

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	42K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2265n40f80labkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16/32-Bit

Architecture

XC2261N/68N, XC2263N/64N/65N

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family / Value Line

Data Sheet V1.4 2011-07

Microcontrollers

XC2261N/68N, XC2263N/64N/65N XC2000 Family / Value Line

Table of Contents

4.6 4.7 4.7.1 4.7.2 4.7.2.1 4.7.2.2 4.7.2.3 4.7.3 4.7.3 4.7.4 4.7.5 4.7.5.1 4.7.6	Flash Memory Parameters 95 AC Parameters 97 Testing Waveforms 97 Definition of Internal Timing 98 Phase Locked Loop (PLL) 99 Wakeup Clock 102 Selecting and Changing the Operating Frequency 102 External Clock Input Parameters 103 Pad Properties 105 External Bus Timing 109 Bus Cycle Control with the READY Input 114 Synchropous Serial Interface Timing 117
4.7.6 4.7.7	Synchronous Serial Interface Timing 117 Debug Interface Timing 121
5 5.1 5.2 5.3	Package and Reliability127Packaging127Thermal Considerations129Quality Declarations130

Summary of Features

- On-Chip Peripheral Modules
 - Two synchronizable A/D Converters with up to 16 channels, 10-bit resolution, conversion time below 1 μ s, optional data preprocessing (data reduction, range check), broken wire detection
 - 16-channel general purpose capture/compare unit (CC2)
 - Two capture/compare units for flexible PWM signal generation (CCU6x)
 - Multi-functional general purpose timer unit with 5 timers
 - Up to 6 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
 - On-chip MultiCAN interface (Rev. 2.0B active) with up to 256 message objects (Full CAN/Basic CAN) on up to 6 CAN nodes and gateway functionality
 - On-chip system timer and on-chip real time clock
- Up to 12 Mbytes external address space for code and data
 - Programmable external bus characteristics for different address ranges
 - Multiplexed or demultiplexed external address/data buses
 - Selectable address bus width
 - 16-bit or 8-bit data bus width
 - Four programmable chip-select signals
- Single power supply from 3.0 V to 5.5 V
- · Power reduction and wake-up modes with flexible power management
- Programmable watchdog timer and oscillator watchdog
- Up to 76 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- On-chip debug support via Device Access Port (DAP) or JTAG interface
- 100-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

XC2261N/68N, XC2263N/64N/65N XC2000 Family / Value Line

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
65	P2.13	O0 / I	St/B	Bit 13 of Port 2, General Purpose Input/Output			
	U2C1_SELO 2	01	St/B	USIC2 Channel 1 Select/Control 2 Output			
	RxDC2D	I	St/B	CAN Node 2 Receive Data Input			
66	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output			
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.			
	A23	ОН	St/B	External Bus Interface Address Line 23			
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input			
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input			
67	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output			
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output			
	AD3	OH / IH	St/B	External Bus Interface Address/Data Line 3			
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input			
68	P0.5	O0 / I	St/B	Bit 5 of Port 0, General Purpose Input/Output			
	U1C1_SCLK OUT	01	St/B	USIC1 Channel 1 Shift Clock Output			
	U1C0_SELO 2	02	St/B	USIC1 Channel 0 Select/Control 2 Output			
	CCU61_COU T62	O3	St/B	CCU61 Channel 2 Output			
	A5	ОН	St/B	External Bus Interface Address Line 5			
	U1C1_DX1A	I	St/B	USIC1 Channel 1 Shift Clock Input			
	U1C0_DX1C	I	St/B	USIC1 Channel 0 Shift Clock Input			
	RXDC3E	I	St/B	CAN Node 3 Receive Data Input			

XC2261N/68N, XC2263N/64N/65N XC2000 Family / Value Line

General Device Information

Tabl	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
69	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output			
	U0C0_SELO 3	O1	St/B	USIC0 Channel 0 Select/Control 3 Output			
	CCU60_COU T61	O2	St/B	CCU60 Channel 1 Output			
	AD4	OH / IH	St/B	External Bus Interface Address/Data Line 4			
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input			
	ESR1_9	I	St/B	ESR1 Trigger Input 9			
70	P10.5	O0 / I	St/B	Bit 5 of Port 10, General Purpose Input/Output			
	U0C1_SCLK OUT	O1	St/B	USIC0 Channel 1 Shift Clock Output			
	CCU60_COU T62	O2	St/B	CCU60 Channel 2 Output			
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output			
	AD5	OH / IH	St/B	External Bus Interface Address/Data Line 5			
	U0C1_DX1B	I	St/B	USIC0 Channel 1 Shift Clock Input			
71	P0.6	O0 / I	St/B	Bit 6 of Port 0, General Purpose Input/Output			
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output			
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output			
	CCU61_COU T63	O3	St/B	CCU61 Channel 3 Output			
	A6	OH	St/B	External Bus Interface Address Line 6			
	U1C1_DX0A	I	St/B	USIC1 Channel 1 Shift Data Input			
	CCU61_CTR APA	I	St/B	CCU61 Emergency Trap Input			
	U1C1_DX1B	I	St/B	USIC1 Channel 1 Shift Clock Input			

XC2261N/68N, XC2263N/64N/65N XC2000 Family / Value Line

General Device Information

Tabl	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
87	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output			
	U1C0_SELO 7	O2	St/B	USIC1 Channel 0 Select/Control 7 Output			
	U2C0_SELO 4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output			
	A11	ОН	St/B	External Bus Interface Address Line 11			
	ESR2_4	I	St/B	ESR2 Trigger Input 4			
89	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output			
	U1C0_SELO 1	01	St/B	USIC1 Channel 0 Select/Control 1 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	RD	OH	St/B	External Bus Interface Read Strobe Output			
	ESR2_2	I	St/B	ESR2 Trigger Input 2			
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input			
	RxDC3C	I	St/B	CAN Node 3 Receive Data Input			
90	P1.4	O0 / I	St/B	Bit 4 of Port 1, General Purpose Input/Output			
	U1C1_SELO 4	O2	St/B	USIC1 Channel 1 Select/Control 4 Output			
	U2C0_SELO 5	O3	St/B	USIC2 Channel 0 Select/Control 5 Output			
	A12	ОН	St/B	External Bus Interface Address Line 12			
	U2C0_DX2B	I	St/B	USIC2 Channel 0 Shift Control Input			
	RxDC5A	I	St/B	CAN Node 5 Receive Data Input			
91	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output			
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output			
	U0C1_DOUT	O2	St/B	USIC0 Channel 1 Shift Data Output			
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output			
	ALE	ОН	St/B	External Bus Interf. Addr. Latch Enable Output			
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input			

Functional Description

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	

Table 8 XC226xN Memory Map (cont'd)¹⁾

 Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses.

- 2) The areas marked with "<" are slightly smaller than indicated, see column "Notes".
- 3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).
- 4) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 16 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Note: The actual size of the PSRAM depends on the quoted device type.

Functional Description

3.4 Memory Protection Unit (MPU)

The XC226xN's Memory Protection Unit (MPU) protects user-specified memory areas from unauthorized read, write, or instruction fetch accesses. The MPU can protect the whole address space including the peripheral area. This completes established mechanisms such as the register security mechanism or stack overrun/underrun detection.

Four Protection Levels support flexible system programming where operating system, low level drivers, and applications run on separate levels. Each protection level permits different access restrictions for instructions and/or data.

Every access is checked (if the MPU is enabled) and an access violating the permission rules will be marked as invalid and leads to a protection trap.

A set of protection registers for each protection level specifies the address ranges and the access permissions. Applications requiring more than 4 protection levels can dynamically re-program the protection registers.

3.5 Memory Checker Module (MCHK)

The XC226xN's Memory Checker Module calculates a checksum (fractional polynomial division) on a block of data, often called Cyclic Redundancy Code (CRC). It is based on a 32-bit linear feedback shift register and may, therefore, also be used to generate pseudo-random numbers.

The Memory Checker Module is a 16-bit parallel input signature compression circuitry which enables error detection within a block of data stored in memory, registers, or communicated e.g. via serial communication lines. It reduces the probability of error masking due to repeated error patterns by calculating the signature of blocks of data.

The polynomial used for operation is configurable, so most of the commonly used polynomials may be used. Also, the block size for generating a CRC result is configurable via a local counter. An interrupt may be generated if testing the current data block reveals an error.

An autonomous CRC compare circuitry is included to enable redundant error detection, e.g. to enable higher safety integrity levels.

The Memory Checker Module provides enhanced fault detection (beyond parity or ECC) for data and instructions in volatile and non volatile memories. This is especially important for the safety and reliability of embedded systems.

Functional Description

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

4 Electrical Parameters

The operating range for the XC226xN is defined by its electrical parameters. For proper operation the specified limits must be respected when integrating the device in its target environment.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Output current on a pin when high value is driven	I _{OH} SR	-30	-	-	mA	
Output current on a pin when low value is driven	I _{OL} SR	-	-	30	mA	
Overload current	$I_{\rm OV}{\rm SR}$	-10	_	10	mA	1)
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	100	mA	1)
Junction Temperature	$T_{J}SR$	-40	-	150	°C	
Storage Temperature	$T_{\rm ST}{ m SR}$	-65	_	150	°C	
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	-0.5	-	6.0	V	
Voltage on any pin with respect to ground (Vss)	$V_{\rm IN}{ m SR}$	-0.5	-	V _{DDP} + 0.5	V	$V_{\rm IN} \leq V_{\rm DDP(max)}$

Table 12 Absolute Maximum Rating Parameters

 Overload condition occurs if the input voltage V_{IN} is out of the absolute maximum rating range. In this case the current must be limited to the listed values by design measures.

Note: Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

4.1.1 Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XC226xN. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Voltage Regulator Buffer Capacitance for DMP_M	$C_{\rm EVRM} \ { m SR}$	1.0	-	4.7	μF	1)
Voltage Regulator Buffer Capacitance for DMP_1	$C_{\rm EVR1}$ SR	0.47	-	2.2	μF	2)1)
External Load Capacitance	$C_{L} \operatorname{SR}$	-	20 ³⁾	-	pF	pin out driver= default 4)
System frequency	$f_{\rm SYS}{ m SR}$	-	-	80	MHz	5)
Overload current for analog inputs ⁶⁾	$I_{\rm OVA}{ m SR}$	-2	-	5	mA	not subject to production test
Overload current for digital inputs ⁶⁾	$I_{\rm OVD}{\rm SR}$	-5	_	5	mA	not subject to production test
Overload current coupling factor for analog inputs ⁷⁾	K _{OVA} CC	-	2.5 x 10 ⁻⁴	1.5 x 10 ⁻³	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		-	1.0 x 10 ⁻⁶	1.0 x 10 ⁻⁴	-	<i>I</i> _{OV} > 0 mA; not subject to production test

Table 13 Operating Conditions

4.3.1 DC Parameters for Upper Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

Note: Operating Conditions apply.

Table 16 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	-	V	R _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double	I _{OZ2} CC	-	0.2	5	μA	$T_{ m J} \leq$ 110 °C; $V_{ m IN} > V_{ m SS}$; $V_{ m IN} < V_{ m DDP}$
bond pins. ³⁾¹⁾⁴⁾		_	0.2	15	μA	$\begin{array}{l} T_{\rm J} \!$
Pull Level Force Current ⁵⁾	I _{PLF} SR	250	_	_	μA	
Pull Level Keep Current ⁶⁾	I _{PLK} SR	_	_	30	μA	
Input high voltage (all except XTAL1)	$V_{IH} SR$	0.7 х V _{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}{\rm SR}$	-0.3	-	$0.3 ext{ x}$ $V_{ ext{DDP}}$	V	

 Table 16
 DC Characteristics for Upper Voltage Range

Sample time and conversion time of the XC226xN's A/D converters are programmable. The timing above can be calculated using Table 21.

The limit values for f_{ADCI} must not be exceeded when selecting the prescaler value.

GLOBCTR.5-0 (DIVA)	A/D Converter Analog Clock fapor	INPCRx.7-0 (STC)	Sample Time ¹⁾
000000 _B	f _{SYS}	00 _H	$t_{ADCI} \times 2$
000001 _B	<i>f</i> _{SYS} / 2	01 _H	$t_{ADCI} \times 3$
000010 _B	f _{SYS} / 3	02 _H	$t_{ADCI} \times 4$
	$f_{\rm SYS}$ / (DIVA+1)	:	$t_{ADCI} \times (STC+2)$
111110 _B	f _{SYS} / 63	FE _H	$t_{ADCI} imes 256$
111111 _B	<i>f</i> _{SYS} / 64	FF _H	$t_{ADCI} imes 257$

 Table 21
 A/D Converter Computation Table

1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).

Converter Timing Example A:

Assumptions:	$f_{\rm SYS}$	= 80 MHz (i.e. t_{SYS} = 12.5 ns), DIVA = 03 _H , STC = 00 _H
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 4 = 20 \text{ MHz}$, i.e. $t_{ADCI} = 50 \text{ ns}$
Sample time	t _S	$= t_{ADCI} \times 2 = 100 \text{ ns}$
Conversion 10	-bit:	
	<i>t</i> _{C10}	= $13 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 13×50 ns + 2×12.5 ns = 0.675 μ s
Conversion 8-b	oit:	
	t _{C8}	= $11 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 11×50 ns + 2×12.5 ns = 0.575 µs

Converter Timing Example B:

Assumptions:	$f_{\rm SYS}$	= 40 MHz (i.e. t_{SYS} = 25 ns), DIVA = 02 _H , STC = 03 _H					
Analog clock	$f_{\sf ADCI}$	$= f_{SYS} / 3 = 13.3 \text{ MHz}$, i.e. $t_{ADCI} = 75 \text{ ns}$					
Sample time	t _S	$= t_{ADCI} \times 5 = 375 \text{ ns}$					
Conversion 10	-bit:						
	<i>t</i> _{C10}	= $16 \times t_{ADCI}$ + 2 × t_{SYS} = 16 × 75 ns + 2 × 25 ns = 1.25 µs					
Conversion 8-bit:							
	t_{C8}	= $14 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 14×75 ns + 2×25 ns = 1.10 µs					

Table 25	Flash	Parameters	(cont'd)
			(00

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Number of erase cycles	N _{ER} SR	-	-	15.000	cycle s	$t_{\text{RET}} \ge 5$ years; Valid for up to 64 user selected sectors (data storage)
		-	-	1.000	cycle s	$t_{\rm RET} \ge 20$ years

 The unused Flash module(s) can be erased/programmed while code is executed and/or data is read from only one Flash module or from PSRAM. The Flash module that delivers code/data can, of course, not be erased/programmed.

2) Flash module 1 can be erased/programmed while code is executed and/or data is read from Flash module 0.

- 3) Value of IMB_IMBCTRL.WSFLASH.
- 4) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This increases the stated durations noticably only at extremely low system clock frequencies.

Access to the XC226xN Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.

Direct Drive

When direct drive operation is selected (SYSCON0.CLKSEL = 11_B), the system clock is derived directly from the input clock signal CLKIN1:

 $f_{SYS} = f_{IN}$.

The frequency of f_{SYS} is the same as the frequency of f_{IN} . In this case the high and low times of f_{SYS} are determined by the duty cycle of the input clock f_{IN} .

Selecting Bypass Operation from the XTAL1¹⁾ input and using a divider factor of 1 results in a similar configuration.

Prescaler Operation

When prescaler operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 1_B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):

 $f_{\text{SYS}} = f_{\text{OSC}} / \text{K1}.$

If a divider factor of 1 is selected, the frequency of $f_{\rm SYS}$ equals the frequency of $f_{\rm OSC}$. In this case the high and low times of $f_{\rm SYS}$ are determined by the duty cycle of the input clock $f_{\rm OSC}$ (external or internal).

The lowest system clock frequency results from selecting the maximum value for the divider factor K1:

 $f_{\rm SYS} = f_{\rm OSC} / 1024.$

4.7.2.1 Phase Locked Loop (PLL)

When PLL operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 0_B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor **F** ($f_{SYS} = f_{IN} \times F$).

F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1):

 $(\mathbf{F} = \mathbf{N} / (\mathbf{P} \times \mathbf{K2})).$

The input clock can be derived either from an external source at XTAL1 or from the onchip clock source.

The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly.

Adjustment to the input clock continuously changes the frequency of f_{SYS} so that it is locked to f_{IN} . The slight variation causes a jitter of f_{SYS} which in turn affects the duration of individual TCSs.

¹⁾ Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .

Table 33 External Bus Timing for Lower Voltage Range

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
$\frac{\text{Output valid delay for } \overline{\text{RD}},}{\text{WR}(L/H)}$	<i>t</i> ₁₀ CC	-	11	20	ns	
Output valid delay for BHE, ALE	<i>t</i> ₁₁ CC	-	10	21	ns	
Address output valid delay for A23 A0	<i>t</i> ₁₂ CC	-	11	22	ns	
Address output valid delay for AD15 AD0 (MUX mode)	<i>t</i> ₁₃ CC	-	10	22	ns	
Output valid delay for CS	t ₁₄ CC	-	10	13	ns	
Data output valid delay for AD15 AD0 (write data, MUX mode)	<i>t</i> ₁₅ CC	-	10	22	ns	
Data output valid delay for D15 D0 (write data, DEMUX mode)	<i>t</i> ₁₆ CC	-	10	22	ns	
Output hold time for \overline{RD} , WR(L/H)	<i>t</i> ₂₀ CC	-2	8	10	ns	
Output hold time for \overline{BHE} , ALE	<i>t</i> ₂₁ CC	-2	8	10	ns	
Address output hold time for AD15 AD0	<i>t</i> ₂₃ CC	-3	8	10	ns	
Output hold time for CS	t ₂₄ CC	-3	8	11	ns	
Data output hold time for D15 D0 and AD15 AD0	<i>t</i> ₂₅ CC	-3	8	10	ns	
Input setup time for READY, D15 D0, AD15 AD0	<i>t</i> ₃₀ SR	29	17	-	ns	
Input hold time READY, D15 D0, AD15 AD0 ¹⁾	<i>t</i> ₃₁ SR	0	-9	-	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

4.7.6 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 34 is valid under the following conditions: $C_L = 20 \text{ pF}$; *SSC* = master ; voltage_range= upper

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 8 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 6 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-6	-	9	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	31	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-4	-	_	ns	

Table 34 USIC SSC Master Mode Timing for Upper Voltage Range

1) $t_{SYS} = 1 / f_{SYS}$

Table 35 is valid under the following conditions: C_L = 20 pF; *SSC*= master ; voltage_range= lower

XC2261N/68N, XC2263N/64N/65N XC2000 Family / Value Line

Electrical Parameters

Figure 28 DAP Timing Host to Device

Figure 29 DAP Timing Device to Host

Debug via JTAG

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 40 is valid under the following conditions: $C_L = 20 \text{ pF}$; voltage_range= upper

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁ SR	50	-	-	ns	1)
TCK high time	$t_2 \mathrm{SR}$	16	-	-	ns	

 Table 40
 JTAG Interface Timing for Upper Voltage Range

Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram.

Package and Reliability

5 Package and Reliability

The XC2000 Family devices use the package type PG-LQFP (Plastic Green - Low Profile Quad Flat Package). The following specifications must be regarded to ensure proper integration of the XC226xN in its target environment.

5.1 Packaging

These parameters specify the packaging rather than the silicon.

Parameter	Symbol	Lin	nit Values	Unit	Notes
		Min.	Max.		
Exposed Pad Dimension	$E x \times E y$	-	5.2 × 5.2	mm	-
Power Dissipation	P _{DISS}	-	0.8	W	-
Thermal resistance	$R_{\Theta JA}$	-	54	K/W	No thermal via ¹⁾
Junction-Ambient			49	K/W	4-layer, no pad ²⁾
			27	K/W	4-layer, pad ³⁾

Table 42 Package Parameters (PG-LQFP-100-8)

1) Device mounted on a 4-layer board without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.

Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note.

Package Compatibility Considerations

The XC226xN is a member of the XC2000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Pad (if present) may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

www.infineon.com

Published by Infineon Technologies AG