

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CSIO, EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2c18h0agv2000a

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

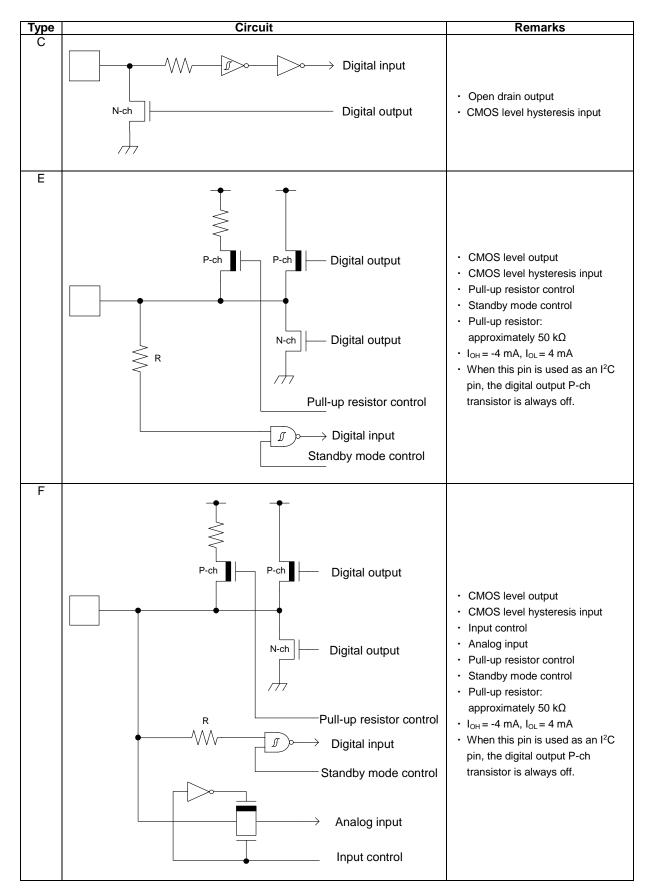
Product Name	S6E2C18H0A S6E2C19H0A S6E2C1AH0A	S6E2C18J0A S6E2C19J0A S6E2C1AJ0A	S6E2C18L0A S6E2C19L0A S6E2C1AL0A			
Debug function		SWJ-DP/ETM/HTM				
Unique ID		Yes				

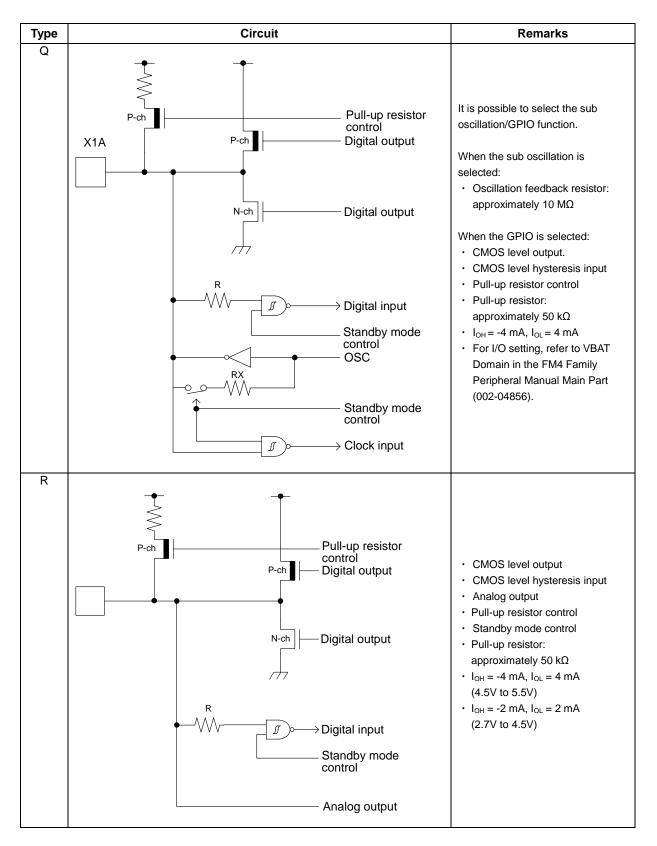
Notes:

- All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
 It is necessary to use the port relocate function of the I/O port according to your function use.
- See 12.4.3 Built-In CR Oscillation Characteristics for the accuracy of the built-in CR.

	Pin N	umber		Dia Nama	I/O	Pin State
LQQ216	LQP176	LQS144	LBE192	Pin Name	Circuit Type	Туре
106	86	70	P12	PE2	- A	Α
100				X0 PE3		
107	87	71	P13	X1	A	В
108	88	72	N14	VSS	-	-
109	89	73	M14	VCC	-	-
110	90	74	M13	AVCC	-	-
111	91	75	M12	AVSS	-	-
112	92	76	L13	AVRL	-	-
113	93	77	L12	AVRH	-	-
				P10		
				AN00		
114	94	78	L11	SIN10_0	– F	М
				TIOA0_2 AIN0_2	_	
				INT08_0	_	
				P11		
				AN01	_	
115	95	79	K13	SOT10_0	F	L
115	30	15	IX15	(SDA10_0)		L .
				TIOB0_2	_	
				BIN0_2 P12		
				AN02	_	
44.0			1/10	SCK10_0		
116	96	80	K12	(SCL10_0)	F	L
				TIOA1_2		
				ZIN0_2		
				P13 AN03	_	
117	97	81	K14		F	М
				SIN6_1		
				INT25_1		
				P14 AN04	_	
118	98	82	K11		F	L
				SOT6_1 (SDA6_1)		_
				PB8		
				ADTG_6	-	
119	-	-	-	SCS63_1	E	0
				INT08_2		
				TRACED8		
				PB9	4	
120				SIN9_1 AIN2_2	E	0
120	-	-	-	INT09_2		
				TRACED9	1	
				PBA		
				SOT9_1	_	_
121	-	- - -		(SDA9_1)	E	Ν
				BIN2_2		
				TRACED10		

	Pin N	umber		D' No de	.i/O	Pin State	
LQQ216	LQP176	LQS144	LBE192	Pin Name	Circuit Type	Туре	
				P1F			
				AN15			
143	117	93	G9	RTS5_0	- F	М	
140		30	03	TIOB8_1	- '	IVI	
				INT27_1			
				MAD11_0			
				P2A			
144	118	94	F10	AN24	– F	L	
				CTS5_0	_		
				MAD12_0			
				P29	_		
				AN25			
145	119	95	F11	SCK5_0	F	L	
				(SCL5_0)			
				MAD13_0			
				P28			
4.40	100	00	540	AN26			
146	120	96	F12	SOT5_0	F	L	
				(SDA5_0)	_		
				MAD14_0			
				P27	_		
4 4 7	101	07	E 40	AN27		N.4	
147	121	97	F13	SIN5_0	F	М	
				INT24_0	_		
				MAD15_0			
148	-	-	-	PBC	E	Ν	
				TRACED12			
				PBD			
				SCK0_1			
				(SCL0_1)			
149	-	-	-		E	0	
				AIN3_2		_	
				INT10_2	_		
				TRACED13			
				PBE			
450				SOT0_1	-	N	
150	-	-	-	(SDA0_1)	E	N	
				BIN3_2	_		
				TRACED14 PBF			
					_		
454				SIN0_1			
151	-	-	-	ZIN3_2	E	0	
				INT11_2	_		
	<u> </u>			TRACED15	+	+	
150	100	00	E10	P26			
152	122	98	E10		E	I	
				MAD16_0			
				P25	-		
152	100	00	E11	AN28	F	N.A	
153	123	123 99 E11			┥ 「	М	
				INT25_0	-		
				MAD17_0			


				Pin N	umber	
Module	Pin Name	Function	LQQ 216	LQP 176	LQS 144	LBE 192
	MADATA00_0		2	2	2	B2
	MADATA01_0		3	3	3	C2
	MADATA02_0		4	4	4	C3
	MADATA03_0		5	5	5	D5
	MADATA04_0		6	6	6	D2
	MADATA05_0		7	7	7	D1
	MADATA06_0		8	8	8	D3
	MADATA07_0		9	9	9	D4
	MADATA08_0		14	13	10	E5
	MADATA09_0		15	14	11	F1
	MADATA10_0		16	15	12	F2
	MADATA11_0		17	16	13	F3
	MADATA12_0	•	18	17	14	F4
	MADATA13_0	-	23	18	15	F5
	 MADATA14_0		24	19	16	F6
	MADATA15_0	External bus interface data bus	25	20	17	G2
	MADATA16_0	(address/data multiplex bus)	10	-	_	-
	MADATA17_0		11	-	_	-
	MADATA18_0	-	12	-	_	_
External	MADATA19_0	-	13	-	-	-
bus	MADATA20_0	-	19	-	_	_
	MADATA21_0	-	20	_	_	_
	MADATA22_0		21	-	-	_
	MADATA23_0		22	-	_	_
	MADATA24_0		26	-	-	-
	MADATA25_0		27	-	-	_
	MADATA26_0		28	_	_	-
	MADATA27_0		29	-	_	_
	MADATA28_0		33	-	_	-
	MADATA29_0		51	-	-	_
	MADATA30_0		52	-	-	_
	MADATA30_0 MADATA31_0		53	-	-	-
	MDQM0_0		30	21	18	G3
	MDQM1_0	External bus interface byte mask	31	22	19	G4
	MDQM2_0	signal output pin	34	-	-	-
	MDQM3_0	External bus interface address	35	-	-	-
	MALE_0	latch enable output signal for multiplex	211	171	139	C4
	MRDY_0	External bus interface external RDY input signal	80	65	55	L6
	MCLKOUT_0	External bus clock signal	32	23	20	G5



				Pin Nu	umber	
Module	Pin Name	Function	LQQ 216	LQP 176	LQS 144	LBE 192
	P30		34	24	-	G6
	P31		35	25	-	H4
	P32		36	26	21	H2
	P33		37	27	22	J1
	P34		38	28	23	H3
	P35		41	31	26	H6
	P36		42	32	27	J5
	P37	General-purpose I/O port 3	43	33	28	J4
	P38		44	34	29	J3
	P39		45	35	30	J2
	P3A		46	36	31	K1
	P3B		47	37	32	K2
	P3C		48	38	33	K3
	P3D		49	39	34	K4
GPIO	P3E		50	40	35	L1
GPIO	P40		56	46	38	N2
	P41		57	47	39	N3
	P42		58	48	40	M3
	P43		59	49	41	L4
	P44		60	50	42	M4
	P45		61	51	43	N4
	P46		73	58	50	P5
	P47	General-purpose I/O port 4	74	59	51	P6
	P48		76	61	53	N6
	P49		77	62	54	M6
	P4A		65	-	-	-
	P4B		66	-	-	-
	P4C		67	-	-	-
	P4D		68	-	-	-
	P4E		69	-	-	-

6. Handling Precautions

Every semiconductor device has a characteristic, inherent rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

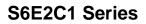
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

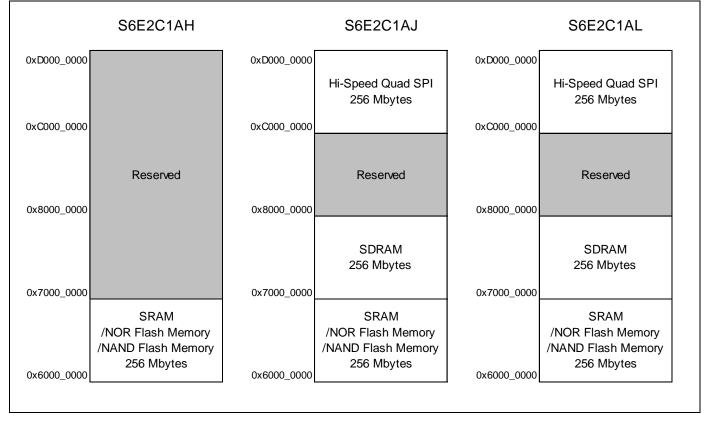
These precautions must be followed when handling the pins that connect semiconductor devices to power supply and I/O functions.

1. Preventing Over-Voltage and Over-Current Conditions


Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions, if present for extended periods of time, can damage the device; therefore, avoid this type of connection.


3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power-supply pin or ground pin.

Memory Map (3)

11. Pin Status In Each CPU State

The terms used for pin status have the following meanings:

■INITX = 0	
	This is the period when the INITX pin is at the L level.
■INITX = 1	
	This is the period when the INITX pin is at the H level.
■SPL = 0	
	This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.
■SPL = 1	
	This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.
Input enabled	
	Indicates that the input function can be used.
■Internal input fixed at 0	
	This is the status that the input function cannot be used. Internal input is fixed at L.
■Hi-Z	
	Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
Setting disabled	
	Indicates that the setting is disabled.
■Maintain previous state	
	Maintains the state that was immediately prior to entering the current mode.
	If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.
Analog input is enabled	
	Indicates that the analog input is enabled.
■Trace output	
	Indicates that the trace function can be used.
■GPIO selected	
	In Deep standby mode, pins switch to the general-purpose I/O port.
Setting prohibition	
	Prohibition of a setting by specification limitation

Package thermal resistance and maximum permissible power for each package are shown below. The operation is guaranteed maximum permissible power or less for semiconductor devices.

Package	Printed Circuit	Thermal Resistance		missible Power nW)
	Board	θja (°C/W)	T _A = +85 °C	T _A = +105 °C
LQS144	Single-layered both sides	48	833	417
(0.5-mm pitch)	4 layers	33	1212	606
LQP176	Single-layered both sides	45	889	444
(0.5-mm pitch)	4 layers	31	1290	645
LQQ216	Single-layered both sides	46	870	435
(0.4-mm pitch)	4 layers	32	1250	625
LBE192	Single-layered both sides	-	-	-
(0.8-mm pitch)	4 layers	35	1143	571

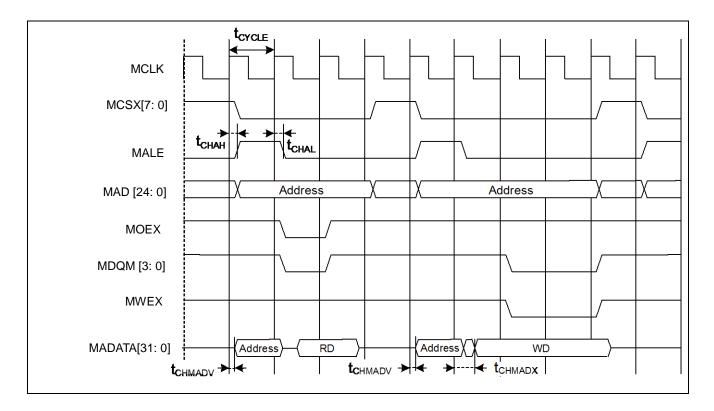
Table for Package Thermal Resistance and Maximum Permissible Power

WARNING:

- The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
- No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

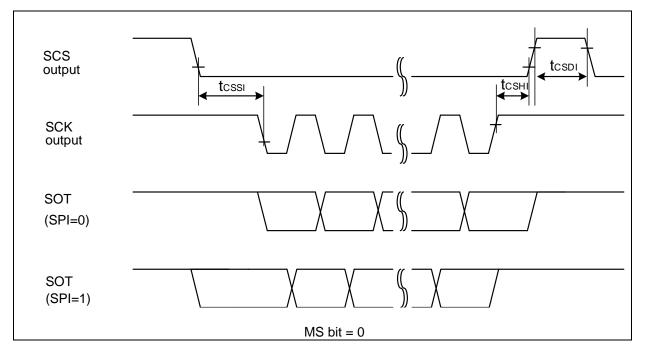
12.3.2 Pin Characteristics

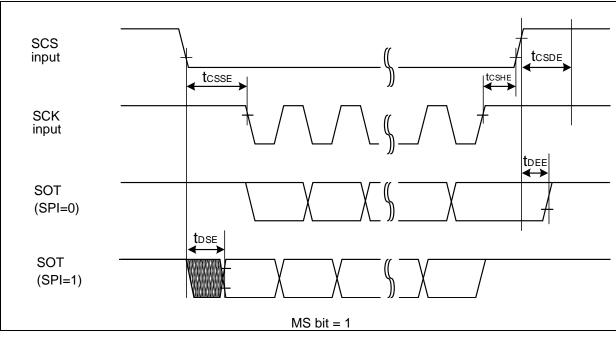
Descention	Symbol	Dia Mana	O an all the me		Valu	9		Dementer
Parameter Symbol	Pin Name	Conditions	Min	Typ Max		Unit	Remarks	
		CMOS hysteresis input pin, MD0, MD1	-	V _{CC} ×0.8	-	V _{CC} + 0.3	V	
H level input voltage		MADATAxx	V _{CC} > 3.0 V, V _{CC} ≤ 3.6 V,	2.4	-	V _{CC} + 0.3	V	At Externa Bus
(hysteresis	VIHS	5V tolerant input pin	-	V _{CC} ×0.8	-	V _{SS} + 5.5	V	
input)		Input pin doubled as I ² C Fm+	-	Vcc×0.7	-	V _{SS} + 5.5	V	
		TTL Schmitt input pin	-	2.0	-	Vcc+0.3	V	
		CMOS hysteresis input pin, MD0, MD1	-	Vss - 0.3	-	V _{CC} ×0.2	V	
L level input voltage		5V tolerant input pin	-	V _{SS} - 0.3	-	$V_{\rm CC} \times 0.2$	V	
(hysteresis input)	Vils	Input pin doubled as I ² C Fm+	-	V _{SS}	-	Vcc ×0.3	V	
		TTL Schmitt input pin	-	Vss - 0.3	-	0.8	V	
		4 mA type	V _{CC} ≥ 4.5 V, I _{OH} = - 4 mA V _{CC} < 4.5 V, I _{OH} = - 2 mA	V _{CC} - 0.5	-	Vcc	v	
		8 mA type	V _{CC} ≥ 4.5 V, I _{OH} = - 8 mA V _{CC} < 4.5 V, I _{OH} = - 4 mA	V _{CC} - 0.5	-	Vcc	V	
H level output V _{OH} voltage	10 mA type	$V_{CC} \ge 4.5 V,$ $I_{OH} = -10 mA$ $V_{CC} < 4.5 V,$ $I_{OH} = -8 mA$	Vcc - 0.5	-	Vcc	v		
	12 mA type	$V_{CC} \ge 4.5 V,$ $I_{OH} = -12 mA$ $V_{CC} < 4.5 V,$ $I_{OH} = -8 mA$	Vcc - 0.5	-	Vcc	v		
		The pin doubled as I ² C Fm+	V _{CC} ≥ 4.5 V, I _{OH} = - 4 mA V _{CC} < 4.5V, I _{OH} = - 3 mA	- Vcc - 0.5	-	Vcc	v	At GPIO


Multiplexed Bus Access Synchronous SRAM Mode

(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V)

Parameter	Symbol	Pin Name Co	Pin Name Conditions		Value		
i di dificici	Cymbol		Conditions	Min	Max	Unit	Remarks
MALE dolov timo	t CHAL	MCLK,	-	1	9		
MALE delay time	t _{CHAH}	MALE	-	1	9		
MCLK ↑ →Multiplexed address delay time	tchmadv	MCLK,	-	1	top	ns	
MCLK ↑ →Multiplexed data output time	t CHMADX	MADATA[31: 0]	-	1	top	ns	


Note:


- When the external load capacitance $C_L = 30 \ pF$

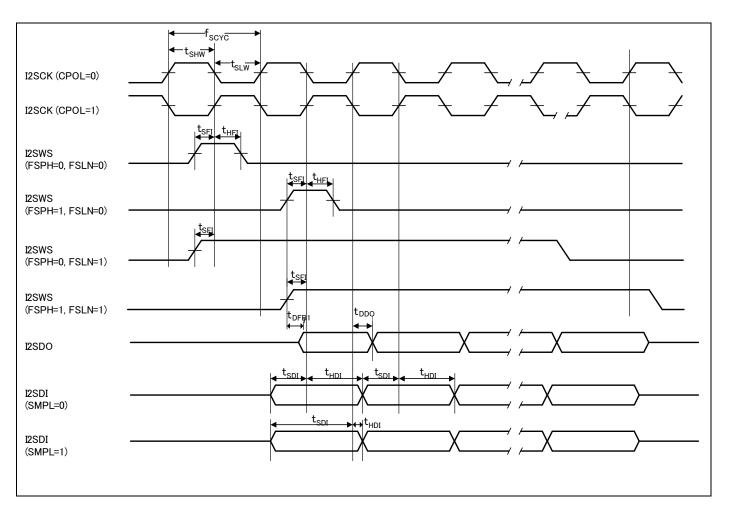
12.4.19 PS Timing

Master Mode Timing

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

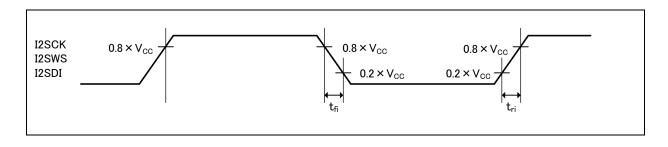
				Va	ue		_
Parameter	Symbol	Pin Name	Pin Name Conditions	onditions Min Max U	Unit	Remarks	
Output frequency	fмсус	I2SCK	-	-	12.288	MHz	
Output clock pulse width	tмнw	I2SCK		45	55	%	
	t MLW	12301	-	45	55	%	
I2SCK→I2SWS delay time	tDFS	I2SCK, I2SWS	-	0	24.0	ns	
I2SCK→I2SDO delay time*	todo	I2SCK, I2SDO	-	0	24.0	ns	
I2SDI→I2SCK setup time	thsdi	I2SCK,	-	25.0	-	ns	
I2SDI→I2SCK hold time	thdj	I2SDI	-	0	-	ns	
Input signal rise time	t _{FI}	1200	-	-	5	ns	
Input signal fall time	tri	I2SDI	-	-	5	ns	

*: Except for the first bit of transmission frame


Notes:

- When the external load capacitance $C_L = 20 \, pF$

When I2SWS = 48 kHz, I2MCLK = 256 × I2SWS
 Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz.
 See Chapter 7-2: PS (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (002-04862) for the details.



Notes:

- See Chapter 7-2: ^PS (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (002-04862) for the details of FSPH, FSLN, SMPL
- I2SCK input is selectable polarity by CPOL bit of CNTREG register

12.5 12-bit A/D Converter

Electrical Characteristics for the A/D Converter

Deveneter	Cumh cl	Pin		Value		L Instit	Domortis		
Parameter	Symbol	Name	Min	Тур	Max	Unit	Remarks		
Resolution	-	-	-	-	12	bit			
Integral nonlinearity	-	-	- 4.5	-	+ 4.5	LSB			
Differential nonlinearity	-	-	- 2.5	-	+ 2.5	LSB			
Zero transition voltage	Vzt	ANxx	- 15	-	+ 15	mV	AVRH = 2.7 V to 5.5 V		
Full-scale transition)/===	ANxx	AVRH – 15	-	AVRH + 15	mV	$= 2.7 \times 10 \ 5.5 \ v$		
voltage	Vfst	AINXX	AVcc - 15	-	AVcc + 15	mV			
Conversion time	-	-	0.5 ^{*1}	-	-	μs	$AV_{CC} \ge 4.5 V$		
Sampling time *2	ts	_	0.15	-	- 10	μs	AV _{CC} ≥ 4.5 V		
	15	-	0.3	-	10	μο	AVcc < 4.5 V		
Compare clock ovela*3			25	-	1000		$AV_{CC} \ge 4.5 V$		
Compare clock cycle*3	tсск	-	50	-	1000	ns	AVcc < 4.5 V		
State transition time to operation permission	tstt	-	-	-	1.0	μs			
Power supply current	-	AVCC	-	0.69	0.92	mA	A/D 1 unit operation		
(analog + digital)			-	1.3	22	μA	When A/D stop		
Reference power supply current (AVRH)	-	AVRH	-	1.1	1.97	mA	A/D 1 unit operation AVRH = 5.5 V		
			-	0.3	6.3	μA	When A/D stop		
Analog input capacity	CAIN	-	-	-	12.05	pF			
Analog input resistance	Rain	-	-	-	1.2	kΩ	$AV_{CC} \ge 4.5 V$		
	-				1.8 4	LSB	AV _{CC} < 4.5 V		
Interchannel disparity	-	-	-	-	4	LSB			
Analog port input leak current	-	ANxx	-	-	5	μA			
Analog input voltage	_	ANxx	AVss	-	AVRH	V			
, analog input voltage	_		AVss	-	AVcc	V			
		AVRH	4.5	-	AVcc	V	Tcck <50 ns		
Reference voltage	/oltage - A	AVKH	2.7	-	AVcc	v	Tcck ≥ 50 ns		
	-	AVRL	AVss	-	AVss	V			

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = AV_{RL} = 0V)$

1: The conversion time is the value of sampling time (ts) + compare time (tc).

The condition of the minimum conversion time is when the value of Ts = 150 ns and Tc = 350 ns (AV_{CC} \ge 4.5V). Ensure that it satisfies the value of sampling time (ts) and compare clock cycle (t_{CCK}).

For setting of sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM4 Family Peripheral Manual Analog Macro Part (002-04860). The register setting of the A/D converter is reflected by the APB bus clock timing. For more information about the APB bus number to which the A/D converter is connected, see 8. Block Diagram in this data sheet.

The sampling clock and compare clock are set at base clock (HCLK).

2: A necessary sampling time changes by external impedance. Ensure that it sets the sampling time to satisfy (Equation 1).

3: The compare time (t_c) is the value of (Equation 2).

12.8 MainFlash Memory Write/Erase Characteristics

 $(V_{CC} = 2.7V \text{ to } 5.5V)$

Parameter		Value				
		Min	Тур	Max	Unit	Remarks
Sector erase time	Large Sector	-	0.7	3.7	s	Includes write time prior to internal erase
	Small Sector	-	0.3	1.1	s	
Half word (16-bit) write time	Write cycles < 100 times		12	100	μs	Not including system-level overhead time
	Write cycles > 100 times	-		200		
Chip erase time*		-	13.6	68	S	Includes write time prior to internal erase

*: It indicates the chip erase time of 1 MB MainFlash memory

For devices with 1.5 MB or 2 MB of MainFlash memory, two erase cycles are required.

See 3.2.2 Command Operating Explanations and 3.3.3 Flash Erase Operation in this product's Flash Programming Manual for the detail.

Write Cycles and Data Retention Time

Erase/Write Cycles (Cycle)	Data Retention Time (Year)
1,000	20*
10,000	10*
100,000	5*

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result into average temperature value at + 85°C).

12.9 Dual Flash Memory Write/Erase Characteristics

It is the same write/erase characteristics as the MainFlash memory.

See 3.6 Dual flash mode in this product's Flash Programming Manual for the detail of dual flash mode.

15. Major Changes

Spansion Publication Number: DS709-00014

Page	Section	Change Results		
Revision 0.	.1			
-	-	Initial release		
Revision 1	.0			
11 13 87 88	2. Features 3. Product Lineup 10. Block Diagram 12. Memory Map	Deleted HDM-CEC/Remote Control Receiver.		
16-18	5. Pin Assignments	Deleted the pins of HDM-CEC/Remote Control Receiver.(CEC0,CEC1) Revised the pin name of I2S. (MI2S*_0→MI2S*0_0) Deleted the pin of IGTRG0_0.		
20-71	6. Pin Descriptions	Deleted the pins of HDM-CEC/Remote Control Receiver.(CEC0,CEC1) Revised the pin name of I2S. (MI2S*_0 \rightarrow MI2S*0_0) Revised the pin number of PF7 in LQFP216.(91 \rightarrow 90) Revised the pin number of X1. (73, 58, 50, P5 \rightarrow 107, 87, 71, P13) Revised the pin number of X0A. (107, 87, 71, P13 \rightarrow 73, 58, 50, P5)		
72-79	7. I/O Circuit Type	Revised IOH/IOL of Type S.(IOH=-12mA→-10mA, IOL=12mA→ 10mA) Added the case of using I2C in Type E, F, G, L, N, S.		
94-101	13. Pin Status In Each CPU State	Deleted X and Y in Pin Status Type.		
102-103	14.1. Absolute Maximum Ratings	Added 10 mA type.		
104-107	14.2. Recommended Operating Conditions	Added AVRL in Analog reference voltage. Revised the leakage current in Maximum leakage current at operating		
108-117	14.3.1. Current Rating	Revised the maximum current of each category.		
118-119	14.3.2. Pin Characteristics	Added the characteristic of external bus in H level input voltage (hysteresis input). Added the characteristic of 10 mA type.		
122	14.4.5. Operating Conditions of I2S PLL (in the case of using main clock for input clock of PLL)	Revised the maximum of I2S PLL macro oscillation clock frequency. (307.2 MHz→384 MHz)		
186	14.5.12-bit A/D Converter	Revised the minimum of Sampling time. Revised the characteristic of State transition time to operation permission Added AVRL in Analog reference voltage.		
190	14.8.2. Interrupt of Low-Voltage Detection	Revised the SVHI values in Conditions		
	· · · · · · · · · · · · · · · · · · ·			

NOTE: Please see "Document History" about later revised information.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress' unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuccitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress form any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.