

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	94
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 41x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk53dx256clq10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communication interfaces
 - Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability
 - USB full-/low-speed On-the-Go controller with on-chip transceiver
 - Three SPI modules
 - Two I2C modules
 - Six UART modules
 - Secure Digital host controller (SDHC)
 - I2S module

3.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μA

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

3.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.5 Result of exceeding a rating

rempheral operating requirements and behaviors

Board type	Symbol	Description	144 LQFP	144 MAPBGA	Unit	Notes
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	36	29	°C/W	1
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	36	38	°C/W	1
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	30	25	°C/W	1
	R _{θJB}	Thermal resistance, junction to board	24	16	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	9	9	°C/W	3
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	2	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 15. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.6.1.3 16-bit ADC with PGA operating conditions Table 29. 16-bit ADC with PGA operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
V _{REFPGA}	PGA ref voltage		VREF_OU T	VREF_OU T	VREF_OU T	V	2, 3
V _{ADIN}	Input voltage		V _{SSA}	_	V _{DDA}	V	
V _{CM}	Input Common Mode range		V _{SSA}	_	V _{DDA}	V	
R _{PGAD}	Differential input	Gain = 1, 2, 4, 8	_	128	—	kΩ	IN+ to IN- ⁴
	impedance	Gain = 16, 32	—	64	—		
		Gain = 64	—	32	—		
R _{AS}	Analog source resistance		—	100	_	Ω	5
T _S	ADC sampling time		1.25	_		μs	6

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
G	Gain ⁴	PGAG=0	0.95	1	1.05		$R_{AS} < 100\Omega$
		• PGAG=1	1.9	2	2.1		
		• PGAG=2	3.8	4	4.2		
		• PGAG=3	7.6	8	8.4		
		• PGAG=4	15.2	16	16.6		
		• PGAG=5	30.0	31.6	33.2		
		• PGAG=6	58.8	63.3	67.8		
BW	Input signal	16-bit modes	_	_	4	kHz	
	bandwidth	 < 16-bit modes 	_	_	40	kHz	
PSRR	Power supply rejection ratio	Gain=1	_	-84		dB	V _{DDA} = 3V ±100mV, f _{VDDA} = 50Hz, 60Hz
CMRR	Common mode	Gain=1	—	-84	—	dB	V _{CM} =
	rejection ratio	• Gain=64	_	-85	_	dB	500mVpp, f _{VCM} = 50Hz, 100Hz
V _{OFS}	Input offset voltage		-	0.2	—	mV	Output offset = V _{OFS} *(Gain+1)
T _{GSW}	Gain switching settling time		-	_	10	μs	5
dG/dT	Gain drift over full	• Gain=1	—	6	10	ppm/°C	
	temperature range	• Gain=64		31	42	ppm/°C	
dG/dV _{DDA}	Gain drift over	• Gain=1	—	0.07	0.21	%/V	V _{DDA} from 1.71
	supply voltage	• Gain=64	—	0.14	0.31	%/V	to 3.6V
E _{IL}	Input leakage error	All modes		$I_{ln} \times R_{AS}$		mV	l _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
V _{PP,DIFF}	Maximum differential input signal swing		$\left(\frac{\min(v)}{v}\right)$	√ _x ,V _{DDA} −V _x) Gain	<u>-0.2)×4</u>)	V	6
			where V ₂	$x = V_{REFPG}$	_A × 0.583		
SNR	Signal-to-noise	Gain=1	80	90		dB	16-bit
	Tallo	• Gain=64	52	66	_	dB	mode, Average=32
THD	Total harmonic	Gain=1	85	100	—	dB	16-bit
	aistortion	• Gain=64	49	95		dB	differential mode, Average=32, f _{in} =100Hz

Table 30. 16-bit ADC with PGA characteristics (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	 CR0[HYSTCTR] = 01 	—	10	—	mV
	• CR0[HYSTCTR] = 10	_	20	—	mV
	 CR0[HYSTCTR] = 11 	—	30	—	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	—	V
V _{CMPOI}	Output low		_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

Table 31. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

Peripheral operating requirements and behaviors

Figure 18. Typical INL error vs. digital code

Symbol	Description	Min.	Тур.	Max.	Unit
I _{BIAS}	Typical input bias current across the following temp range (0–50°C)	_	±500	_	pА
I _{BIAS}	Typical input bias current across the following temp range (-40–105°C)	_	±4	_	nA
V _{CML}	Input common mode voltage low	0	—	—	V
V _{CMH}	Input common mode voltage high	—	—	VDD	V
R _{IN}	Input resistance	—	500	—	MΩ
C _{IN}	Input capacitance	_	17 ¹	—	pF
X _{IN}	AC input impedance (f _{IN} =100kHz)	—	50	—	MΩ
CMRR	Input common mode rejection ratio	60	—	—	dB
PSRR	Power supply rejection ratio	60	—	—	dB
SR	Slew rate (ΔV_{IN} =500mV), low-power mode	0.1	—	—	V/µs
SR	Slew rate (ΔV_{IN} =500mV), high-speed mode	1.5	4	—	V/µs
GBW	Unity gain bandwidth, low-power mode	0.15	—	—	MHz
GBW	Unity gain bandwidth, high-speed mode	1	—	—	MHz
A _V	DC open-loop voltage gain	80	90	—	dB
CL(max)	Load capacitance driving capability	—	100	—	pF
R _{OUT}	Output resistance @ 100 kHz, high speed mode	—	1500	—	Ω
V _{OUT}	Output voltage range	0.12	_	VDD - 0.12	V
I _{OUT}	Output load current	_	±0.5	—	mA
GM	Gain margin	—	20	—	dB
PM	Phase margin	45	56	—	deg
T _{settle}	Settling time ² (Buffer mode, low-power mode) (To<0.1%, V _{in} =1.65V)	_	5.7	_	μs
T _{settle}	Settling time ² (Buffer mode, high-speed mode) (To<0.1%, V _{in} =1.65V)	_	3.0	—	μs
Vn	Voltage noise density (noise floor) 1kHz	_	350	—	nV/√Hz
Vn	Voltage noise density (noise floor) 10kHz	_	90	—	nV/√Hz

Table 34. Op-amp electrical specifications (continued)

1. The input capacitance is dependant on the package type used.

2. Settling time is measured from the time the Op-amp is enabled until the output settles to within 0.1% of final value. This time includes Op-amp startup time, output slew, and settle time.

6.6.5 Transimpedance amplifier electrical specifications — full range Table 35. TRIAMP full range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{IN}	Input voltage range	-0.1	V _{DDA} -1.4	V	
CL	Output load capacitance	—	100	pf	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{OS}	Input offset voltage	—	±3	±5	mV	
α _{VOS}	Input offset voltage temperature coefficient	—	4.8	—	μV/C	
I _{OS}	Input offset current	—	±300	±600	pА	
I _{BIAS}	Input bias current	—	±300	±600	pА	
R _{OUT}	Output AC impedance	—	—	1500	Ω	@ 100kHz, High speed mode
X _{IN}	AC input impedance (f _{IN} =100kHz)	—	159	—	kΩ	
CMRR	Input common mode rejection ratio	—	70	—	dB	
PSRR	Power supply rejection ratio	—	70	—	dB	
SR	Slew rate (ΔV_{IN} =500mV) — Low-power mode	0.1	—	—	V/µs	
SR	Slew rate (ΔV_{IN} =500mV) — High speed mode	1.5	3.5	—	V/µs	
GBW	Unity gain bandwidth — Low-power mode 50pF	0.15	—	—	MHz	
GBW	Unity gain bandwidth — High speed mode 50pF	1	—	—	MHz	
A _V	DC open-loop voltage gain	80	—	—	dB	
GM	Gain margin	_	20	_	dB	
PM	Phase margin	60	69	—	deg	

Table 38. TRIAMP limited range operating behaviors

6.6.7 Voltage reference electrical specifications

Table 39.	VREF full-range	operating	requirements
-----------	-----------------	-----------	--------------

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	Operating temperature range of the device		°C	
CL	Output load capacitance	100		nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25C	1.1915	1.195	1.1977	V	
V _{out}	Voltage reference output — factory trim	1.1584	—	1.2376	V	
V _{out}	Voltage reference output — user trim	1.193	—	1.197	V	
V _{step}	Voltage reference trim step	—	0.5		mV	

Table 40. VREF full-range operating behaviors

6.8.1.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

Symbol	Description	Min.	Max.	Unit
—	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	—	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5		ns
_	TXCLK frequency	_	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2		ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	—	25	ns

Table 43. MII signal switching specifications

Figure 20. MII transmit signal timing diagram

6.8.1.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Num	Description	Min.	Max.	Unit
—	EXTAL frequency (RMII input clock RMII_CLK)	—	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4		ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2		ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	—	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid		15	ns

 Table 44. RMII signal switching specifications

6.8.2 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.

Num	Description	Min.	Max.	Unit
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	20	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		14	ns

Table 48. Slave mode DSPI timing (limited voltage range) (continued)

Figure 23. DSPI classic SPI timing — slave mode

6.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	12.5	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2

Table 49. Master mode DSPI timing (full voltage range)

rempheral operating requirements and behaviors

Num	Description	Min.	Max.	Unit	Notes
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	—	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-1.2	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	19.1	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0		ns	

 Table 49.
 Master mode DSPI timing (full voltage range) (continued)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 24. DSPI classic SPI timing — master mode

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	_	6.25	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}		ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	24	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	3.2		ns
DS14	DSPI_SCK to DSPI_SIN input hold	7		ns
DS15	DSPI_SS active to DSPI_SOUT driven		19	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		19	ns

Table 55. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	20.5	—	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Figure 30. I2S/SAI timing — master modes

Table 56. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	5.8	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid			ns
	Multiple SAI Synchronous mode	-	24	
	All other modes	_	20.6	
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns

Table continues on the next page ...

K53 Sub-Family Data Sheet, Rev. 3, 6/2013.

Table 56. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S17	I2S_RXD setup before I2S_RX_BCLK	5.8	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 31. I2S/SAI timing — slave modes

6.8.10.3 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 57.I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0		ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns

rempheral operating requirements and behaviors

- 1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
- 2. Fixed external capacitance of 20 pF.
- 3. REFCHRG = 2, EXTCHRG=0.
- 4. REFCHRG = 0, EXTCHRG = 10.
- 5. $V_{DD} = 3.0 V.$
- 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN)

The typical value is calculated with the following configuration:

I_{ext} = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, I_{ref} = 16 μA (REFCHRG = 7), C_{ref} = 1.0 pF

The minimum value is calculated with the following configuration:

I_{ext} = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, I_{ref} = 32 μA (REFCHRG = 15), C_{ref} = 0.5 pF

The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count.

- 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7.
- 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

6.9.2 LCD electrical characteristics

Table 60. LCD electricals

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency	28	30	58	Hz	
C _{LCD}	LCD charge pump capacitance — nominal value	—	100	_	nF	1
C _{BYLCD}	LCD bypass capacitance — nominal value	_	100	_	nF	1
C _{Glass}	LCD glass capacitance	_	2000	8000	pF	2
V _{IREG}	V _{IREG}					3
	 HREFSEL=0, RVTRIM=1111 	_	1.11	_	V	
	 HREFSEL=0, RVTRIM=1000 	_	1.01	_	V	
	HREFSEL=0, RVTRIM=0000	_	0.91	_	V	
	 HREFSEL=1, RVTRIM=1111 HREFSEL=1, RVTRIM=1000 HREFSEL=1, RVTRIM=0000 		1.84 1.69 1.54	_ _ _	V V V	
Δ _{RTRIM}	V _{IREG} TRIM resolution		_	3.0	% V _{IREG}	
_	V _{IREG} ripple • HREFSEL = 0 • HREFSEL = 1			30 50	mV mV	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{VIREG}	V _{IREG} current adder — RVEN = 1	—	1	—	μA	4
I _{RBIAS}	RBIAS current adder		10		uА	
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	1	_	μA	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 					
R _{RBIAS}	RBIAS resistor values					
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 		0.28		MΩ	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 	_	2.98	_	MΩ	
VLL2	VLL2 voltage					
	• HREFSEL = 0	2.0 – 5%	2.0	_	V	
	• HREFSEL = 1	3.3 – 5%	3.3	_	v	
VLL3	VLL3 voltage					
	• HREFSEL = 0	3.0 – 5%	3.0	—	V	
	• HREFSEL = 1	5 – 5%	5	_	V	

Table 60. LCD electricals (continued)

1. The actual value used could vary with tolerance.

2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.

3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} - 0.15 V

4. 2000 pF load LCD, 32 Hz frame frequency

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
144-pin LQFP	98ASS23177W
144-pin MAPBGA	98ASA00222D

144 LQFP	144 Map Bga	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
39	L4	TRI0_DM	TRIO_DM	TRI0_DM								
40	M4	TRI0_DP	TRI0_DP	TRI0_DP								
41	L5	TRI1_DM	TRI1_DM	TRI1_DM								
42	M5	TRI1_DP	TRI1_DP	TRI1_DP								
43	K5	TRI1_OUT/ CMP2_IN5/ ADC1_SE22	TRI1_OUT/ CMP2_IN5/ ADC1_SE22	TRI1_OUT/ CMP2_IN5/ ADC1_SE22								
44	K4	DAC0_OUT/ CMP1_IN3/ ADC0_SE23/ OP0_DP4/ OP1_DP4	DAC0_OUT/ CMP1_IN3/ ADC0_SE23/ OP0_DP4/ OP1_DP4	DAC0_OUT/ CMP1_IN3/ ADC0_SE23/ OP0_DP4/ OP1_DP4								
45	J4	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23/ OP0_DP5/ OP1_DP5	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23/ OP0_DP5/ OP1_DP5	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23/ OP0_DP5/ OP1_DP5								
46	M7	XTAL32	XTAL32	XTAL32								
47	M6	EXTAL32	EXTAL32	EXTAL32								
48	L6	VBAT	VBAT	VBAT								
49	H4	PTE28	DISABLED		PTE28				FB_AD20			
50	J5	PTAO	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSIO_CH1	PTAO	UART0_CTS_ b/ UART0_COL_ b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
51	J6	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UART0_RX	FTM0_CH6				JTAG_TDI	EZP_DI
52	K6	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UART0_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
53	K7	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UARTO_RTS_ b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
54	L7	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
55	M8	PTA5	DISABLED		PTA5	USB_CLKIN	FTM0_CH2	RMII0_RXER/ MII0_RXER	CMP2_OUT	I2S0_TX_ BCLK	JTAG_TRST_ b	
56	E7	VDD	VDD	VDD								
57	G7	VSS	VSS	VSS								
58	J7	PTA6	DISABLED		PTA6		FTM0_CH3		CLKOUT		TRACE_ CLKOUT	
59	J8	PTA7	ADC0_SE10	ADC0_SE10	PTA7		FTM0_CH4		FB_AD18		TRACE_D3	
60	K8	PTA8	ADC0_SE11	ADC0_SE11	PTA8		FTM1_CH0		FB_AD17	FTM1_QD_ PHA	TRACE_D2	
61	L8	PTA9	DISABLED		PTA9		FTM1_CH1	MII0_RXD3	FB_AD16	FTM1_QD_ PHB	TRACE_D1	

rmout

144 LQFP	144 MAP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
134	A3	PTD5	LCD_P45/ ADC0_SE6b	LCD_P45/ ADC0_SE6b	PTD5	SPI0_PCS2	UARTO_CTS_ b/ UARTO_COL_ b	FTM0_CH5		EWM_OUT_b	LCD_P45	
135	A2	PTD6/ LLWU_P15	LCD_P46/ ADC0_SE7b	LCD_P46/ ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UARTO_RX	FTM0_CH6		FTM0_FLT0	LCD_P46	
136	M10	VSS	VSS	VSS								
137	F8	VDD	VDD	VDD								
138	A1	PTD7	LCD_P47	LCD_P47	PTD7	CMT_IRO	UARTO_TX	FTM0_CH7		FTM0_FLT1	LCD_P47	
139	B3	PTD10	DISABLED		PTD10		UART5_RTS_ b		FB_AD9			
140	B2	PTD11	DISABLED		PTD11	SPI2_PCS0	UART5_CTS_ b	SDHC0_ CLKIN	FB_AD8			
141	B1	PTD12	DISABLED		PTD12	SPI2_SCK		SDHC0_D4	FB_AD7			
142	C3	PTD13	DISABLED		PTD13	SPI2_SOUT		SDHC0_D5	FB_AD6			
143	C2	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6	FB_AD5			
144	C1	PTD15	DISABLED		PTD15	SPI2_PCS1		SDHC0_D7	FB_RW_b			

8.2 K53 pinouts

The figure below shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.