

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32lg942f64g-e-qfp64

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.23 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.24 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.25 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.

3.1.26 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

3.1.27 Operational Amplifier (OPAMP)

The EFM32LG features up to 3 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors etc.

3.1.28 Low Energy Sensor Interface (LESENSE)

The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

3.1.29 Backup Power Domain

The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC, and a set of retention registers, available in all energy modes. This power domain can be configured to automatically change power source to a backup battery when the main power drains out. The backup power domain enables the EFM32LG to keep track of time and retain data, even if the main power source should drain out.

3.1.30 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

3.1.31 General Purpose Input/Output (GPIO)

In the EFM32LG, there are up to 93 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

Module	Configuration	Pin Connections
AES	Full configuration	NA
GPIO	53 pins	Available pins are shown in 5.2.3 GPIO Pinout Overview

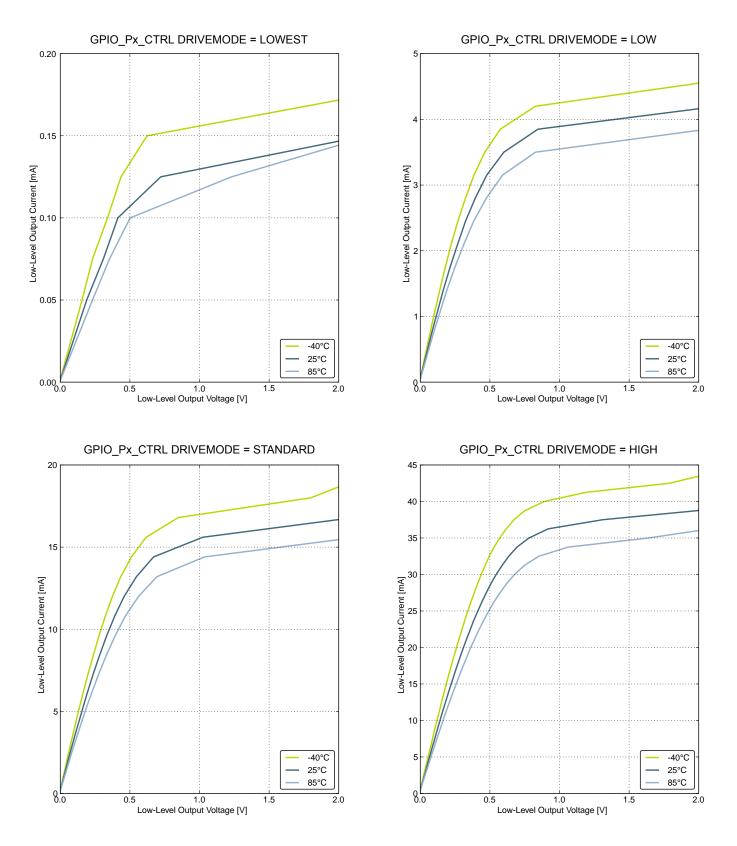


Figure 4.10. Typical Low-Level Output Current, 2V Supply Voltage

Figure 4.33. OPAMP Negative Power Supply Rejection Ratio

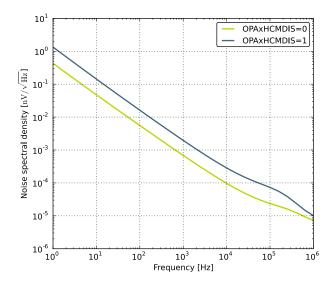


Figure 4.34. OPAMP Voltage Noise Spectral Density(Unity Gain) Vout=1V

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
BU_VIN	PD8							Battery input for Backup Power Domain
CMU_CLK0	PA2	PC12	PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8	PE12					Clock Management Unit, clock output number 1.
OPAMP_N0	PC5							Operational Amplifier 0 external negative input.
OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
OPAMP_N2	PD3							Operational Amplifier 2 external negative input.
DAC0_OUT0 / OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.
DAC0_OUT0ALT OPAMP_OUT0A LT		PC1	PC2	PC3	PD0			Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1 / OPAMP_OUT1	PB12							Digital to Analog Converter DAC0_OUT1 / OPAMP output channel number 1.
DAC0_OUT1ALT OPAMP_OUT1A LT	/ PC12	PC13	PC14	PC15	PD1			Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5	PD0						Operational Amplifier 2 output.
OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0	PF0	PF0				Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1	PF1	PF1				Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15	PD1	PD2				Note that this function is not enabled after reset, and must be enabled by software to be used.
ETM_TCLK	PD7		PC6	PA6				Embedded Trace Module ETM clock .
ETM_TD0	PD6		PC7	PA2				Embedded Trace Module ETM data 0.
ETM_TD1	PD3		PD3	PA3				Embedded Trace Module ETM data 1.
ETM_TD2	PD4		PD4	PA4				Embedded Trace Module ETM data 2.
ETM_TD3	PD5	PF3	PD5	PA5				Embedded Trace Module ETM data 3.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU1	PA6							Pin can be used to wake the system up from EM4

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
TIM2_CC2	PA10		PC10					Timer 2 Capture Compare input / output channel 2.
TIM3_CC0	PE14							Timer 3 Capture Compare input / output channel 0.
TIM3_CC1	PE15							Timer 3 Capture Compare input / output channel 1.
TIM3_CC2	PA15	PE2						Timer 3 Capture Compare input / output channel 2.
U0_RX			PA4	PC15				UART0 Receive input.
U0_TX			PA3	PC14				UART0 Transmit output. Also used as receive input in half duplex communication.
U1_RX	PC13	PF11		PE3				UART1 Receive input.
U1_TX	PC12	PF10		PE2				UART1 Transmit output. Also used as receive input in half duplex communication.
US0_CLK	PE12	PE5	PC9	PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13	PE4	PC8	PC14	PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX	PE11		PC10	PE12	PB8	PC1		USART0 Synchronous mode Master Input / Slave Output (MISO).
	DE 40		DO14	DE 40	007	DOA		USART0 Asynchronous Transmit.Also used as re- ceive input in half duplex communication.
US0_TX	PE10		PC11	PE13	PB7	PC0		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.
								USART1 Asynchronous Receive.
US1_RX	PC1	PD1	PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).
1161 TV	PC0	PD0	PD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PCU	PDU	PDI					USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5						USART2 clock input / output.
US2_CS	PC5	PB6						USART2 chip select input / output.
								USART2 Asynchronous Receive.
US2_RX	PC3	PB4						USART2 Synchronous mode Master Input / Slave Output (MISO).
1162 TV	PC2	PB3						USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
US2_TX								USART2 Synchronous mode Master Output / Slave Input (MOSI).
USB_DM	PF10							USB D- pin.
USB_DMPU	PD2							USB D- Pullup control.
USB_DP	PF11							USB D+ pin.

LQF	P100 Pin# and Name		Pin Altern	ate Functionality / D	escription	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
78	PF2		EBI_ARDY #0/1/2	TIM0_CC2 #5	LEU0_TX #4	ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4
79	USB_VBUS	USB 5.0 V VBUS inp	ut.			
80	PF12				USB_ID	
81	PF5		EBI_REn #0/2	TIM0_CDTI2 #2/5	USB_VBUSEN #0	PRS_CH2 #1
82	IOVDD_5	Digital IO power supp	bly 5.			
83	VSS	Ground.				
84	PF6		EBI_BL0 #0/1/2	TIM0_CC0 #2	U0_TX #0	
85	PF7		EBI_BL1 #0/1/2	TIM0_CC1 #2	U0_RX #0	
86	PF8		EBI_WEn #1	TIM0_CC2 #2		ETM_TCLK #1
87	PF9		EBI_REn #1			ETM_TD0 #1
88	PD9		EBI_CS0 #0/1/2			
89	PD10		EBI_CS1 #0/1/2			
90	PD11		EBI_CS2 #0/1/2			
91	PD12		EBI_CS3 #0/1/2			
92	PE8		EBI_AD00 #0/1/2	PCNT2_S0IN #1		PRS_CH3 #1
93	PE9		EBI_AD01 #0/1/2	PCNT2_S1IN #1		
94	PE10		EBI_AD02 #0/1/2	TIM1_CC0 #1	US0_TX #0	BOOT_TX
95	PE11		EBI_AD03 #0/1/2	TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0 BOOT_RX
96	PE12		EBI_AD04 #0/1/2	TIM1_CC2 #1	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 LES_ALTEX6 #0
97	PE13		EBI_AD05 #0/1/2		US0_TX #3 US0_CS #0 I2C0_SCL #6	LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5
98	PE14		EBI_AD06 #0/1/2	TIM3_CC0 #0	LEU0_TX #2	
99	PE15		EBI_AD07 #0/1/2	TIM3_CC1 #0	LEU0_RX #2	
100	PA15		EBI_AD08 #0/1/2	TIM3_CC2 #0		

BG	A112 Pin# and Name		Pin Alterr	nate Functionality / De	escription						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other					
J6	PA10		EBI_VSNC #0/1/2	TIM2_CC2 #0							
J7	PB9		EBI_A03 #0/1/2		U1_TX #2						
J8	PB10		EBI_A04 #0/1/2		U1_RX #2						
J 9	PD2	ADC0_CH2	EBI_A27 #0/1/2	TIM0_CC1 #3	USB_DMPU #0 US1_CLK #1	DBG_SWO #3					
J10	PD3	ADC0_CH3 OPAMP_N2		TIM0_CC2 #3	US1_CS #1	ETM_TD1 #0/2					
J11	PD4	ADC0_CH4 OPAMP_P2			LEU0_TX #0	ETM_TD2 #0/2					
K1	PB7	LFXTAL_P		TIM1_CC0 #3	US0_TX #4 US1_CLK #0						
K2	PC4	ACMP0_CH4 OPAMP_P0	EBI_A26 #0/1/2	TIM0_CDTI2 #4 LE- TIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0 I2C1_SDA #0	LES_CH4 #0					
K3	PA13		EBI_A01 #0/1/2	TIM2_CC1 #1							
K4	VSS	Ground.									
K5	PA11		EBI_HSNC #0/1/2								
K6	RESETn	Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.									
K7	AVSS_1	Analog ground 1.									
K8	AVDD_2	Analog power supply	2.								
K9	AVDD_1	Analog power supply	1.								
K10	AVSS_0	Analog ground 0.									
К11	PD1	ADC0_CH1 DAC0_OUT1ALT #4/ OPAMP_OUT1ALT		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1	DBG_SWO #2					
L1	PB8	LFXTAL_N		TIM1_CC1 #3	US0_RX #4 US1_CS #0						
L2	PC5	ACMP0_CH5 OPAMP_N0	EBI_NANDWEn #0/1/2	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0 I2C1_SCL #0	LES_CH5 #0					
L3	PA14		EBI_A02 #0/1/2	TIM2_CC2 #1							
L4	IOVDD_1	Digital IO power supp	bly 1.								
L5	PB11	DAC0_OUT0 / OPAMP_OUT0		TIM1_CC2 #3 LE- TIM0_OUT0 #1	I2C1_SDA #1						
L6	PB12	DAC0_OUT1 / OPAMP_OUT1 LETIM0_OUT1 #1 I2C1_SCL #1									
L7	AVSS_2	Analog ground 2.									
L8	PB13	HFXTAL_P			US0_CLK #4/5 LEU0_TX #1						
L9	PB14	HFXTAL_N			US0_CS #4/5 LEU0_RX #1						

Alternate		LOCATION						
Functionality	0	1	2	3	4	5	6	Description
LCD_SEG4	PE8							LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG5	PE9							LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10							LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11							LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12							LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13							LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14							LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15							LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG12	PA15							LCD segment line 12. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG13	PA0							LCD segment line 13. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG14	PA1							LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2							LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG16	PA3							LCD segment line 16. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG17	PA4							LCD segment line 17. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG18	PA5							LCD segment line 18. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG19	PA6							LCD segment line 19. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG20/ LCD_COM4	PB3							LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 4
LCD_SEG21/ LCD_COM5	PB4							LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 5
LCD_SEG22/ LCD_COM6	PB5							LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 6
LCD_SEG23/ LCD_COM7	PB6							LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 7
LCD_SEG24	PF6							LCD segment line 24. Segments 24, 25, 26 and 27 are controlled by SEGEN6.

	Water Pads an	nd Coordina	ites		Pad Alternati	ive Functionality	/ Description	
Pad #	Pad Name	Χ (μm)	Υ (μm)	Analog	EBI	Timers	Communica- tion	Other
114	PD11	-313.8	2065.0	LCD_SEG30	EBI_CS2 #0/1/2			
115	PD12	-426.2	2065.0	LCD_SEG31	EBI_CS3 #0/1/2			
116	PD13	-534.7	2065.0					ETM_TD1 #1
117	PD15	-644.6	2065.0					ETM_TD2 #1
118	PE8	-745.8	2065.0	LCD_SEG4	EBI_AD00 #0/1/2	PCNT2_S0IN #1		PRS_CH3 #1
119	PE9	-867.9	2065.0	LCD_SEG5	EBI_AD01 #0/1/2	PCNT2_S1IN #1		
120	PE10	-976.1	2065.0	LCD_SEG6	EBI_AD02 #0/1/2	TIM1_CC0 #1	US0_TX #0	BOOT_TX
121	PE11	-1085.3	2065.0	LCD_SEG7	EBI_AD03 #0/1/2	TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0 BOOT_RX
122	IOVDD_6	-1196.1	2065.0	Digital IO power	supply 6.			<u> </u>
123	IOVSS_6	-1289.0	2065.0	Digital IO ground	6.			
124	PE12	-1385.4	2065.0	LCD_SEG8	EBI_AD04 #0/1/2	TIM1_CC2 #1	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 LES_ALTEX6 #0
125	PE13	-1518.2	2065.0	LCD_SEG9	EBI_AD05 #0/1/2		US0_TX #3 US0_CS #0 I2C0_SCL #6	LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU 5
126	PE14	-1626.4	2065.0	LCD_SEG10	EBI_AD06 #0/1/2	TIM3_CC0 #0	LEU0_TX #2	
127	PE15	-1729.6	2065.0	LCD_SEG11	EBI_AD07 #0/1/2	TIM3_CC1 #0	LEU0_RX #2	
128	PA15	-1844.0	2065.0	LCD_SEG12	EBI_AD08 #0/1/2	TIM3_CC2 #0		

Alternate	LOCATION							
Functionality	0	1	2	3	4	5	6	Description
LCD_SEG15	PA2							LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG16	PA3							LCD segment line 16. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG17	PA4							LCD segment line 17. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG18	PA5							LCD segment line 18. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG19	PA6							LCD segment line 19. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG20/ LCD_COM4	PB3							LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 4
LCD_SEG21/ LCD_COM5	PB4							LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 5
LCD_SEG22/ LCD_COM6	PB5							LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 6
LCD_SEG23/ LCD_COM7	PB6							LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 7
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX2	PA3							LESENSE alternate exite output 2.
LES_ALTEX3	PA4							LESENSE alternate exite output 3.
LES_ALTEX4	PA5							LESENSE alternate exite output 4.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH4	PC4							LESENSE channel 4.
LES_CH5	PC5							LESENSE channel 5.
LES_CH6	PC6							LESENSE channel 6.
LES_CH7	PC7							LESENSE channel 7.
LETIM0_OUT0	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5				Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15	PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14	PF0	PF2			LEUART0 Transmit output. Also used as receive in- put in half duplex communication.
LEU1_RX	PC7	PA6						LEUART1 Receive input.
LEU1_TX	PC6	PA5						LEUART1 Transmit output. Also used as receive in- put in half duplex communication.

Alternate			l		N					
Functionality	0	1	2	3	4	5	6	Description		
	DE 10	057		DE 12	DDZ			USART0 Asynchronous Transmit.Also used as re- ceive input in half duplex communication.		
US0_TX	PE10	PE7		PE13	PB7			USART0 Synchronous mode Master Output / Slave Input (MOSI).		
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.		
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.		
								USART1 Asynchronous Receive.		
US1_RX		PD1	PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).		
		DD0	PD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.		
031_1X	I_TX PD0		PDI					USART1 Synchronous mode Master Output / Slave Input (MOSI).		
US2_CLK	PC4	PB5						USART2 clock input / output.		
US2_CS	PC5	PB6						USART2 chip select input / output.		
								USART2 Asynchronous Receive.		
US2_RX		PB4						USART2 Synchronous mode Master Input / Slave Output (MISO).		
		2002		PB3						USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
US2_TX		PDJ						USART2 Synchronous mode Master Output / Slave Input (MOSI).		
USB_DM	PF10							USB D- pin.		
USB_DMPU	PD2							USB D- Pullup control.		
USB_DP	PF11							USB D+ pin.		
USB_ID	PF12							USB ID pin. Used in OTG mode.		
USB_VBUS	USB_V BUS							USB 5 V VBUS input.		
USB_VBUSEN	PF5							USB 5 V VBUS enable.		
USB_VREGI	USB_V REGI							USB Input to internal 3.3 V regulator		
USB_VREGO	USB_V REGO							USB Decoupling for internal 3.3 V USB regulator and regulator output		

QFP6	4 Pin# and Name		Pin Alternate Funct	ionality / Description							
Pin #	Pin Name	Analog	Timers	Communication	Other						
53	PF12			USB_ID							
54	PF5	LCD_SEG3	TIM0_CDTI2 #2/5	USB_VBUSEN #0	PRS_CH2 #1						
55	IOVDD_5	Digital IO power supply 5.									
56	VSS	Ground.	Ground.								
57	PE8	LCD_SEG4	PRS_CH3 #1								
58	PE9	LCD_SEG5	PCNT2_S1IN #1								
59	PE10	LCD_SEG6	TIM1_CC0 #1	US0_TX #0	BOOT_TX						
60	PE11	LCD_SEG7	TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0 BOOT_RX						
61	PE12	LCD_SEG8	TIM1_CC2 #1	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 LES_ALTEX6 #0						
62	PE13	LCD_SEG9		US0_TX #3 US0_CS #0 I2C0_SCL #6	LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5						
63	PE14	LCD_SEG10	TIM3_CC0 #0	LEU0_TX #2							
64	PE15	LCD_SEG11	TIM3_CC1 #0	LEU0_RX #2							

Alternate			l		DN			
Functionality	0	1	2	3	4	5	6	Description
DAC0_OUT0ALT OPAMP_OUT0A LT	/				PD0			Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1ALT OPAMP_OUT1A LT	/				PD1			Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5	PD0						Operational Amplifier 2 output.
OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0	PF0	PF0				Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1	PF1	PF1				Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2		PD1	PD2				Note that this function is not enabled after reset, and must be enabled by software to be used.
ETM_TCLK	PD7		PC6					Embedded Trace Module ETM clock .
ETM_TD0	PD6		PC7	PA2				Embedded Trace Module ETM data 0.
ETM_TD1	PD3		PD3	PA3				Embedded Trace Module ETM data 1.
ETM_TD2	PD4		PD4	PA4				Embedded Trace Module ETM data 2.
ETM_TD3	PD5		PD5	PA5				Embedded Trace Module ETM data 3.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7			PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6			PF0	PE12	I2C0 Serial Data input / output.
I2C1_SCL	PC5							I2C1 Serial Clock Line input / output.
I2C1_SDA	PC4	PB11						I2C1 Serial Data input / output.
LCD_BCAP_N	PA13							LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, con- nect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.

5.20.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate			L	OCATIC	N					
Functionality	0	1	2	3	4	5	6	Description		
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.		
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.		
ACMP0_CH2	PC2							Analog comparator ACMP0, channel 2.		
ACMP0_CH3	PC3							Analog comparator ACMP0, channel 3.		
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.		
ACMP0_CH5	PC5							Analog comparator ACMP0, channel 5.		
ACMP0_CH6	PC6							Analog comparator ACMP0, channel 6.		
ACMP0_CH7	PC7							Analog comparator ACMP0, channel 7.		
ACMP0_O	PE13	PE2	PD6					Analog comparator ACMP0, digital output.		
ACMP1_CH0	PC8							Analog comparator ACMP1, channel 0.		
ACMP1_CH1	PC9							Analog comparator ACMP1, channel 1.		
ACMP1_CH2	PC10							Analog comparator ACMP1, channel 2.		
ACMP1_CH3	PC11							Analog comparator ACMP1, channel 3.		
ACMP1_0	PF2	PE3	PD7					Analog comparator ACMP1, digital output.		
ADC0_CH0	PD0							Analog to digital converter ADC0, input channel number 0.		
ADC0_CH1	PD1							Analog to digital converter ADC0, input channel number 1.		
ADC0_CH2	PD2							Analog to digital converter ADC0, input channel number 2.		
ADC0_CH3	PD3							Analog to digital converter ADC0, input channel number 3.		
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.		
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.		
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.		
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.		
BOOT_RX	PE11							Bootloader RX.		
BOOT_TX	PE10							Bootloader TX.		

Table 5.59. Alternate functionality overview

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
USB_DP	PF11							USB D+ pin.
USB_ID	PF12							USB ID pin. Used in OTG mode.
USB_VBUS	USB_V BUS							USB 5 V VBUS input.
USB_VBUSEN	PF5							USB 5 V VBUS enable.
USB_VREGI	USB_V REGI							USB Input to internal 3.3 V regulator
USB_VREGO	USB_V REGO							USB Decoupling for internal 3.3 V USB regulator and regulator output

5.20.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32LG980 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	_	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	_	_	_	_	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	_	_	_	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F		—	—	PF12	PF11	PF10	PF9	PF8	PF7	PF6	PF5			PF2	PF1	PF0

Table 5.60. GPIO Pinout

5.20.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32LG980 is shown in the following figure.

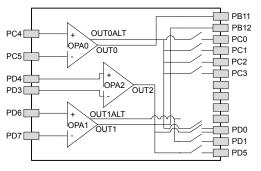


Figure 5.40. Opamp Pinout

7. BGA120 Package Specifications

7.1 BGA120 Package Dimensions

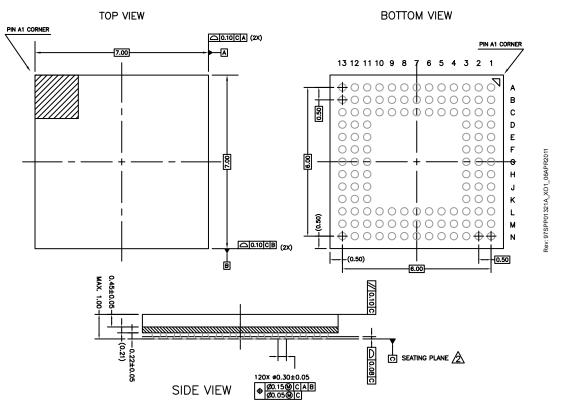


Figure 7.1. BGA120

- 1. The dimensions in parenthesis are reference.
- 2. Datum "C" and seating plane are defined by the crown of the soldier balls.
- 3. All dimensions are in millimeters.

The BGA120 Package uses SAC105 solderballs.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX	
b	0.17	0.22	0.27	S	0.20	—	—	
b1	0.17	0.20	0.23	θ	0°	3.5°	7°	
С	0.09		0.20	θ1	0°	_	_	
C1	0.09		0.16	θ2	11°	12°	13°	
D		12.0 BS	С	θ3	11°	12°	13°	
D1		10.0 BS	С					
е		0.50 BS	С					
E		12.0 BS	С					
E1		10.0 BS	С					
L	0.45	0.60	0.75					

The TQFP64 Package is 10 by 10 mm in size and has a 0.5 mm pin pitch.

The TQFP64 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

11.3 QFN64 Package Marking

In the illustration below package fields and position are shown.

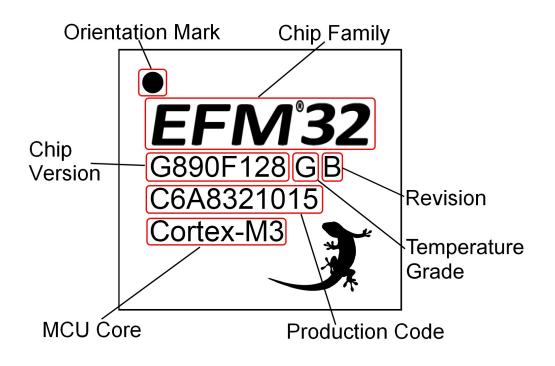


Figure 11.5. Example Chip Marking (Top View)

14.7 Revision 1.10

June 28th, 2013

This revision applies the following devices:

- EFM32LG230
- EFM32LG232
- EFM32LG280
- EFM32LG290
- EFM32LG295
- EFM32LG330
- EFM32LG332
- EFM32LG380
- EFM32LG390
- EFM32LG395
- EFM32LG840
- EFM32LG842
- EFM32LG880
- EFM32LG890
- EFM32LG895
- EFM32LG940
- EFM32LG942
- EFM32LG980
- EFM32LG990
- EFM32LG995

Updated power requirements in the Power Management section.

For BGA packages, updated PCB Land Pattern, PCB Solder Mask and PCB Stencil Design figures.

Removed minimum load capacitance figure and table. Added reference to application note.

Other minor corrections.

This revision applies the following devices:

• EFM32LG900

December 12th, 2014

Added recommendation to use gold bond wire.