEGEN6.

QFN6	64 Pin# and Name		Pin Alternate Funct	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	12C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0 ETM_TD0 #3
4	PA3	LCD_SEG16	TIM0_CDTI0 #0		LES_ALTEX2 #0 ETM_TD1 #3
5	PA4	LCD_SEG17	TIM0_CDTI1 #0		LES_ALTEX3 #0 ETM_TD2 #3
6	PA5	LCD_SEG18	TIM0_CDTI2 #0	LEU1_TX #1	LES_ALTEX4 #0 ETM_TD3 #3
7	PA6	LCD_SEG19		LEU1_RX #1	ETM_TCLK #3 GPIO_EM4WU1
8	IOVDD_0	Digital IO power supply 0.			
9	PB3	LCD_SEG20/ LCD_COM4	PCNT1_S0IN #1	US2_TX #1	
10	PB4	LCD_SEG21/ LCD_COM5	PCNT1_S1IN #1	US2_RX #1	
11	PB5	LCD_SEG22/ LCD_COM6		US2_CLK #1	
12	PB6	LCD_SEG23/ LCD_COM7		US2_CS #1	
13	PC4	ACMP0_CH4 OPAMP_P0	TIM0_CDTI2 #4 LE- TIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0 I2C1_SDA #0	LES_CH4 #0
14	PC5	ACMP0_CH5 OPAMP_N0	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0 I2C1_SCL #0	LES_CH5 #0
15	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4 US1_CLK #0	
16	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4 US1_CS #0	
17	PA12	LCD_BCAP_P	TIM2_CC0 #1		
18	PA13	LCD_BCAP_N	TIM2_CC1 #1		
19	PA14	LCD_BEXT	TIM2_CC2 #1		
20	RESETn	Reset input, active low. To low during reset, and let the		source to this pin, it is require that reset is released.	red to only drive this pin
21	PB11	DAC0_OUT0 / OPAMP_OUT0	TIM1_CC2 #3 LE- TIM0_OUT0 #1	I2C1_SDA #1	
22	PB12	DAC0_OUT1 / OPAMP_OUT1	LETIM0_OUT1 #1	I2C1_SCL #1	
23	AVDD_1	Analog power supply 1.			
24	PB13	HFXTAL_P		US0_CLK #4/5 LEU0_TX #1	
25	PB14	HFXTAL_N		US0_CS #4/5 LEU0_RX #1	
26	IOVDD_3	Digital IO power supply 3.			

9.2 LQFP100 PCB Layout

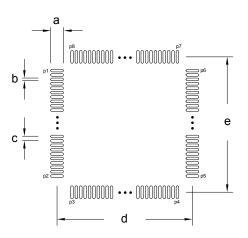


Figure 9.2. LQFP100 PCB Land Pattern

Table 9.2. LQFP100 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	1.45	P1	1	P6	75
b	0.30	P2	25	P7	76
с	0.50	P3	26	P8	100
d	15.40	P4	50		
e	15.40	P5	51		

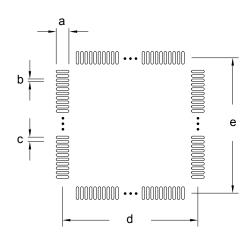


Figure 9.3. LQFP100 PCB Solder Mask

Table 9.3. LQFP100 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.57
b	0.42

10. TQFP64 Package Specifications

10.1 TQFP64 Package Dimensions

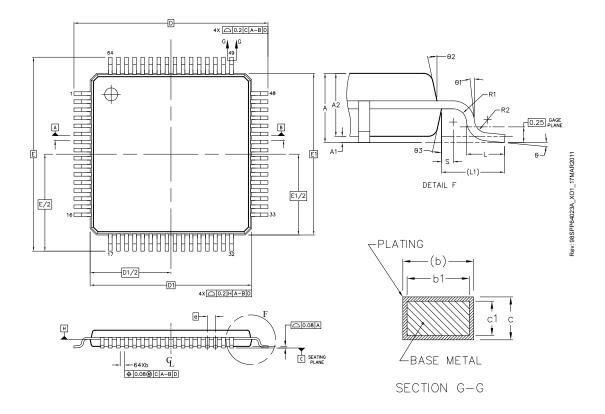


Figure 10.1. TQFP64

Note:

- 1. All dimensions & tolerancing confirm to ASME Y14.5M-1994.
- 2. The top package body size may be smaller than the bottom package body size.
- 3. Datum 'A,B', and 'B' to be determined at datum plane 'H'.
- 4. To be determined at seating place 'C'.
- 5. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25mm per side.'D1' and 'E1' are maximum plastic body size dimension including mold mismatch. Dimension 'D1' and'E1' shall be determined at datum plane 'H'.
- 6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated.
- 7. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause thelead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be locatedon the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm.
- 8. Exact shape of each corner is optional.
- 9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 10. All dimensions are in millimeters.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	МАХ
A	_	1.10	1.20	L1		—	
A1	0.05	—	0.15	R1	0.08	—	—
A2	0.95	1.00	1.05	R2	0.08	—	0.20

Table 10.1. QFP64 (Dimensions in mm)