

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p54l3beabr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Table 2. SPC56xP54	4x/SPC56xP60x	device compar	ison (continued)		
	Feature	SPC560P54	SPC560P60	SPC56AP54	SPC56AP60		
Enhanced D access) cha	MA (direct memory nnels	16					
FlexRay		Yes (64 message buffer)					
FlexCAN (co	ontroller area network)		3(1)),(2)			
Safety port			Yes (via third Fl	exCAN module)			
FCCU (fault	collection and control unit)		Ye	s ⁽³⁾			
CTU (cross	triggering unit)		Ye	es			
eTimer char	inels		2 :	× 6			
FlexPWM (p channels	oulse-width modulation)		Ν	lo			
Analog-to-di	gital converters (ADC)	One (10-bit, 27-channel) ⁽⁴⁾					
LINFlex mod	dules	2 (1 × Master/Slave, 1 × Master only) ⁽⁵⁾					
DSPI (deser interface) m	ial serial peripheral odules	5 ⁽⁶⁾					
CRC (cyclic	redundancy check) units	2 ⁽⁷⁾					
JTAG interfa	ace	Yes					
Nexus port of	controller (NPC)		Yes (Lev	/el 2+) ⁽⁸⁾			
	Digital power supply ⁽⁹⁾	3.3 V	or 5 V single supp	ly with external trar	nsistor		
Cummba	Analog power supply		3.3 V	or 5 V			
Supply	Internal RC oscillator		16	MHz			
	External crystal oscillator		4–40	MHz			
Packages		LQFP100 LQFP104 LQFP144 LQFP176 ⁽					
Temperature	Standard ambient temperature		-40 to	125 °C			

Table 2. SPC56xP54x/SPC56xP60x device comparison (continued)

1. Each FlexCAN module has 32 message buffers.

2. One FlexCAN module can act as a Safety Port with a bit rate as high as 7.5 Mbit/s.

3. Enhanced FCCU version.

4. Same amount of ADC channels as on SPC560P44/50 not considering the internally connected ones. 26 channels on LQFP144 and 16 channels on LQFP100.

- 5. LinFlex_1 is Master Only.
- 6. Increased number of CS for DSPI_1.
- 7. Upgraded specification with addition of 8-bits polynomial (CRC-8 VDA CAN) support and 3rd context.
- 8. Improved debugging capability with data trace capability and increased Nexus throughput available on emulation package.
- 9. 3.3 V range and 5 V range correspond to different orderable parts.
- 10. Software development package only. Not available for production.

- Watchpoint triggering, watchpoint triggers program tracing
- DDR
- Auxiliary Output Port
 - 4 MDO (Message Data Out) pins
 - MCKO (Message Clock Out) pin
 - 2 MSEO (Message Start/End Out) pins
 - EVTO (Event Out) pin
- Auxiliary Input Port
 - EVTI (Event In) pin^(a)

1.5.28 IEEE 1149.1 (JTAG) controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard.

The JTAG controller provides the following features:

- IEEE Test Access Port (TAP) interface with four pins (TDI, TMS, TCK, TDO)
- Selectable modes of operation include JTAGC/debug or normal system operation.
- A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:
 - BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD
- A 5-bit instruction register that supports the additional following public instructions:
 - ACCESS_AUX_TAP_NPC, ACCESS_AUX_TAP_CORE0, ACCESS_AUX_TAP_CORE1, ACCESS_AUX_TAP_NASPS_0, ACCESS_AUX_TAP_NASPS_1
- Three test data registers: a bypass register, a boundary scan register, and a device identification register.
- A TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry.

1.5.29 On-chip voltage regulator (VREG)

The on-chip voltage regulator module provides the following features:

- Uses external NPN transistor
- Regulates external 3.3 V to 5.0 V down to 1.2 V for the core logic
- Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V

a. At least one TCK clock is necessary for the EVTI signal to be recognized by the MCU.

	lable 6. System pi		,				
			Pad Sp	beed ⁽¹⁾		Pin	
Symbol	Description	Direction	SRC=0	SRC=1	LQFP 100	LQFP 144 1 29 30 87 88 89 31 107	LQFP 176 ⁽²⁾
MDO5	Nexus Message Data Output—line 5	Output Only	Fa	ist	_	_	8
MDO6	Nexus Message Data Output—line 6	Output Only	Fa	ist	_	_	9
MDO7	Nexus Message Data Output—line 7	Output Only	Fa	ist	_	_	110
MDO8	Nexus Message Data Output—line 8	Output Only	Fa	ist	_	_	111
MDO9	Nexus Message Data Output—line 9	Output Only	Fa	ist	_	_	112
MDO10	Nexus Message Data Output—line 10	Output Only	Fa	ist	_	_	166
MDO11	Nexus Message Data Output—line 11	Output Only	Fa	ist	_	_	171
RDY	Nexus ready output	Output Only	_	_	_	_	172
NMI	Non-Maskable Interrupt	Input Only	_	_	1	1	1
XTAL	Analog output of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode.	_	_	_	18	29	37
EXTAL	Analog input of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode.	_	_		19	30	38
TMS ⁽³⁾	JTAG state machine control	Input Only		_	59	87	105
TCK ⁽³⁾	JTAG clock	Input Only	—	_	60	88	106
TDI ⁽³⁾	JTAG data input	Input Only	—	—	58	86	104
TDO ⁽³⁾	JTAG data output	Output Only	_	_	61	89	107
	Reset	pin					
RESET ⁽⁴⁾	Bidirectional reset with Schmitt trigger characteristics and noise filter	Bidirection al	Medium	_	20	31	39
	Test p	in					
V _{PP TEST}	Pin for testing purpose only. To be tied to ground in normal operating mode.	—	_	_	74	107	131
V _{REG_BYPASS}	Pin for testing purpose only. To be tied to ground in normal operating mode.	_	_		34	51	59

Table 6. System pins (continued)

1. SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.

	Table 7. Pin muxing ⁽¹⁾ (continued)											
Port	PCR	Alternate		Peripheral	I/O	Pad s	speed ⁽⁶⁾		Pin			
pin	No.	function ^{(2),} (3)	Functions	(4)	direction (5)	SRC = 0	SRC = 1	LQFP 100	P LQFP	LQFP 176 ⁽⁷⁾		
D[7]	PCR[55]	ALT0 ALT1 ALT2 ALT3 —	GPIO[55] CS3_1 — CS4_0 SIN_3	SIUL DSPI_1 — DSPI_0 DSPI_3	I/O O — O I	Slow	Medium	26	37	45		
D[8]	PCR[56]	ALT0 ALT1 ALT2 ALT3	GPIO[56] CS2_1 RDY CS5_0	SIUL DSPI_1 nexus_0 DSPI_0	I/O O O	Slow	Medium	21	32	40		
D[9]	PCR[57]	ALT0 ALT1 ALT2 ALT3	GPIO[57] — TXD CS6_1	SIUL — LINFlex_1 DSPI_1	I/O 0 0	Slow	Medium	15	26	34		
D[10]	PCR[58]	ALT0 ALT1 ALT2 ALT3	GPIO[58] — CS0_3 —	SIUL — DSPI_3 —	I/O — I/O —	Slow	Medium	53	76	92		
D[11]	PCR[59]	ALT0 ALT1 ALT2 ALT3	GPIO[59] — CS1_3 SCK_3	SIUL — DSPI_3 DSPI_3	I/O — 0 I/O	Slow	Medium	54	78	94		
D[12]	PCR[60]	ALT0 ALT1 ALT2 ALT3 —	GPIO[60] — CS7_1 RXD	SIUL — — DSPI_1 LINFlex_1	I/O — — 0 I	Slow	Medium	70	99	123		
D[13]	PCR[61]	ALT0 ALT1 ALT2 ALT3	GPIO[61] — CS2_3 SOUT_3	SIUL — DSPI_3 DSPI_3	I/O — O O	Slow	Medium	67	95	119		
D[14]	PCR[62]	ALT0 ALT1 ALT2 ALT3 —	GPIO[62] — CS3_3 — SIN_3	SIUL — DSPI_3 — DSPI_3	I/O — — — —	Slow	Medium	73	105	129		
D[15]	PCR[63]	ALT0 ALT1 ALT2 ALT3 —	GPIO[63] — — — AN[20]	SIUL — — — ADC_0	Input Only	_	_	41	58	66		

Table 7. Pin muxing⁽¹⁾ (continued)

	Table 7. Pin muxing ⁽¹⁾ (continued)											
		Alternate			I/O	Pad s	peed ⁽⁶⁾		Pin			
Port pin	PCR No.	function ^{(2),} (3)	Functions	Peripheral (4)	direction (5)	SRC = 0	SRC = 1	LQFP 100	LQFP 144	LQFP 176 ⁽⁷⁾		
		ALT0	GPIO[71]	SIUL								
		ALT1		—								
E[7]	PCR[71]	ALT2 ALT3		—	Input Only	—	_		48	56		
		ALI 3	 AN[10]	ADC_0								
		ALT0	GPIO[72]	SIUL								
		ALT1										
E[8]	PCR[72]	ALT2	_	_	Input Only	_	_		59	67		
		ALT3	_	_								
		—	AN[22]	ADC_0								
		ALT0	GPIO[73]	SIUL								
		ALT1	—	—								
E[9]	PCR[73]	ALT2	—	—	Input Only	—	—		61	69		
		ALT3	— AN[23]	ADC_0								
		ALT0 ALT1	GPIO[74]	SIUL								
E[10]	PCR[74]	ALT2	_	_	Input Only	_	_		63	75		
		ALT3	_	_	r · · · J					_		
		—	AN[24]	ADC_0								
		ALT0	GPIO[75]	SIUL								
		ALT1	—	—								
E[11]	PCR[75]	ALT2	—	—	Input Only	—	—		65	77		
		ALT3	— AN[25]	ADC_0								
		ALT0		SIUL								
		ALTU ALT1	GPIO[76]	510L								
E[12]	PCR[76]	ALT2	_	_	Input Only	_	_		67	79		
		ALT3	—	—	. ,							
		—	AN[26]	ADC_0								
		ALT0	GPIO[77]	SIUL	I/O							
		ALT1	SCK_3	DSPI_3	I/O							
E[13]	PCR[77]	ALT2	—	-	—	Slow	Medium	—	117	141		
		ALT3		 SIUL	— I							
		-	EIRQ[25]									
		ALT0 ALT1	GPIO[78] SOUT_3	SIUL DSPI_3	I/O O							
E[14]	PCR[78]	ALT1 ALT2			_	Slow	Medium	_	119	143		
]		ALT3	_	_	_	0.011						
		_	EIRQ[26]	SIUL	I							

Table 7 Bin muxing⁽¹⁾ (continued)

	Table 7. Pin muxing ⁽¹⁾ (continued)											
Port	DCD	Alternate		Borinhoral	I/O	Pad s	peed ⁽⁶⁾		Pin			
Port pin	PCR No.	function ^{(2),} (3)	Functions	Peripheral (4)	direction (5)	SRC = 0	SRC = 1	LQFP 100		LQFP 176 ⁽⁷⁾		
F[7]	PCR[87]	ALT0 ALT1 ALT2 ALT3	GPIO[87] — MCKO —	SIUL — nexus_0 —	I/O O	Slow	Fast	_	19	27		
F[8]	PCR[88]	ALT0 ALT1 ALT2 ALT3	GPIO[88] MSEO1 	SIUL — nexus_0 —	I/O — — —	Slow	Fast	_	20	28		
F[9]	PCR[89]	ALT0 ALT1 ALT2 ALT3	GPIO[89] — MSEO0 —	SIUL — nexus_0 —	/O O 	Slow	Fast	_	23	31		
F[10]	PCR[90]	ALT0 ALT1 ALT2 ALT3	GPIO[90] EVTO 	SIUL — nexus_0 —	I/O 0 -	Slow	Fast	_	24	32		
F[11]	PCR[91]	ALT0 ALT1 ALT2 ALT3	GPIO[91] EVTI —	SIUL nexus_0 —	I/O I —	Slow	Medium	_	25	33		
F[12]	PCR[92]	ALT0 ALT1 ALT2 ALT3	GPIO[92] ETC[3] —	SIUL eTimer_1 —	I/O I/O —	Slow	Medium	_	106	130		
F[13]	PCR[93]	ALT0 ALT1 ALT2 ALT3	GPIO[93] ETC[4] —	SIUL eTimer_1 —	I/O I/O —	Slow	Medium	_	112	136		
F[14]	PCR[94]	ALT0 ALT1 ALT2 ALT3	GPIO[94] TXD —	SIUL LINFlex_1 	I/O O	Slow	Medium	_	115	139		
F[15]	PCR[95]	ALT0 ALT1 ALT2 ALT3 —	GPIO[95] — — — RXD	SIUL — — LINFlex_1	VO 	Slow	Medium	_	113	137		

Table 7. Pin muxing⁽¹⁾ (continued)

Port	PCR	Alternate		Peripheral	I/O	Pad s	peed ⁽⁶⁾		Pin		
pin	No.	function ^{(2),} (3)	Functions	(4)	direction (5)	SRC = 0	SRC = 1	LQFP 100	LQFP 144	LQFP 176 ⁽⁷⁾	
G[8]	PCR[104]	ALT0 ALT1 ALT2 ALT3 —	GPIO[104] CS3_4 	SIUL — DSPI_4 —	I/O — 0 —	Slow	Medium	_	81	97	
G[9]	PCR[105]	ALT0 ALT1 ALT2 ALT3 —	GPIO[105] — — — RXD	SIUL — — FlexCAN_1	I/O — — — —	Slow	Medium	_	79	95	
G[10]	PCR[106]	ALT0 ALT1 ALT2 ALT3	GPIO[106] — TXD —	SIUL — FlexCAN_1 —	V 0	Slow	Medium	_	77	93	
G[11]	PCR[107]	ALT0 ALT1 ALT2 ALT3	GPIO[107] — — —	SIUL — — —	I/O — —	Slow	Medium	_	75	91	

Table 7. Pin muxing⁽¹⁾ (continued)

1. This table concerns Enhanced Full-featured version. Please refer to "SPC56xP54x/SPC56xP60x device configuration difference" table for difference between Enhanced Full-featured, Full-featured, and Airbag configuration.

2. ALT0 is the primary (default) function for each port after reset.

3. Alternate functions are chosen by setting the values of the PCR[PA] bitfields inside the SIU module. PCR[PA] = 00 → ALT0; PCR[PA] = 01 → ALT1; PCR[PA] = 10 → ALT2; PCR[PA] = 11 → ALT3. This is intended to select the output functions; to use one of the input-only functions, the PCR[IBE] bit must be written to '1', regardless of the values selected in the PCR[PA] bitfields. For this reason, the value corresponding to an input only function is reported as "—".

4. Module included on the MCU.

5. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMI[PADSELx] bitfields inside the SIUL module.

6. Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.

7. LQFP176 available only as development package.

8. Weak pull down during reset.

Symbol		Parameter	Conditions	Min	Max ⁽¹⁾	Unit
		2 2 V voltago regulator	—	3.0	3.6	
$V_{DD_HV_REG}$	SR	3.3 V voltage regulator supply voltage	Relative to V _{DD_HV_IOx}	V _{DD_HV_IOx} - 0.1	V _{DD_HV_IOx} + 0.1	V
		3.3 V ADC supply and high	—	3.0	5.5	
V _{DD_HV_AD}	SR	reference voltage	Relative to V _{DD_HV_REG}	$V_{DD_{HV_{REG}}} - 0.1$	5.5	V
V _{SS_HV_AD}	SR	ADC ground and low reference voltage	_	0	0	V
V _{DD_LV_REGCOR} ^{(3),(4)}	SR	Internal supply voltage	—	—	—	V
V _{SS_LV_REGCOR} ⁽³⁾	SR	Internal reference voltage	—	0	0	V
V _{DD_LV_CORx} ^{(3),(4)}	SR	Internal supply voltage	—	—	—	V
V _{SS_LV_CORx} ⁽³⁾	SR	Internal reference voltage	—	0	0	V
T _A	SR	Ambient temperature under bias	_	-40	125	°C

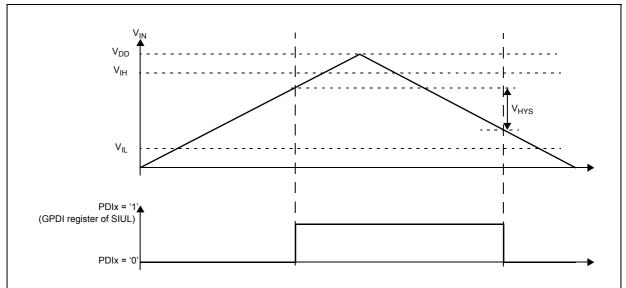
 Table 11. Recommended operating conditions (3.3 V) (continued)

1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.

2. The difference between each couple of voltage supplies must be less than 100 mV, $|V_{DD_HV_IOy} - V_{DD_HV_IOx}| < 100 mV$.

 To be connected to emitter of external NPN. Low voltage supplies are not under user control—these are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (V_{SS_LV_xxx}) must be shorted to high voltage grounds (V_{SS_HV_xxx}) and the low voltage supply pins (V_{DD_LV_xxx}) must be connected to the external ballast emitter.

4. The low voltage supplies (V_{DD_LV_xxx}) are not all independent. V_{DD_LV_COR1} and V_{DD_LV_COR2} are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, V_{SS_LV_COR1} and V_{SS_LV_COR2} are internally shorted. V_{DD_LV_REGCOR} and V_{DD_LV_REGCORx} are physically shorted internally, as are V_{SS_LV_REGCOR} and V_{SS_LV_CORx}.


Figure 7 shows the constraints of the different power supplies.

3.11 DC electrical characteristics

3.11.1 DC electrical characteristics (5 V)

Table 20 gives the DC electrical characteristics at 5 V ($4.5 \text{ V} < \text{V}_{\text{DD}_{\text{HV}_{\text{IOX}}}} < 5.5 \text{ V}$, NVUSRO[PAD3V5V]=0) as described in *Figure 13*.

Figure 13. I/O input DC electrical characteristics definition

Table 20. DC electrical chara	acteristics (5.0 V,	NVUSRO[PAD3	V5V]=0)

Symbol	I	Parameter	Conditions	Min	Мах	Unit
V _{IL}	D	Minimum low level input voltage	—	-0.1 ⁽¹⁾	—	V
V _{IL}	Ρ	Maximum level input voltage	—	—	0.35 V _{DD_HV_IOx}	V
V _{IH}	Ρ	Minimum high level input voltage	—	0.65 V _{DD_HV_IOx}	—	V
V _{IH}	D	Maximum high level input voltage	—	_	$V_{DD_HV_IOx} + 0.1^{(1)}$	V
V _{HYS}	Т	Schmitt trigger hysteresis	—	0.1 V _{DD_HV_IOx}	—	V
V _{OL_S}	Ρ	Slow, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V
V _{OH_S}	Ρ	Slow, high level output voltage	I _{OH} = –3 mA	0.8V _{DD_HV_IOx}	—	V
V _{OL_M}	Ρ	Medium, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V
V _{OH_M}	Ρ	Medium, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	—	V
V _{OL_F}	Ρ	Fast, low level output voltage	I _{OL} = 3 mA	_	0.1 V _{DD_HV_IOx}	V
V _{OH_F}	Ρ	Fast, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	_	V
V _{OL_SYM}	Ρ	Symmetric, low level output voltage	I _{OL} = 3 mA	_	0.1 V _{DD_HV_IOx}	V
V _{OH_SYM}	Ρ	Symmetric, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	_	V

Symbo	I	Parameter	Conditions	Min	Мах	Unit
	Р	Equivalent pull-down current	V _{IN} = V _{IL}	10	—	
I _{PD}	F		$V_{IN} = V_{IH}$	—	130	μA
I _{IL}	Р	Input leakage current (all bidirectional ports)	$T_A = -40$ to 125 °C	_	1	μA
I _{IL}	Ρ	Input leakage current (all ADC input-only ports)	$T_A = -40$ to 125 °C	_	0.5	μA
C _{IN}	D	Input capacitance	—	_	10	pF
1	D	RESET, equivalent pull-up current	$V_{IN} = V_{IL}$	–130	—	μA
I _{PU}			$V_{IN} = V_{IH}$	_	-10	μΛ
1	D	RESET, equivalent pull-down	$V_{IN} = V_{IL}$	10	_	μA
IPD		current	V _{IN} = V _{IH}		130	μΑ

Table 22. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)⁽¹⁾ (continued)

1. These specifications are design targets and subject to change per device characterization.

2. "SR" parameter values must not exceed the absolute maximum ratings shown in Table 9.

Gumbal			Davamatar	Canditiana		Va	lue	Unit		
Symbol			Parameter	Conditions		Тур	Мах	Unit		
			RUN — Maximum Mode ⁽¹⁾	V _{DD_LV_CORE} externally forced at 1.3 V ADC Freq = 32 MHz PLL Freq = 64 MHz	64 MHz	90	120			
	т				16 MHz	21	37			
	1		single core ⁽²⁾ VDD_LV_CORE externally forced to 1.3V		40 MHz	35	55			
					64 MHz	48	72			
				16 MHz	24	41				
I _{DD_LV_CORE}					40 MHz	42	64			
					64 MHz	58	85			
		Supply	RUN — Maximum Mode ⁽⁴⁾	V _{DD_LV_CORE} externally forced at 1.3 V	64 MHz	85	113	mA		
	Ρ	Р	current	current	HALT Mode ⁽⁵⁾	V _{DD_LV_CORE} externally forced at 1.3 V	_	5.5	15	
			STOP Mode ⁽⁶⁾	V _{DD_LV_CORE} externally forced at 1.3 V	_	4.5	13			
	D		Flash memory supply current during read	V _{DD_HV_FL} at 3.3 V	_	_	14			
I _{DD_FLASH}			Flash memory supply current during erase operation on 1 flash memory module	V _{DD_HV_FL} at 3.3 V	_	_	42			
I _{DD_ADC}	Т		ADC supply current — Maximum Mode	V _{DD_HV_AD} at 3.3 V ADC Freq = 16 MHz	_	3	4			
I _{DD_OSC}	Т		OSC supply current	V _{DD_OSC} at 3.3 V	8 MHz	2.4	3			

 Maximum mode configuration: Code fetched from Flash executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded.

- RAM, Code and Data Flash powered, code fetched from Flash executed by single core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM.
- RAM, Code and Data Flash powered, code fetched from Flash executed by dual core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM.
- Maximum mode configuration: Code fetched from RAM executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded.
- 5. HALT mode configuration, only for the "P" classification: Code Flash memory in low power mode, data Flash memory in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled.
- STOP mode configuration, only for the "P" classification: Code and data Flash memories in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled.

Figure 15. ADC characteristics and error definitions

3.15.1 Input impedance and ADC accuracy

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high-frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuate the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a highimpedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be measured.

DocID18340 Rev 6

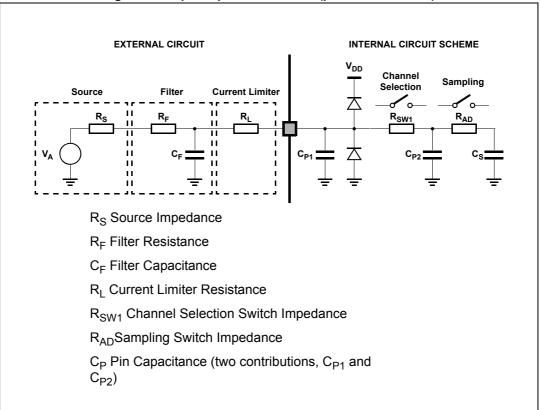
The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

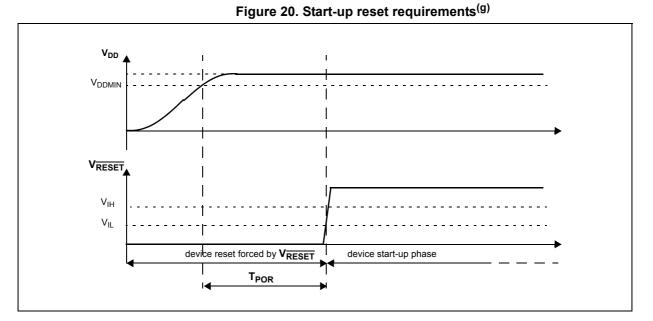
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{P2} substantially two switched capacitances, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with $C_S + C_{P2}$ equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc \times (C_S + C_{P2}))$), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on $C_S + C_{P2}$) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

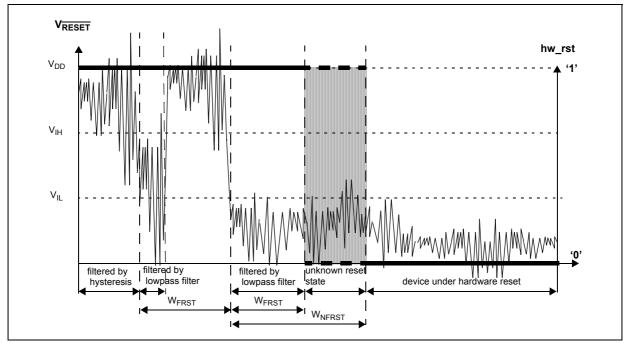
Equation 4

$$V_A \times \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R_{SW} and R_{AD}) can be neglected with respect to external resistances.




Figure 16. Input equivalent circuit (precise channels)


3.15.2 ADC conversion characteristics

Symbol		Doromotor	Conditions ⁽¹⁾		Unit		
		Parameter	Conditions	Min	Тур	Мах	Unit
V _{INAN}	SR	Analog input voltage ⁽²⁾	_	$V_{SS_HV_AD} - 0.3$	_	V _{SS_HV_AD} + 0.3	V
f _{CK}	SR	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_clk ⁽³⁾ frequency)	_	3 ⁽⁴⁾	_	60	MHz
f _s	SR	Sampling frequency	_	_	_	1.53	MHz
+	D	Sample time ⁽⁵⁾	f _{ADC} = 20 MHz, INPSAMP = 3	125	_	_	ns
t _{ADC_S}			f _{ADC} = 9 MHz, INPSAMP = 255	—	_	28.2	μs
t _{ADC_C}	Ρ	Conversion time ⁽⁶⁾	$f_{ADC} = 20 \text{ MHz}^{(7)},$ INPCMP = 1	0.650	_	_	μs
C _S ⁽⁸⁾	D	ADC input sampling capacitance	_	—	_	2.5	pF
C _{P1} ⁽⁸⁾	D	ADC input pin capacitance 1	_	—	_	3	pF
C _{P2} ⁽⁸⁾	D	ADC input pin capacitance 2	_	—	_	1	pF
C _{P3} ⁽⁸⁾	D	ADC input pin capacitance 3	_	—	_	1	pF
R _{SW1} ⁽⁸⁾	D	Internal resistance of analog source	$V_{DD_HV_AD} = 5 V \pm 10\%$	—	_	0.6	kΩ
INSW1	D		V _{DD_HV_AD} = 3.3 V ±10%		_	3	kΩ
R _{SW2} ⁽⁸⁾	D	Internal resistance of analog source	$V_{DD_HV_AD}$ = 5 V ±10%		_	2.15	kΩ
TSW2	D		V _{DD_HV_AD} = 3.3 V ±10%		_	3.6	kΩ
R _{AD} ⁽⁸⁾	D	Internal resistance of analog source	_	_	_	2	kΩ
I _{INJ}	т	Input current injection	Current injection on one ADC input, different from the converted one. Remains within TUE spec.	-5	_	5	mA
INL	Ρ	Integral Non Linearity No overload		—	±1.5	-	LSB
DNL	Ρ	Differential Non Linearity	No overload	-1.0	_	1.0	LSB
OFS	Т	Offset error — —		±1	_	LSB	
GNE	Т	Gain error — ±1 –			LSB		
TUE	Ρ	Total unadjusted error without current injection	16 precision channels	-2.5		2.5	LSB

g. The output drive provided is open drain and hence must be terminated by an external resistor of value 1 k Ω .

Course to a l		с	Demonstra	•					
Symbo	Symbol (Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit	
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	—	0.65V _{DD}	—	V _{DD} +0.4	V	
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	—	-0.4	_	0.35V _{DD}	V	
V _{HYS}	сс	С	Input hysteresis CMOS (Schmitt Trigger)	—	0.1V _{DD}	_	_	V	
				Push Pull, I_{OL} = 2mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_		0.1V _{DD}	V	
V _{OL} CO	сс	Ρ	Output low level	Push Pull, I_{OL} = 1mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	—	_	0.1V _{DD}		
				Push Pull, I_{OL} = 1mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5		
T _{tr} CC			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	_	10		
		DO				20			
	<u> </u>				—	_	40	- ns	
					—	_	12		
					_	_	25		
				_		40			
W _{FRST}	SR	Ρ	RESET input filtered pulse		—		40	ns	
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	_	500	_	_	ns	
T _{POR}	сс	D	maximum delay before internal reset is released after all VDD_HV reach nominal supply			_	1	ms	
		Ρ	P Weak pull-up current absolute value	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10	—	150	μA	
I _{WPU}	СС			V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	10	_	150		
				V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽⁴⁾	10	—	250		

Table 37. RESET electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 $^{\circ}C$ to $T_{A\mbox{ MAX}},$ unless otherwise specified.

2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of device reference manual).

3. C_L includes device and package capacitance (C_{PKG} < 5 pF).

 The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

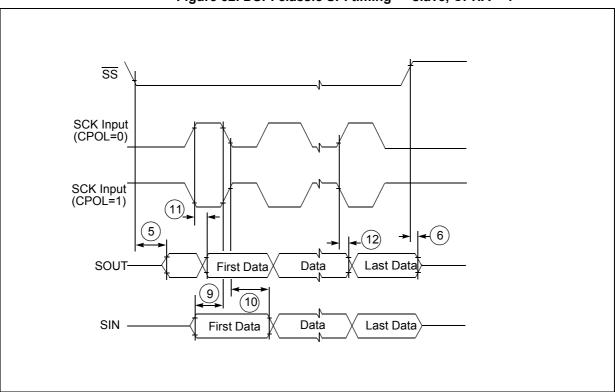
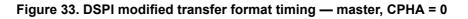
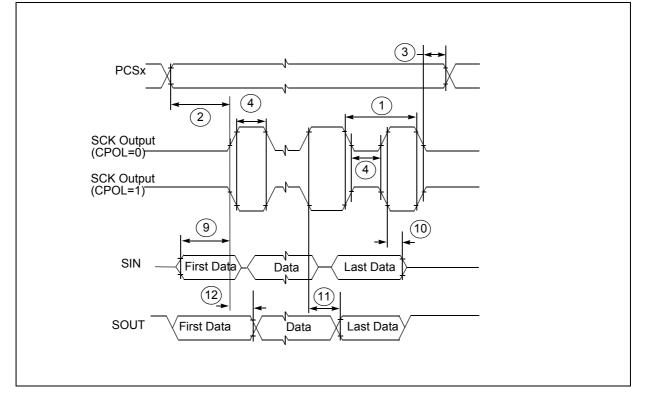
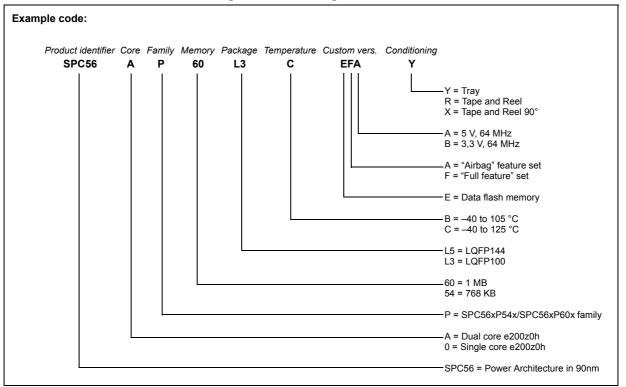




Figure 32. DSPI classic SPI timing — slave, CPHA = 1



DocID18340 Rev 6

5 Ordering information

Figure 40. Ordering information scheme^(h)

h. Not all configurations are available on the market. Please contact your ST sales representative to get the list of orderable commercial part number.

6 Revision history

Table 44 summarizes revisions to this document.

Date	Revision	Substantive changes
21-Dec-2010	1	Initial release
18-Oct-2011	2	In the Feature list: Revised the first bullet. Changed "Up to 82 GPIO" to "Up to 80 GPIO" Changed "and 82 GPIO" to "and 49 GPIO" Changed "FlexRay module" to "1 FlexRay™ module". Added Section 1.5: Feature details Table 4: SPC56xP54x/SPC56xP60x series block summary, added FlexRay entry. In the "LQFP176 pinout (top view)" figure: – Pin 104 now is TDI, was PB[5] – Pin 107 now is TDO, was PB[4] – Pin 71 now is NC, was OKOUT – Pin 72 now is NC, was OKOUT B – Pin 87 now is NC, was OKOUT B – Pin 87 now is NC, was OKOUT B – Pin 87 now is NC, was IPP_LIVI_B_VDDIO Table 7: Pin muxing: PB[6] was clk_out_div5, is now clk_out_div256 Removed PB[4] and PB[5] rows In the A[3] row, changed ABS[2] to ABS[1] Section 3.11: DC electrical characteristics, added "Peripherals supply current (5 V and 3.3 V)" table Table 13: Thermal characteristics for 144-pin LQFP and Table 13: Thermal characteristics for 144-pin LQFP and Table 30: PLLMRFM electrical specifications (V _{DDPLL} = 1.08 V to 1.32 V, V _{SS} = V _{SSPLL} = 0 V, TA = TL to TH), changed the max value of f _{SVS} from 120 to 64 Table 33: Program and erase specifications: Removed all TBC changed the max value of T _{BKPRG} (Data Flash) from 3.0 to 500 µs Added t _{ESRT} row Table 17: Voltage regulator electrical characteristics, updated V _{DD_LV} REGCOR values Updated Table 18: Low voltage monitor electrical characteristics Updated Table 21: Supply current (5.0 V, NVUSRO[PAD3V5V]=0) and Table 23: Supply current (3.3 V, NVUSRO[PAD3V5V]=1) Removed orderable parts tables.

Date	Revision	Substantive changes
15-May-2012	3	Removed "Enhanced Full-featured" version. In the cover page, added "(1 × Master/Slave, 1 × Master Only)" at the end of the bullet "2 LINFlex modules (LIN 2.1)" Table 2: SPC56xP54x/SPC56xP60x device comparison, updated the value of "LINFLEX module" to "2 (1 × Master/Slave, 1 × Master only)" Section 1.5.4: On-chip flash memory with ECC replaced two occurrences of "3 wait states" to "2 wait states" replaced 60 MHz to 64 MHz Section 1.5.21: Serial communication interface module (LINFlex), updated first bullet to "Supports LIN Master mode (on both modules), LIN Slave mode (on one module) and UART mode" Section 1.5.24: Analog-to-digital converter (ADC), removed bullet concerning the analog watchdogs from Normal mode features. Table 5: Supply pins, removed V _{REG_BYPASS} row. Table 6: System pins: added V _{REG_BYPASS} row_ added a footnote about RESET Table 9: Absolute maximum ratings: changed typical value of TV _{DD} to 0.25 and added a footnote added V _{INAN} entry Updated Section 3.8.1: Voltage regulator electrical characteristics Updated Table 14: EMI testing specifications Table 20: DC electrical characteristics (S.0 V, NVUSRO[PAD3V5V]=0), added IPU and IPD rows for RESET pin. Table 21: Supply current (S.0 V, NVUSRO[PAD3V5V]=0); added maximum values of I _{DD_LV_CORE} for: RUN, HALT, and STOP mode updated values and parameter classification of I _{DD_FLASH} Table 23: Supply current (3.3 V, NVUSRO[PAD3V5V]=1); added maximum values of I _{DL_LV_CORE} for: RUN,

