

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C1665V2
Core Size	16/32-Bit
Speed	40MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	42K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2265n40f40laafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16/32-Bit

Architecture

XC2261N/68N, XC2263N/64N/65N

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family / Value Line

Data Sheet V1.4 2011-07

Microcontrollers

Table of Contents

Table of Contents

1 1.1 1.2 1.3	Summary of Features 8 Basic Device Types 10 Special Device Types 11 Definition of Feature Variants 12
2 2.1 2.2	General Device Information 14 Pin Configuration and Definition 15 Identification Registers 39
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20	Functional Description40Memory Subsystem and Organization41External Bus Controller45Central Processing Unit (CPU)46Memory Protection Unit (MPU)48Memory Checker Module (MCHK)48Interrupt System49On-Chip Debug Support (OCDS)50Capture/Compare Unit (CC2)51Capture/Compare Unit SCU6x54General Purpose Timer (GPT12E) Unit56Real Time Clock60A/D Converters62Universal Serial Interface Channel Modules (USIC)63MultiCAN Module65System Timer66Watchdog Timer66Clock Generation67Parallel Ports68Power Management69Instruction Set Summary70
	Electrical Parameters
4 4.1 4.1.1 4.2	Electrical Parameters 73 General Parameters 73 Operating Conditions 74 Voltage Range definitions 76
4.2.1	Parameter Interpretation
4.3	DC Parameters
4.3.1	DC Parameters for Upper Voltage Area 79
4.3.2	DC Parameters for Lower Voltage Area 81
4.3.3	Power Consumption 83
4.4	Analog/Digital Converter Parameters 88
4.5	System Parameters 92

Summary of Features

1.3 Definition of Feature Variants

The XC226xN types are offered with several Flash memory sizes. **Table 3** and **Table 4** describe the location of the available Flash memory.

Table 3 Continuous Flash Memory Ranges

Total Flash Size	1st Range ¹⁾	2nd Range	3rd Range
320 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C4'FFFF _H	n.a.
192 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C1'FFFF _H	C4'0000 _H C4'FFFF _H
128 Kbytes	C0'0000 _H C0'EFFF _H	C4'0000 _H C4'FFFF _H	n.a.

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

Table 4	Flash Memory	/ Module Allocation ((in Kbytes)
	i luon meniory	module Anocation	in ruby (CS)

Total Flash Size	Flash 0 ¹⁾	Flash 1	
320	256	64	
192	128	64	
128	64	64	

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

The XC226xN types are offered with different interface options. Table 5 lists the available channels for each option.

Total Number	Available Channels / Message Objects				
11 ADC0 channels	CH0, CH2 CH5, CH8 CH11, CH13, CH15				
8 ADC0 channels	CH0, CH2 CH4, CH8, CH10, CH13, CH15				
5 ADC1 channels	CH0, CH2, CH4 CH6				
1 CAN node	CAN0 64 message objects				
2 CAN nodes	CAN0, CAN1 64 message objects				
3 CAN nodes	CAN0, CAN1, CAN2 64 message objects				

Table 5 Interface Channel Association

General Device Information

2 General Device Information

The XC226xN series (16/32-Bit Single-Chip Microcontroller

with 32-Bit Performance) is a part of the Infineon XC2000 Family of full-feature singlechip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

Figure 2 XC226xN Logic Symbol

General Device Information

Key to Pin Definitions

Ctrl.: The output signal for a port pin is selected by bit field PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to 1x00_B, output O1 is selected by 1x01_B, etc.

Output signal OH is controlled by hardware.

- **Type**: Indicates the pad type and its power supply domain (A, B, M, 1).
 - St: Standard pad
 - Sp: Special pad e.g. XTALx
 - DP: Double pad can be used as standard or high speed pad
 - In: Input only pad
 - PS: Power supply pad

Pin	Symbol	Ctrl.	Туре	Function					
3	TESTM	I	In/B	Testmode Enable Enables factory test modes, must be held HIGH for normal operation (connect to V_{DDPB}). An internal pull-up device will hold this pin high when nothing is driving it.					
4	P7.2	O0 / I	St/B	Bit 2 of Port 7, General Purpose Input/Output					
	EMUX0	01	St/B	External Analog MUX Control Output 0 (ADC1)					
	TxDC4	O2	St/B	CAN Node 4 Transmit Data Output					
	TxDC5	O3	St/B	CAN Node 5 Transmit Data Output					
	TDI_C	IH	St/B	JTAG Test Data Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.					
5	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XC226xN's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it.					

Table 6 Pin Definitions and Functions

General Device Information

Table	Table 6Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
6	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output		
	T3OUT	01	St/B	GPT12E Timer T3 Toggle Latch Output		
	T6OUT	O2	St/B	GPT12E Timer T6 Toggle Latch Output		
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.		
	ESR2_1	I	St/B	ESR2 Trigger Input 1		
	RxDC4B	I	St/B	CAN Node 4 Receive Data Input		
7	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output		
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)		
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output		
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output		
	TMS_C	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.		
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input		
8	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output		
	EXTCLK	01	St/B	Programmable Clock Signal Output		
	TXDC4	02	St/B	CAN Node 4 Transmit Data Output		
	BRKIN_C	I	St/B	OCDS Break Signal Input		

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
61	P0.3	O0 / I	St/B	Bit 3 of Port 0, General Purpose Input/Output			
	U1C0_SELO 0	01	St/B	USIC1 Channel 0 Select/Control 0 Output			
	U1C1_SELO 1	O2	St/B	USIC1 Channel 1 Select/Control 1 Output			
	CCU61_COU T60	O3	St/B	CCU61 Channel 0 Output			
	A3	ОН	St/B	External Bus Interface Address Line 3			
	U1C0_DX2A	I	St/B	USIC1 Channel 0 Shift Control Input			
	RxDC0B	I	St/B	CAN Node 0 Receive Data Input			
62	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output			
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output			
-	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output			
	AD2	OH / IH	St/B	External Bus Interface Address/Data Line 2			
	CCU60_CC6 2INA	I	St/B	CCU60 Channel 2 Input			
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input			
63	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output			
	U1C1_SELO 0	01	St/B	USIC1 Channel 1 Select/Control 0 Output			
	U1C0_SELO 1	O2	St/B	USIC1 Channel 0 Select/Control 1 Output			
	CCU61_COU T61	O3	St/B	CCU61 Channel 1 Output			
	A4	ОН	St/B	External Bus Interface Address Line 4			
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input			
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_8	I	St/B	ESR2 Trigger Input 8			

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
69	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output			
	U0C0_SELO 3	01	St/B	USIC0 Channel 0 Select/Control 3 Output			
	CCU60_COU T61	O2	St/B	CCU60 Channel 1 Output			
	AD4	OH / IH	St/B	External Bus Interface Address/Data Line 4			
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input			
	ESR1_9	I	St/B	ESR1 Trigger Input 9			
70	P10.5	O0 / I	St/B	Bit 5 of Port 10, General Purpose Input/Output			
-	U0C1_SCLK OUT	O1	St/B	USIC0 Channel 1 Shift Clock Output			
	CCU60_COU T62	O2	St/B	CCU60 Channel 2 Output			
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output			
	AD5	OH / IH	St/B	External Bus Interface Address/Data Line 5			
	U0C1_DX1B	I	St/B	USIC0 Channel 1 Shift Clock Input			
71	P0.6	O0 / I	St/B	Bit 6 of Port 0, General Purpose Input/Output			
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output			
	TxDC1	O2	St/B	CAN Node 1 Transmit Data Output			
	CCU61_COU T63	O3	St/B	CCU61 Channel 3 Output			
	A6	ОН	St/B	External Bus Interface Address Line 6			
	U1C1_DX0A	I	St/B	USIC1 Channel 1 Shift Data Input			
	CCU61_CTR APA	I	St/B	CCU61 Emergency Trap Input			
	U1C1_DX1B	I	St/B	USIC1 Channel 1 Shift Clock Input			

Functional Description

Figure 6 CAPCOM Unit Block Diagram

Table 13Operating Conditions (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Overload current coupling factor for digital I/O pins	K _{OVD} CC	_	1.0 x 10 ⁻²	3.0 x 10 ⁻²	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁴	5.0 x 10 ⁻³	-	<i>I</i> _{OV} > 0 mA; not subject to production test
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	_	-	50	mA	not subject to production test
Digital core supply voltage for domain $M^{8)}$	V _{DDIM} CC	-	1.5	-		
Digital core supply voltage for domain 1 ⁸⁾	V _{DDI1} CC	-	1.5	-		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	3.0	-	5.5	V	
Digital ground voltage	$V_{\rm SS}{\rm SR}$	-	0	-	V	

 To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDIM} and V_{DDI1} pin to keep the resistance of the board tracks below 2 Ohm. Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.

- 2) Use one Capacitor for each pin.
- This is the reference load. For bigger capacitive loads, use the derating factors listed in the pad properties section.
- 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 80 MHz devices are marked ...F80L.
- 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: V_{OV} > V_{IHmax} (I_{OV} > 0) or V_{OV} < V_{ILmin} ((I_{OV} < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDIM}).

4.3.1 DC Parameters for Upper Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current $I_{\rm OV}$.

Note: Operating Conditions apply.

Table 16 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	_	V	R _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double	I _{OZ2} CC	-	0.2	5	μA	$\begin{array}{l} T_{\rm J} \leq 110 \ ^{\rm o}{\rm C}; \\ V_{\rm IN} > V_{\rm SS} \ ; \\ V_{\rm IN} < V_{\rm DDP} \end{array}$
bond pins. ³⁾¹⁾⁴⁾		_	0.2	15	μA	$T_{ m J} \leq$ 150 °C; $V_{ m IN} > V_{ m SS}$; $V_{ m IN} < V_{ m DDP}$
Pull Level Force Current ⁵⁾	I _{PLF} SR	250	_	_	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ down_enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ up_enabled) \end{array} $
Pull Level Keep Current ⁶⁾	I _{PLK} SR	-	_	30	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ up_enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ down_enabled) \end{array} $
Input high voltage (all except XTAL1)	$V_{IH}SR$	0.7 x V_{DDP}	_	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}{\rm SR}$	-0.3	-	$0.3 ext{ x}$ $V_{ ext{DDP}}$	V	

 Table 16
 DC Characteristics for Upper Voltage Range

During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from $V_{\rm DDPA}.$

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $3 + 0.6 \times f_{SYS}$ mA.

Figure 14 Supply Current in Active Mode as a Function of Frequency

Note: Operating Conditions apply.

4.7 AC Parameters

These parameters describe the dynamic behavior of the XC226xN.

4.7.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

Figure 17 Input Output Waveforms

4.7.2 Definition of Internal Timing

The internal operation of the XC226xN is controlled by the internal system clock f_{SYS} .

Because the system clock signal $f_{\rm SYS}$ can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate $f_{\rm SYS}$. This must be considered when calculating the timing for the XC226xN.

Figure 19 Generation Mechanisms for the System Clock

Note: The example of PLL operation shown in **Figure 19** uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1.

The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS).

4.7.3 External Clock Input Parameters

These parameters specify the external clock generation for the XC226xN. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2.
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain).

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Oscillator frequency	$f_{\rm OSC}{ m SR}$	4	-	40	MHz	Input= Clock Signal
		4	-	16	MHz	Input= Crystal or Ceramic Resonator
XTAL1 input current absolute value	I _{IL} CC	-	-	20	μA	
Input clock high time	t ₁ SR	6	-	-	ns	
Input clock low time	t_2 SR	6	-	-	ns	
Input clock rise time	t_3 SR	-	8	8	ns	
Input clock fall time	t_4 SR	-	8	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	V _{AX1} SR	$0.3 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	$f_{\text{OSC}} \ge 4 \text{ MHz};$ $f_{\text{OSC}} < 16 \text{ MHz}$
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	$f_{\rm OSC} \ge$ 16 MHz; $f_{\rm OSC} <$ 25 MHz
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	$f_{\text{OSC}} \ge 25 \text{ MHz};$ $f_{\text{OSC}} \le 40 \text{ MHz}$
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}{ m SR}$	-1.7 + V _{DDIM}	-	1.7	V	2)

Table 27 External Clock Input Characteristics

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	37 + 0.65 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium
		-	_	24 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Medium
		-	-	6.2 + 0.24 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp
		-	-	34 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Slow
		-	-	500 + 2.5 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Weak

Table 29 Standard Pad Parameters for Lower Voltage Range (cont'd)

An output current above |I_{OXnom}| may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

4.7.5 External Bus Timing

The following parameters specify the behavior of the XC226xN bus interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 30 Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
CLKOUT Cycle Time ¹⁾	t ₅ CC	-	$1/f_{\rm SYS}$	-	ns	
CLKOUT high time	t ₆ CC	3	-	-		
CLKOUT low time	t ₇ CC	3	_	-		
CLKOUT rise time	t ₈ CC	-	-	3	ns	
CLKOUT fall time	t ₉ CC	-	-	3		

1) The CLKOUT cycle time is influenced by PLL jitter. For longer periods the relative deviation decreases (see PLL deviation formula).

Figure 22 CLKOUT Signal Timing

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time.

An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).

If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle.

Figure 25 READY Timing

Electrical Parameters

Figure 28 DAP Timing Host to Device

Figure 29 DAP Timing Device to Host

Debug via JTAG

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 40 is valid under the following conditions: C_L = 20 pF; voltage_range= upper

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁ SR	50	_	_	ns	1)
TCK high time	t ₂ SR	16	-	_	ns	

 Table 40
 JTAG Interface Timing for Upper Voltage Range

Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram.

www.infineon.com

Published by Infineon Technologies AG