

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

2010	
Product Status	Obsolete
Programmable Type	In System Programmable (min 10K program/erase cycles)
Delay Time tpd(1) Max	5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	-
Number of Macrocells	64
Number of Gates	-
Number of I/O	32
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atf1504be-5ax44

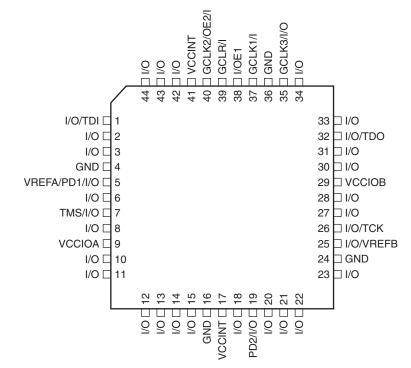
Email: info@E-XFL.COM

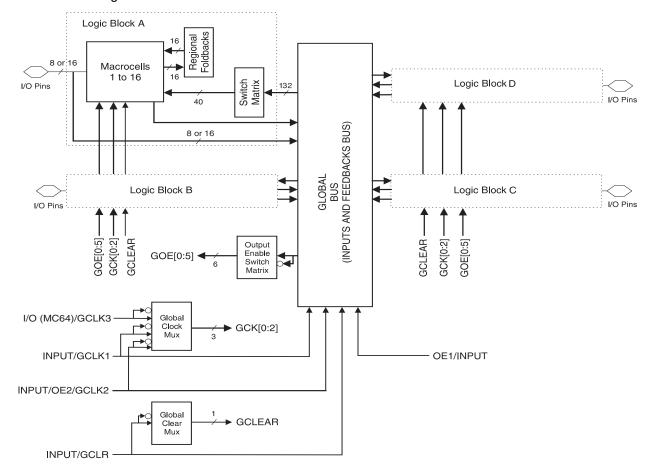
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Enhanced Features

- Improved Connectivity (Additional Feedback Routing, Alternate Input Routing)
- Output Enable Product Terms
- Outputs Can Be Configured for High or Low Drive
- Combinatorial Output with Registered Feedback and Vice Versa within each Macrocell
- Three Global Clock Pins
- Fast Registered Input from Product Term
- Pull-up Option on TMS and TDI JTAG Pins
- OTF (On-the-Fly) Reconfiguration Mode
- DRA (Direct Reconfiguration Access)

1. Description


The ATF1504BE is a high-performance, high-density complex programmable logic device (CPLD) that utilizes Atmel's proven electrically-erasable memory technology. With 64 logic macrocells and up to 68 inputs, it easily integrates logic from several TTL, SSI, MSI, LSI and classic PLDs. The ATF1504BE's enhanced routing switch matrices increase usable gate count and the odds of successful pin-locked design modifications.


The ATF1504BE has up to 64 bi-directional I/O pins and four dedicated input pins. Each dedicated input pin can also serve as a global control signal, register clock, register reset or output enable. Each of these control signals can be selected for use individually within each macrocell. Figures 1-1 and 1-2 show the pin assignments for the 100-lead and 44-lead TQFP packages respectively.

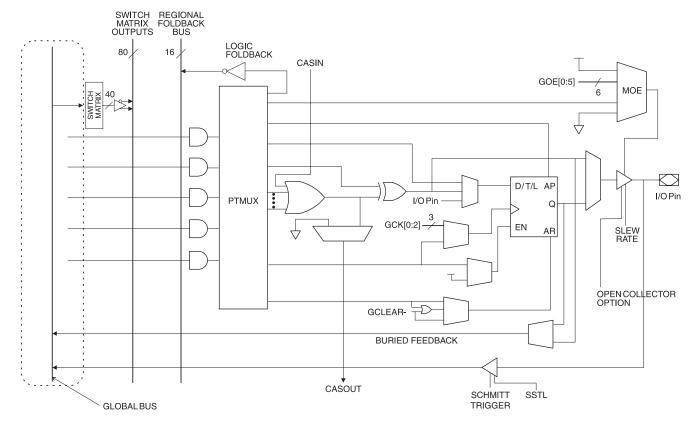
2 **ATF1504BE**

Figure 1-2. 44-lead TQFP Top View

Figure 1-3. Block Diagram

Each of the 64 macrocells generates a buried feedback signal that goes to the global bus (see Figure 1-3). Each input and I/O pin also feeds into the global bus. The switch matrix in each logic block then selects 40 individual signals from the global bus. Each macrocell also generates a foldback logic term that goes to a regional bus. Cascade logic between macrocells in the ATF1504BE allows fast, efficient generation of complex logic functions. The ATF1504BE contains eight such logic chains, each capable of creating sum term logic with a fan-in of up to 40 product terms.

The ATF1504BE macrocell, shown in Figure 1-4, is highly flexible and capable of supporting complex logic functions operating at high speed. The macrocell consists of five sections: product terms and product term select multiplexer, OR/XOR/CASCADE logic, a flip-flop, output select and enable, and logic array inputs.


A security fuse, when programmed, protects the contents of the ATF1504BE. Two bytes (16 bits) of User Electronic Signature are accessible to the user for purposes such as storing project name, part number, revision or date. The User Electronic Signature is accessible regardless of the state of the security fuse.

The ATF1504BE device supports In-System Programming (ISP) via the industry-standard 4-pin JTAG interface (IEEE 1532 standard), and is fully compliant with IEEE 1149.1 for Boundary Scan Test. ISP allows the device to be programmed without removing it from the printed circuit board. In addition to simplifying the manufacturing flow, ISP also allows design modifications to be made in the field via software.

Figure 1-4. ATF1504BE Macrocell

1.1 Product Terms and Select Mux

Each ATF1504BE macrocell has five product terms. Each product term receives as its inputs all signals from the switch matrix and regional bus.

The product term select multiplexer (PTMUX) allocates the five product terms as needed to the macrocell logic gates and control signals. The PTMUX configuration is determined by the design compiler, which selects the optimum macrocell configuration.

1.2 OR/XOR/CASCADE Logic

The ATF1504BE's logic structure is designed to efficiently support all types of logic. Within a single macrocell, all the product terms can be routed to the OR gate, creating a 5-input AND/OR sum term. With the addition of the CASIN from neighboring macrocells, this can be expanded to as many as 40 product terms with minimal additional delay.

The macrocell's XOR gate allows efficient implementation of compare and arithmetic functions. One input to the XOR comes from the OR sum term. The other XOR input can be a product term or a fixed high or low level. For combinatorial outputs, the fixed level input allows polarity selection. For registered functions, the fixed levels allow DeMorgan minimization of product terms.

1.3 Flip-flop

The ATF1504BE's flip-flop has very flexible data and control functions. The data input can come from either the XOR gate, from a separate product term or directly from the I/O pin. Selecting the separate product term allows creation of a buried registered feedback within a combinatorial output macrocell. (This feature is automatically implemented by the fitter software). In addition to D, T, JK and SR operation, the flip-flop can also be configured as a flow-through latch. In this mode, data passes through when the clock is high and is latched when the clock is low.

The clock itself can be any one of the Global CLK signals (GCK[0 : 2]) or an individual product term. The flip-flop changes state on the clock's rising edge. When the GCK signal is used as the clock, one of the macrocell product terms can be selected as a clock enable. When the clock enable function is active and the enable signal (product term) is low, all clock edges are ignored. The flip-flop's asynchronous reset signal (AR) can be either the Global Clear (GCLEAR), a product term, or always off. AR can also be a logic OR of GCLEAR with a product term. The asynchronous preset (AP) can be a product term or always off.

1.4 Extra Feedback

The ATF1504BE macrocell output can be selected as registered or combinatorial. The extra buried feedback signal can be either combinatorial or a registered signal regardless of whether the output is combinatorial or registered. (This enhancement function is automatically implemented by the fitter software.) Feedback of a buried combinatorial output allows the creation of a second latch within a macrocell.

1.5 I/O Control

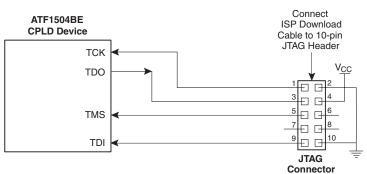
The output enable multiplexer (MOE) controls the output enable signal. Each I/O can be individually configured as an input, output or bi-directional pin. The output enable for each macrocell can be selected from the true or complement of the two output enable pins, a subset of the I/O pins, or a subset of the I/O macrocells. This selection is automatically done by the fitter software when the I/O is configured as an input or bi-directional pin.

1.6 Global Bus/Switch Matrix

The global bus contains all input and I/O pin signals as well as the buried feedback signal from all 64 macrocells. The switch matrix in each logic block receives as its inputs all signals from the global bus. Under software control, up to 40 of these signals can be selected as inputs to the logic block.

1.7 Foldback Bus

Each macrocell also generates a foldback product term. This signal goes to the regional bus and is available to all 16 macrocells within the logic block. The foldback is an inverse polarity of one of the macrocell's product terms. The 16 foldback terms in each logic block allow generation of high fan-in sum terms or other complex logic functions with little additional delay.



5.1 In-System Configuration – ISC (Also Referred to as ISP)

This mode is the de-facto standard used to program the CPLD when it is attached to a PCB. The term ISC can also be used interchangeably with ISP (In-system Programming). ISC or ISP eliminates the need for an external device programmer, and the devices can be soldered to a PCB without being preprogrammed.

In the ISC mode, the logic operation of the ATF1504BE is halted and the embedded configuration memory is programmed. The device is programmed by first erasing the configuration memory in the CPLD and then loading the new configuration data into the memory, which in-turn configures the PLD for functional mode. When the device is in the ISC programming mode, all user I/Os are held in the high impedance state.

The ISC mode is best suited for working with the ATF1504BE device in a design development or production environment. Configuration of the ATF1504BE device done via a Download Cable (see Figure 5-1 on page 11) is the default mode used to program the device in the ISC mode. In this mode, the PC is typically the controlling device that communicates with the CPLD.

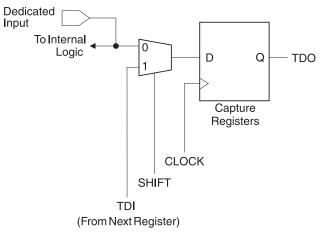
Figure 5-1. Configuration of ATF1504BE Device Using a Download Cable

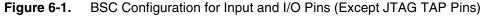
5.2 On-the-Fly Reconfiguration – OTF

In this mode, the CPLD design pattern stored in the internal configuration memory can be modified while the previously-programmed design pattern is operating with minimal disturbance to the programming operation of the new design. The new configuration will take affect after the OTF programming process is completed and the OTF mode is exited.

The configuration data for any design is stored in the internal configuration memory. Once the configuration data is transferred to the internal static registers of the CPLD, the CPLD operates with the design pattern and the configuration memory is free to be re-loaded with a new set of configuration data. The design pattern due to the new configuration content is activated through an initialization cycle that occurs on exiting the OTF mode or after the next power up sequence.

Figure 5-2 shows the electrical interface for configuration of the ATF1504BE device in the OTF mode. The processor is the controlling device that communicates with the CPLD and uses configuration data stored in the external memory to configure the CPLD.

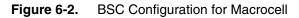

6. JTAG-BST/ISP Overview

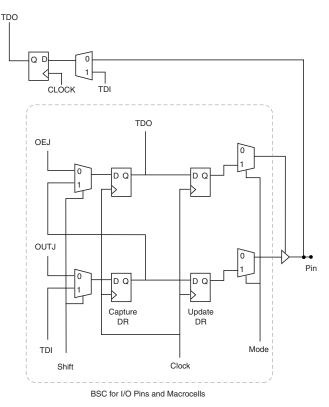

The JTAG boundary-scan testing is controlled by the Test Access Port (TAP) controller in the ATF1504BE. The boundary-scan technique involves the inclusion of a shift-register stage (contained in a boundary-scan cell) adjacent to each component so that signals at component boundaries can be controlled and observed using scan testing methods. Each input pin and I/O pin has its own boundary-scan cell (BSC) to support boundary-scan testing. The TAP controller is automatically reset at power-up. The five JTAG modes supported include: SAMPLE/PRE-LOAD, EXTEST, BYPASS, IDCODE and HIGHZ. The ATF1504BE's BSC can be fully described using a BSDL file as described in IEEE 1149.1 standard. This allows ATF1504BE testing to be described and implemented using any one of the third-party development tools supporting this standard.

The ATF1504BE also has the option of using the four JTAG-standard I/O pins for ISP. The ATF1504BE is programmable through the four JTAG pins using the IEEE standard JTAG programming protocol established by IEEE 1532 standard using 1.8V/2.5V/3.3V LVCMOS level programming signals from the ISP interface for in-system programming. The JTAG feature is a programmable option. If JTAG (BST or ISP) is not needed, then the four JTAG control pins are available as I/O pins.

6.1 JTAG Boundary-scan Cell (BSC) Testing

The ATF1504BE contains 64 I/O pins and four dedicated input pins. Each input pin and I/O pin has its own boundary-scan cell (BSC) in order to support boundary-scan testing as described in detail by IEEE 1532 standard. A typical BSC consists of three capture registers or scan registers and up to two update registers. There are two types of BSCs, one for input or I/O pin, and one for the macrocells. The BSCs in the device are chained together through the capture registers. Input to the capture register chain is fed in from the TDI pin while the output is directed to the TDO pin. Capture registers are used to capture active device data signals, to shift data in and out of the device and to load data into the update registers. Control signals are generated internally by the JTAG TAP controller. The BSC configuration for the input and I/O pins and macrocells is shown below.





Note: The ATF1504BE has a pull-up option on TMS and TDI pins. This feature is selected as a design option.

7. Design Software Support

ATF1504BE designs are supported by several third-party tools. Automated fitters allow logic synthesis using a variety of high-level description languages such as VHDL[®] and Verilog[®]. Third party synthesis and simulation tools from Mentor Graphics[®] are integrated into Atmel's software tools.

8. Electrical Specifications

Table 8-1. Absolute Maximum Ratings*

Operating Temperature40° C to +85° C
Storage Temperature65° C to +150° C
Supply Voltage (V _{CCINT})0.5V to +2.5V
Supply Voltage for Output Drivers (V $_{\rm CCIO}$)0.5V to +4.5V
Junction Temperature55° C to +155° C

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 8-2.Operating Temperature Range

	Commercial	Industrial
Operating Temperature (Ambient)	0° C - 70° C	-40° C - 85° C

Table 8-3.Pin Capacitance⁽¹⁾

	Тур	Мах	Units	Conditions
C _{IN}	8	10	pF	V _{IN} = 0V; f = 1.0 MHz
C _{I/O}	8	10	pF	V _{OUT} = 0V; f = 1.0 MHz

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Table 8-4.DC Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CCINT}	Supply Voltage for internal logic and input buffers		1.7	1.8	1.9	V
V _{CCIO}	Supply Voltage for output drivers at 3.3V		3.0	3.3	3.6	v
V _{CCIO}	Supply Voltage for output drivers at 2.5V		2.3	2.5	2.7	v
V _{CCIO}	Supply Voltage for output drivers at 1.8V		1.7	1.8	1.9	v
V _{CCIO}	Supply Voltage for Output Drivers at 1.5V		1.4	1.5	1.6	v
$I_{CC_INT(HD)}$	Operating Current ⁽¹⁾ for V _{CCINT} (supply voltage)	$V_{CCINT} = 1.8V, V_{CCIO} = 3.3V,$ f = 1 MHz		150		μA
I _{CC_IO(HD)}	Operating Current ⁽¹⁾ for V _{CCIO} (supply voltage for output drivers), per LAB	$V_{CCINT} = 1.8V, V_{CCIO} = 3.3V,$ f = 1 MHz		165		μA
I _{CC_INT(LD)}	Operating Current ⁽¹⁾ for V _{CCINT} (low drive)	$V_{CCINT} = 1.8V, V_{CCIO} = 3.3V,$ f = 1 MHz		145		μA
I _{CC_IO(LD)}	Operating Current ⁽¹⁾ for V _{CCIO} (supply voltage for output drivers), per LAB	$V_{CCINT} = 1.8V, V_{CCIO} = 3.3V,$ f = 1 MHz		60		μA
I _{SB}	Standby Current ⁽¹⁾	$V_{CCINT} = 1.9V, V_{CCIO} = 3.6V$		10		μA
I _{IL} , I _{IH}	Input Leakage	V_{CCINT} = 1.8V, V_{IN} = 0V or V_{CCINT}			±1	μA
I _{OZH} , I _{OH}	Output or IO Leakage	$V_{CCINT} = 1.8V, V_{CCIO} = 3.6V, V_{IN} = 0V \text{ or } V_{CCIO}$			±1	μA
LVCMOS 3.	3V & LVTTL (HD: High Drive, L	D: Low Drive)				
V _{IL}	Input Low-voltage		-0.3		0.8	V
V _{IH}	Input High-voltage		2		3.9	V
		HD: $I_{OL} = 8 \text{ mA}, V_{CCIO} = 3V$			0.4	V
V _{OL}	Output Low-voltage	LD: $I_{OL} = 1$ mA, $V_{CCIO} = 3V$			0.4	V
		HD: I _{OH} = -8 mA, V _{CCIO} = 3V	V _{CCIO} - 0.4			V
V _{OH}	Output High-voltage	LD: I _{OH} = -1 mA, V _{CCIO} = 3V	V _{CCIO} - 0.4			V
LVCMOS 2.	5V					I
V _{IL}	Input Low-voltage		-0.3		0.7	V
V _{IH}	Input High-voltage		1.7		3.9	V
		HD: I _{OL} = 8 mA, V _{CCIO} = 2.3V			0.4	V
V _{OL}	Output Low-voltage	LD: I _{OL} = 1 mA, V _{CCIO} = 2.3V			0.4	V
		HD: $I_{OH} = -8$ mA, $V_{CCIO} = 2.3V$	V _{CCIO} - 0.4			V
V _{OH}	Output High-voltage	LD: $I_{OH} = -1 \text{ mA}, V_{CCIO} = 2.3 \text{ V}$	V _{CCIO} - 0.4			V
LVCMOS 1.	.8V	1	1		1	ı
V _{IL}	Input Low-voltage		-0.3		0.35 x V _{CCIO}	V

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input High-voltage		1.2		3.9	V
M		HD: $I_{OL} = 2 \text{ mA}, V_{CCIO} = 1.7 \text{V}$			0.45	V
V _{OL}	Output Low-voltage	LD: $I_{OL} = 1$ mA, $V_{CCIO} = 1.7V$			0.2	V
M	Output Lliph voltopo	HD: $I_{OH} = -2 \text{ mA}, V_{CCIO} = 1.7 \text{V}$	V _{CCIO} - 0.45			V
V _{OH}	Output High-voltage	LD: $I_{OH} = -1 \text{ mA}, V_{CCIO} = 1.7 \text{V}$	V _{CCIO} - 0.45			V
LVCMOS 1	.5V		•	1	•	
V _{IL}	Input Low-voltage		-0.3		$0.35 ext{ x V}_{\text{CCIO}}$	V
V _{IH}	Input High-voltage		1.2		3.9	V
	Outrast Lawrentham	HD: $I_{OL} = 2 \text{ mA}, V_{CCIO} = 1.4 \text{V}$			0.45	V
V _{OL}	Output Low-voltage	LD: $I_{OL} = 1 \text{ mA}, V_{CCIO} = 1.4 \text{V}$			0.2	V
V _{OH}	Output Lligh voltage	HD: $I_{OH} = -2 \text{ mA}, V_{CCIO} = 1.4 \text{V}$	V _{CCIO} - 0.45			V
	Output High-voltage	LD: I _{OH} = -1 mA, V _{CCIO} = 1.4V	V _{CCIO} - 0.45			V

Table 8-4. DC Characteristics (Continued)

Note: 1. 16-bit up/down counter used in each LAB.

Table 8-5. Schmitt Trigger Input Threshold Voltage

	V _{THL}		V _{TLH}	
V _{CCINT}	Min	Мах	Min	Мах
1.70	0.68	0.73	1.05	1.08
1.95	0.81	0.88	1.18	1.22

Table 8-6. SSTL2-1 DC Voltage Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CCIO}	Input Source Voltage		2.3	2.5	2.7	V
V _{REF} ⁽¹⁾	Input Reference Voltage		1.15	1.25	1.35	V
V _{TT} ⁽²⁾	Termination Voltage		V _{REF} - 0.05	1.25	V _{REF} + 0.04	V
V _{IH}	Input High Voltage		V _{REF} + 0.45		3.9	V
V _{IL}	Input Low Voltage		-0.3		V _{REF} - 0.6	V
V _{OH}	Output High Voltage	I _{OH} = -8 mA, V _{CCIO} = 2.3V	V _{CCIO} - 0.6			V
V _{OL}	Output Low Voltage	$I_{OL} = 8 \text{ mA}, V_{CCIO} = 2.3 \text{ V}$			0.54	V
V _{IH(DC)}	Input High Voltage		V _{REF} + 0.15		$V_{CCIO} + 0.3$	V
V _{IL(DC)}	Input Low Voltage		-0.3		V _{REF} - 0.15	V

Notes: 1. Peak-to-peak noise on V_{REF} may not exceed ±2% V_{REF} V_{REF} should track the variations in V_{CCIO} .

2. V_{TT} of transmitting device must track V_{REF} of receiving devices.

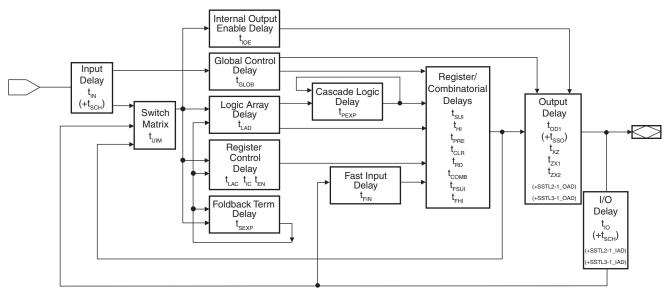
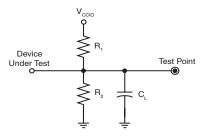

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CCIO}	Input Source Voltage		3.0	3.3	3.6	V
V _{REF} ⁽¹⁾	Input Reference Voltage		1.3	1.5	1.7	V
V _{TT} ⁽²⁾	Termination Voltage		V _{REF} - 0.05	1.5	V _{REF} + 0.05	V
V _{IH}	Input High Voltage		V _{REF} + 0.4		$V_{CCIO} + 0.3$	V
V _{IL}	Input Low Voltage		-0.3		V _{REF} - 0.6	V
V _{OH}	Output High Voltage	$I_{OH} = -8 \text{ mA}, V_{CCIO} = 3V$	V _{CCIO} - 1.1			V
V _{OL}	Output Low Voltage	$I_{OL} = 8 \text{ mA}, V_{CCIO} = 2.3 \text{V}$			0.7	V
V _{IH(DC)}	Input High Voltage		V _{REF} + 0.18		$V_{CCIO} + 0.3$	V
V _{IL(DC)}	Input Low Voltage		-0.3		V _{REF} - 0.18	V

Table 8-7. SSTL3-1 DC Voltage Specifications


Notes: 1. Peak-to-peak noise on V_{REF} may not exceed ±2% V_{REF} V_{REF} should track the variations in V_{CCIO} .

2. V_{TT} of transmitting device must track V_{REF} of receiving devices.

9. Timing Model

10. Output AC Test Loads

	R1	R2	CL
LVTTL	350 Ohm	350 Ohm	35 pF
LVCMOS33	300 Ohm	300 Ohm	35 pF
LVCMOS25	200 Ohm	200 Ohm	35 pF
LVCMOS18	150 Ohm	150 Ohm	35 pF

Note: C_L includes test fixtures and probe capacitance.

11. AC Characteristics

Table 11-1. AC Characteristics ⁽¹⁾

			-{	5	-7	7	
Symbol	Parameter	=	Min	Max	Min	Max	Units
t _{PD1_INP}	Delay for Single Input to Non-registered Outp	ut		5.0		6	ns
t _{PD1}	Input or Feedback to Non-registered Output			7		7.5	ns
t _{PD2}	Input or Feedback to Non-registered Feedbac	xk		4.2		4.7	ns
t _{su}	Global Clock Setup Time		2.2		2.8		ns
t _H	Global Clock Hold Time		0		0		ns
t _{FSU}	Global Clock Setup Time of Fast Input		1		2		ns
t _{FH}	Global Clock Hold Time of Fast Input		0.5		0.75		ns
t _{COP}	Global Clock to Output Delay			6		6.9	ns
t _{CH}	Global Clock High Time		1.25		2		ns
t _{CL}	Global Clock Low Time		1.25		2		ns
t _{ASU}	Array Clock Setup Time		1.7		2.2		ns
t _{AH}	Array Clock Hold Time		0.50		0.60		ns
t _{ACOP}	Array Clock to Output Delay			6.5		7.5	ns
t _{ACH}	Array Clock High Time		1.75		2.5		ns
t _{ACL}	Array Clock Low Time		1.75		2.5		ns
t _{CNT}	Minimum Global Clock Period			3		4.75	ns
f _{CNT}	Maximum Internal Global Clock Frequency		333		210		MHz
t _{ACNT}	Minimum Array Clock Period			4		5.5	ns
f _{ACNT}	Maximum Internal Array Clock Frequency		250		181		MHz
f _{MAX_EXT_SYNC}	Maximum External Frequency V _C	_{CCIO} = 3.3V		122		103	MHz
f _{MAX_EXT_ASYNC}	Maximum External Frequency V _C	_{CCIO} = 3.3V		122		103	MHz
t _{IN}	Input Pad and Buffer Delay		0.7			0.9	ns
t _{IO}	I/O Input Pad and Buffer Delay		0.7			0.9	ns
t _{FIN}	Fast Input Delay			1		1	ns
t _{SEXP}	Foldback Term Delay			2		3	ns
t _{PEXP}	Cascade Logic Delay			0.5		1.0	ns
t _{LAD}	Logic Array Delay			1.8		1.8	ns
t _{LAC}	Logic Control Delay			1.5		2	ns
t _{IOE}	Internal Output Enable Delay			2		2	ns
	Vc	_{CCIO} = 1.5V		4.5		4.5	
t _{OD1}		$c_{\rm CIO} = 1.8V$		4.0		4.0	ns
		$c_{CIO} = 2.5V$		3.5 2.8		3.5 2.8	-
	V _C	_{CCIO} = 3.3V		2.0		∠.ō	

13. ATF1504BE Dedicated Pinouts

 Table 13-1.
 ATF1504BE Dedicated Pinouts

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dedicated Pin		44-lead TQFP	100-lead TQFP				
INPUT / OE1 38 88 INPUT / GCLK1 37 87 I/O / GCLK3 35 85 I/O / PD1 / V _{REFA} 5 12 I/O / PD2 19 42 I/O / V _{REFB} 25 60 I/O / VAREFB 25 60 I/O / TAG) 1 4 I/O / TAG 7 15 I/O / TAG 32 73 GND 4, 16, 24, 36 11, 26, 38, 43, 59, 74, 86, 95 V_CINT 17, 41 39, 91 V_CCIOB 29 51, 66, 82 N/C - 1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78 # of Signal Pins 36 68 # User I/O Pins 32 64 OE (1, 2) Global OE pins GCLK GCLR Global Clear pin GCLK (1, 2, 3) Global Clear pin GCLK (1, 2, 3) Global Cleck pins PD (1, 2) Power-down pins TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming	INPUT / OE2 / GCLK2		40	90				
INPUT / GCLK1 37 87 I/O / GCLK3 35 85 I/O / PD1 / V _{REFA} 5 12 I/O / PD2 19 42 I/O / V _{REFB} 25 60 I/O / TDI (JTAG) 1 4 I/O / TDI (JTAG) 1 4 I/O / TOK (JTAG) 26 62 I/O / TOK (JTAG) 32 73 GND 4, 16, 24, 36 11, 26, 38, 43, 59, 74, 86, 95 V_CCIOA 9 3, 18, 34 V_CCIOB 29 51, 66, 82 N/C - 1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 77, 77, 77, 77, 77, 77, 77, 77	INPUT / GCLR		39	89				
I/O / GCLK3 35 85 I/O / PD1 / V _{REFA} 5 12 I/O / PD2 19 42 I/O / PD2 19 42 I/O / V _{REFB} 25 60 I/O / TDI (JTAG) 1 4 I/O / TMS (JTAG) 7 15 I/O / TOK (JTAG) 26 62 I/O / TOD (JTAG) 32 73 GND 4, 16, 24, 36 11, 26, 38, 43, 59, 74, 86, 95 V _{CCINT} 17, 41 39, 91 V _{CCIOA} 9 3, 18, 34 V _{CCIOB} 29 51, 66, 82 N/C - 1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78 # of Signal Pins 36 68 # User I/O Pins 32 64 OE (1, 2) Global OE pins GCLR Global Clear pin GCLK (1, 2, 3) Global Clear pin GCLK (1, 2, 3) Global Clock pins PD (1, 2) Power-down pins TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming	INPUT / OE1		38	88				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	INPUT / GCLK1		37	87				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I/O / GCLK3		35	85				
I/O / V _{REFB} 25 60 I/O / TDI (JTAG) 1 4 I/O / TDI (JTAG) 7 15 I/O / TCK (JTAG) 26 62 I/O / TDO (JTAG) 32 73 GND 4, 16, 24, 36 11, 26, 38, 43, 59, 74, 86, 95 V _{CCINT} 17, 41 39, 91 V _{CCIOA} 9 3, 18, 34 V _{CCIOB} 29 51, 66, 82 N/C - 1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78 # of Signal Pins 36 68 # User I/O Pins 32 64 OE (1, 2) Global OE pins GCLR GLR Global Clear pin GCLK (1, 2, 3) GLR Global Clock pins PD (1, 2) Power-down pins TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming GND Ground pins V _{CC OP} pins for the device (+1.8V) V _{CCIOA} LAB A and B – V _{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V _{CCIOA} LAB C and D – V _{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V)	I/O / PD1 / V _{REFA}		5	12				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I/O / PD2		19	42				
I/O / TMS (JTAG) 7 15 I/O / TCK (JTAG) 26 62 I/O / TCK (JTAG) 32 73 GND 4, 16, 24, 36 11, 26, 38, 43, 59, 74, 86, 95 V_{CCINT} 17, 41 39, 91 V_{CCIOA} 9 3, 18, 34 V_{CCIOB} 29 51, 66, 82 N/C - 1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78 # of Signal Pins 36 68 # User I/O Pins 32 64 OE (1, 2) Global OE pins GCLR GLR Global Clear pin GCLR GCLR Global Clock pins PD (1, 2) Power-down pins TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming GND Ground pins V _{CC} pins for the device (+1.8V) V _{CCIOA} LAB A and B – V _{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V _{CCIOB} LAB C and D – V _{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V _{REFA} Reference voltage pin for SSTL inputs in banks A and B	I/O / V _{REFB}		25	60				
VO / TCK (JTAG) 26 62 VO / TDO (JTAG) 32 73 GND 4, 16, 24, 36 11, 26, 38, 43, 59, 74, 86, 95 V_{CCINT} 17, 41 39, 91 V_{CCIOA} 9 3, 18, 34 V_{CCIOB} 29 51, 66, 82 N/C - 1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78 # of Signal Pins 36 68 # User I/O Pins 32 64 OE (1, 2) Global OE pins GCLR GCLR Global Clear pin GCLK (1, 2, 3) GDJ JTAG pins used for boundary-scan testing or in-system programming GND GND Ground pins V _{CC DA} V _{CCINT} V _{CC C pins for the device (+1.8V) V_{CCINT} V_{CC pins for the device (+1.8V) V_{CCIOA} LAB A and B – V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D – V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B}}	I/O / TDI (JTAG)		1	4				
I/O / TDO (JTAG) 32 73 GND 4, 16, 24, 36 11, 26, 38, 43, 59, 74, 86, 95 V_{CCINT} 17, 41 39, 91 V_{CCIOA} 9 3, 18, 34 V_{CCIOB} 29 51, 66, 82 N/C - 1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78 # of Signal Pins 36 68 # User I/O Pins 32 64 OE (1, 2) Global OE pins GCLR GCLR Global Clear pin GCLK (1, 2, 3) GCLR Global Clock pins PD (1, 2) PO (1, 2) Power-down pins TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming GND Ground pins V _{CCIOA} LAB A and B - V _{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V _{CCIOA} LAB C and D - V _{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V _{REFA} Reference voltage pin for SSTL inputs in banks A and B	I/O / TMS (JTAG)		7	15				
GND 4, 16, 24, 36 11, 26, 38, 43, 59, 74, 86, 95 V_{CCINT} 17, 41 39, 91 V_{CCIOA} 9 3, 18, 34 V_{CCIOB} 29 51, 66, 82 N/C - 1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78 # of Signal Pins 36 68 # User I/O Pins 32 64 OE (1, 2) Global OE pins GCLR GOLK (1, 2, 3) Global Clear pin GCLK (1, 2, 3) PD (1, 2) Power-down pins TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming GND Ground pins V _{CCINT} V _{CC} pins for the device (+1.8V) V V _{CCIOA} LAB A and B - V _{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V _{CCIOB} LAB C and D - V _{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V _{REFA} Reference voltage pin for SSTL inputs in banks A and B	I/O / TCK (JTAG)		26	62				
V_{CCINT} 17, 4139, 91 V_{CCIOA} 93, 18, 34 V_{CCIOB} 2951, 66, 82N/C-1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78# of Signal Pins3668# User I/O Pins3264OE (1, 2)Global OE pins Global Clear pin GCLK (1, 2, 3)Global Clear pin Global Clock pinsPD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	I/O / TDO (JTAG)		32	73				
V_{CCIOA93, 18, 34 V_{CCIOB} 2951, 66, 82N/C-1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78# of Signal Pins3668# User I/O Pins3264OE (1, 2)Global OE pinsGCLRGlobal Clear pinGCLK (1, 2, 3)Global Clock pinsPD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	GND		4, 16, 24, 36	11, 26, 38, 43, 59, 74, 86, 95				
Vacion2951, 66, 82N/C-1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78# of Signal Pins3668# User I/O Pins3264OE (1, 2)Global OE pinsGCLRGlobal Clear pinGCLK (1, 2, 3)Global Clock pinsPD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	V _{CCINT}		17, 41	39, 91				
N/C-1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78# of Signal Pins3668# User I/O Pins3264OE (1, 2)Global OE pinsGCLRGlobal Clear pinGCLK (1, 2, 3)Global Clock pinsPD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	V _{CCIOA}		9	3, 18, 34				
N/C50, 53, 55, 70, 72, 77, 78# of Signal Pins36# User I/O Pins32Global OE pinsGCLRGlobal Clear pinGCLK (1, 2, 3)Global Clock pinsPD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	V _{CCIOB}		29	51, 66, 82				
# User I/O Pins3264OE (1, 2)Global OE pinsGCLRGlobal Clear pinGCLK (1, 2, 3)Global Clock pinsPD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	N/C		-					
OE (1, 2)Global OE pinsGCLRGlobal Clear pinGCLK (1, 2, 3)Global Clock pinsPD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	# of Signal Pins		36	68				
GCLRGlobal Clear pinGCLK (1, 2, 3)Global Clock pinsPD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	# User I/O Pins		32	64				
GCLK (1, 2, 3)Global Clock pinsPD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	OE (1, 2)	Global	OE pins					
PD (1, 2)Power-down pinsTDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	GCLR	Global	Clear pin					
TDI, TMS, TCK, TDOJTAG pins used for boundary-scan testing or in-system programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	GCLK (1, 2, 3)	Global	Clock pins					
programmingGNDGround pins V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	PD (1, 2)	Power-	down pins					
V_{CCINT} V_{CC} pins for the device (+1.8V) V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	TDI, TMS, TCK, TDO			scan testing or in-system				
V_{CCIOA} LAB A and B - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	GND	Ground	l pins					
3.3V) V_{CCIOB} LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or 3.3V) V_{REFA} Reference voltage pin for SSTL inputs in banks A and B	V _{CCINT}	V _{CC} pin	ins for the device (+1.8V)					
3.3V)VREFAReference voltage pin for SSTL inputs in banks A and B	V _{CCIOA}							
	V _{CCIOB}		··· · · · · · · · · · · · · · · · · ·					
V _{REFB} Reference voltage pin for SSTL inputs in banks C and D	V _{REFA}	Referen	nce voltage pin for SSTL inpu	ts in banks A and B				
	V _{REFB}	Refere	nce voltage pin for SSTL inpu	ts in banks C and D				

Table 13-2.	ATF1504BE I/O Pinouts
-------------	-----------------------

мс	Logic Block	44-lead TQFP	100-lead TQFP	МС	Logic Block	44-lead TQFP	100-lead TQFP
1	А	6	14	33	С	18	40
2	А	-	13	34	С	-	41
3/ PD1/ VREFA	A	5	12	35/ PD2	С	19	42
4	А	3	10	36	С	20	44
5	А	2	9	37	С	21	45
6	А	-	8	38	С	-	46
7	А	-	6	39	С	-	47
8/ TDI	А	1	4	40	С	22	48
9	А	-	100	41	С	23	52
10	А	-	99	42	С	-	54
11	А	44	98	43	С	-	56
12	А	-	97	44	С	-	57
13	А	-	96	45	С	-	58
14	А	43	94	46/ VREFB	С	25	60
15	А	-	93	47	С	-	61
16	А	42	92	48/ TCK	С	26	62
17	В	15	37	49	D	27	63
18	В	-	36	50	D	-	64
19	В	14	35	51	D	28	65
20	В	13	33	52	D	30	67
21	В	12	32	53	D	31	68
22	В	-	31	54	D	-	69
23	В	-	30	55	D	-	71
24	В	11	29	56/ TDO	D	32	73
25	В	10	25	57	D	33	75
26	В	-	23	58	D	-	76
27	В	-	21	59	D	-	79
28	В	-	20	60	D	-	80
29	В	-	19	61	D	-	81
30	В	8	17	62	D	34	83
31	В	-	16	63	D	-	84
32/ TMS	В	7	15	64/ GCLK3	D	35	85

icc_int_vccio_3.3V icc_io_vccio_1.8V

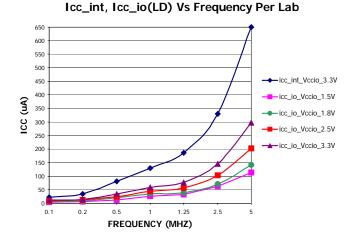
icc_io_vccio_2.5V

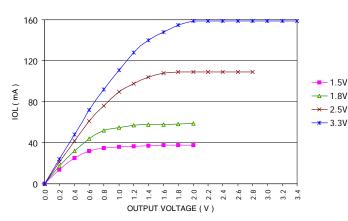
* icc_io_vccio_3.3v

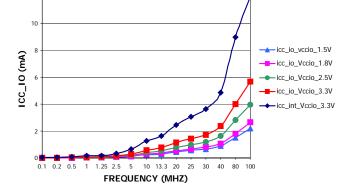
icc_io_vccio_1.5V

-×

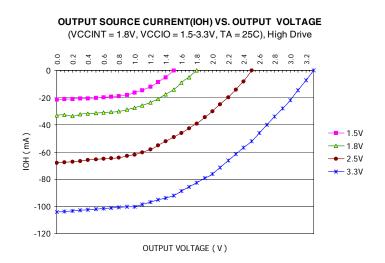
14. Typical DC and AC Characteristic Graphs


Icc_int,Icc_io @Vccint=1.8V (HD) over frequency


FREQUENCY (MHZ)


12

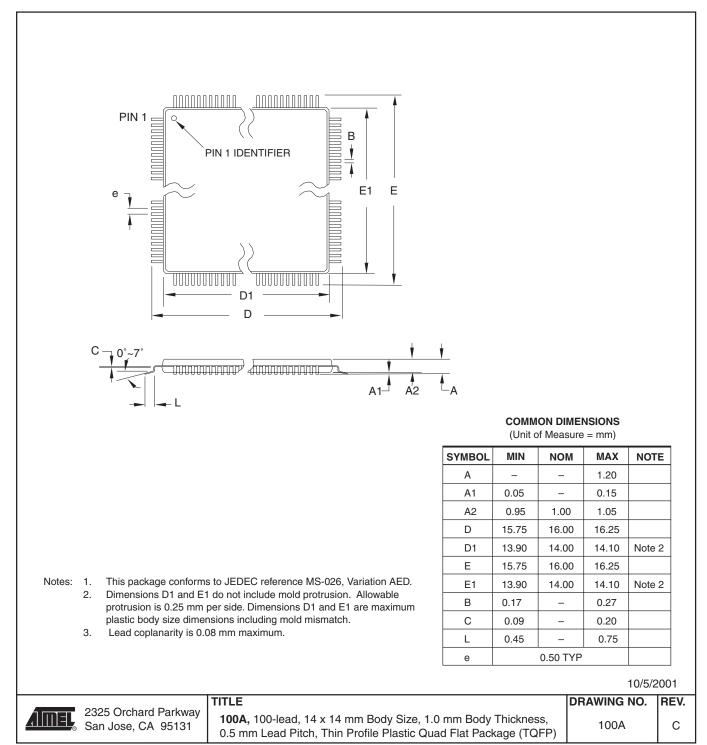
0.1 0.2 0.5 1 1 25 2.5 5



Icc_Int, Icc_io @ Vccint = 1.8V (HD) over frequency

15. Ordering Information

15.1 Lead-free Package Options (RoHS Compliant)


t _{PD} (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
5	6	ATF1504BE-5AX100	100A	Commercial (0° C to +70° C)
7	6.5	ATF1504BE-7AU100	100A	Industrial (-40° C to +85° C)
5	6	ATF1504BE-5AX44	44A	Commercial (0° C to +70° C)
7	6.5	ATF1504BE-7AU44	44A	Industrial (-40° C to +85° C)

	Package Type
44 A	44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)
100A	100-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)

ATF1504BE

16.2 100A - TQFP

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support pld@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or varranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Mentor Graphics[®] is the registered trademark of Mentor Graphics Corporation. Verilog[®] is the registered trademarks of Cadence Design Systems, Inc. VHDL[®] is the trademark of Synopsys, Inc. Other terms and product names may be trademarks of others.