

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	80
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 26x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p54l5beaay

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document overview

This document provides electrical specifications, pin assignments, and package diagrams for the SPC56xP54x/SPC56xP60x series of microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical characteristics. For functional characteristics, refer to the device reference manual.

1.2 Description

This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis applications specifically the airbag application.

This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology.

The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category. It operates up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

1.3 Device comparison

Table 2 provides a summary of different members of the SPC56xP54x/SPC56xP60x family and their features—relative to Full-featured version—to enable a comparison among the family members and an understanding of the range of functionality offered within this family.

Feature	SPC560P54	SPC560P60	SPC56AP54	SPC56AP60
Code Flash memory (with ECC)	768 KB	1 MB	768 KB	1 MB
Data Flash / EE (with ECC)		64	KB	
SRAM (with ECC)	64 KB	80 KB	64 KB	80 KB
Processor core	32-bit e	200z0h	32-bit Dua	l e200z0h
Instruction set		VI	Ē	
CPU performance		0-64	MHz	
FMPLL (frequency-modulated phase- locked loop) modules			1	
INTC (interrupt controller) channels		14	48	
PIT (periodic interrupt timer)		1 (includes fou	r 32-bit timers)	

Table 2. SPC56xP54x/SPC56xP60x device comparison

SPC56xP54x/SPC56xP60x is present on the market in two different options enabling different features: Full-featured, and Airbag configuration. *Table 3* shows the main differences between the two versions.

Table 3. SPC56xP54x/SPC56xP60x device configuration difference

Feature	Enhanced Full-featured	Full-featured	Airbag
FlexCAN (controller area network)	3	2	2
CTU (cross triggering unit)	Ye	es	No
FlexRay	Yes (64 mes	sage buffer)	No
DSPI (deserial serial peripheral interface) modules	Į	5	4
CRC (cyclic redundancy check) unit	2	2	1

1.4 Block diagram

Figure 1 shows a top-level block diagram of the SPC56xP54x/SPC56xP60x MCU. *Table 4* summarizes the functions of the blocks.

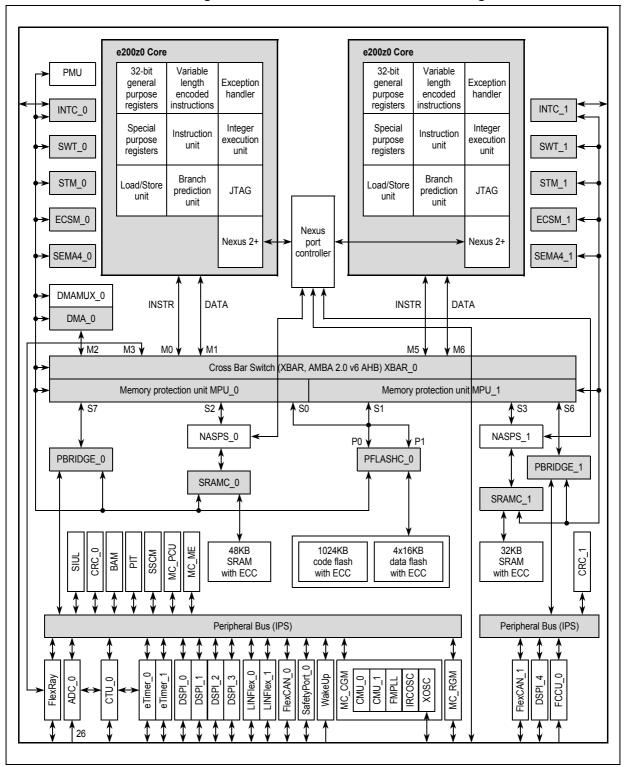
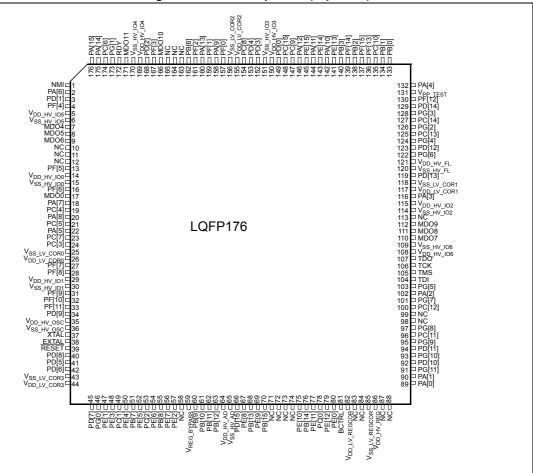


Figure 1. SPC56xP54x/SPC56xP60x block diagram



DocID18340 Rev 6

2 Package pinouts and signal descriptions

2.1 Package pinouts

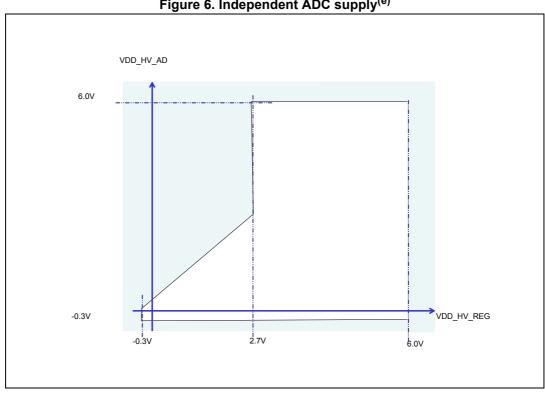
The LQFP pinouts are shown in the following figures.

b. Software development package only. Not available for production.

		Alternate		e 7. Pin mux	I/O	,	peed ⁽⁶⁾		Pin	
Port pin	PCR No.	function ^{(2),} (3)	Functions	Peripheral (4)	direction (5)	SRC = 0	SRC = 1	LQFP 100	LQFP 144	LQFP 176 ⁽⁷⁾
	•	•		Po	ort B					
B[0]	PCR[16]	ALT0 ALT1 ALT2 ALT3 —	GPIO[16] TXD ETC[2] DEBUG[0] EIRQ[15]	SIUL FlexCAN_0 eTimer_1 SSCM SIUL	I/O O I/O I	Slow	Medium	76	109	133
B[1]	PCR[17]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[17] CS7_1 ETC[3] DEBUG[1] RXD EIRQ[16]	SIUL DSPI_1 eTimer_1 SSCM FlexCAN_0 SIUL	I/O O I/O I I	Slow	Medium	77	110	134
B[2]	PCR[18]	ALT0 ALT1 ALT2 ALT3 —	GPIO[18] TXD SOUT_4 DEBUG[2] EIRQ[17]	SIUL LINFlex_0 DSPI_4 SSCM SIUL	1/0 0 1/0 -	Slow	Medium	79	114	138
B[3]	PCR[19]	ALT0 ALT1 ALT2 ALT3 —	GPIO[19] — SCK_4 DEBUG[3] RXD	SIUL — DSPI_4 SSCM LINFlex_0	₩ ₩ ₩ ₩ ₩	Slow	Medium	80	116	140
B[6]	PCR[22]	ALT0 ALT1 ALT2 ALT3 —	GPIO[22] clk_out CS2_2 clk_out_div2 56 EIRQ[18]	SIUL MC_CGL DSPI_2 MC_CGL SIUL	₩ 0 0 1	Slow	Medium	96	138	162
B[7]	PCR[23]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[23] — — AN[0] RXD	SIUL — — ADC_0 LINFlex_0	Input Only	—	_	29	43	51
B[8]	PCR[24]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[24] — — — AN[1] ETC[5]	SIUL — — ADC_0 eTimer_0	Input Only	_	_	31	47	55

Table 7. Pin muxing⁽¹⁾ (continued)

Dent	DOD	Alternate			I/O	-	peed ⁽⁶⁾		Pin		
Port pin	PCR No.	function ^{(2),} (3)	Functions	Peripheral (4)	direction (5)	SRC = 0	SRC = 0 SRC = 1		LQFP 144	LQFP 176 ⁽⁷⁾	
	<u>.</u>			Po	ort C						
		ALT0	GPIO[32]	SIUL							
		ALT1	—	—							
C[0]	PCR[32]	ALT2	—	—	Input Only	—	—	45	66	78	
		ALT3	—	—							
			AN[19]	ADC_0							
		ALT0	GPIO[33]	SIUL							
		ALT1	—	—							
C[1]	PCR[33]	ALT2	—	—	Input Only	—	—	28	41	49	
		ALT3	—	—							
		—	AN[2]	ADC_0							
		ALT0	GPIO[34]	SIUL							
		ALT1	—	—							
C[2]	PCR[34]	ALT2	—	—	Input Only	—	—	30	45	53	
		ALT3	—	—							
			AN[3]	ADC_0							
		ALT0	GPIO[35]	SIUL	I/O						
		ALT1	CS1_0	DSPI_0	0						
C[3]	PCR[35]	PCR[35]	ALT2	ETC[4]	eTimer_1	I/O	Slow	Medium	10	16	24
		ALT3	TXD	LINFlex_1	0						
		—	EIRQ[21]	SIUL	I						
		ALT0	GPIO[36]	SIUL	I/O						
		ALT1	CS0_0	DSPI_0	I/O						
C[4]	PCR[36]	ALT2	—	—	—	Slow	Medium	5	11	19	
		ALT3	DEBUG[4]	SSCM							
			EIRQ[22]	SIUL	I						
		ALT0	GPIO[37]	SIUL	I/O						
		ALT1	SCK_0	DSPI_0	I/O						
C[5]	PCR[37]	ALT2	SCK_4	DSPI_4	I/O	Slow	Medium	7	13	21	
		ALT3	DEBUG[5]	SSCM	_						
			EIRQ[23]	SIUL	I						
		ALT0	GPIO[38]	SIUL	I/O						
		ALT1	SOUT_0	DSPI_0	0			• -			
C[6]	PCR[38]	ALT2	—	—	—	Slow	Medium	98	142	174	
		ALT3	DEBUG[6]	SSCM							
		—	EIRQ[24]	SIUL	I						


 Table 7. Pin muxing⁽¹⁾ (continued)

		Alternate			J/O	-	peed ⁽⁶⁾		Pin	
Port pin	PCR No.	function ^{(2),} (3)	Functions	Peripheral (4)	direction (5)	SRC = 0	SRC = 1	LQFP 100	LQFP 144	LQFP 176 ⁽⁷⁾
		•		Po	ort G					
		ALT0	GPIO[96]	SIUL	I/O					
		ALT1	F[0]	FCCU	0					
G[0]	PCR[96]	ALT2	—	—	—	Slow	Medium	—	38	46
		ALT3	—	—	—					
		—	EIRQ[30]	SIUL	I					
		ALT0	GPIO[97]	SIUL	I/O					
		ALT1	F[1]	FCCU	0					
G[1]	PCR[97]	ALT2	—	—	—	Slow	Medium		141	173
		ALT3		_	_					
			EIRQ[31]	SIUL	I					
		ALT0	GPIO[98]	SIUL	I/O					
		ALT1	—	—	—			_	102	
G[2]	PCR[98]	ALT2	—	—	—	Slow	Medium			126
		ALT3	—	—						
		—	SIN_4	DSPI_4	I					
		ALT0	GPIO[99]	SIUL	I/O					
G[3]	PCR[99]	ALT1		—	_	Slow	Medium	Medium —	104	128
		ALT2	SOUT_4	DSPI_4	0					
		ALT3		—	—					
		ALT0	GPIO[100]	SIUL	I/O					
G[4]	PCR[100]	ALT1	—	—	—	Slow	Medium		100	124
		ALI2	SCK_4	DSPI_4	I/O					
		ALT3		—						
		ALT0	GPIO[101]	SIUL	I/O					
G[5]	PCR[101]	ALT1	_		—	Slow	Medium	_	85	103
		ALIZ	CS0_4	DSPI_4	I/O					
		ALT3								
		ALT0	GPIO[102]	SIUL	I/O					
G[6]	PCR[102]	ALT1			_	Slow	Medium		98	122
		ALT2	CS1_4	DSPI_4	0					
		ALT3	_							
		ALT0	GPIO[103]	SIUL	I/O					101
G[7]	PCR[103]	ALT1				Slow	Medium		83	
		ALT2 ALT3	CS2_4	DSPI_4	0					
		ALIS	_	_	_					

Table 7. Pin muxing⁽¹⁾ (continued)

Figure 6. Independent ADC supply^(e)

Recommended operating conditions 3.4

Table 10. Recommended	operating co	nditions (5.0	V)

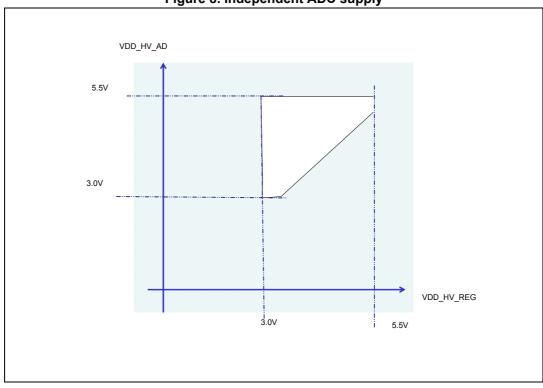
Symbol		Parameter	Conditions	Min	Max ⁽¹⁾	Unit
V _{SS_HV}	SR	Digital ground	—	0	0	V
V _{DD_HV_IOx} ⁽²⁾	SR	5.0 V input/output supply voltage	_	4.5	5.5	V
V _{SS_HV_IOx}	SR	Input/output ground voltage	—	0	0	V
		5.0 V code and data flash	—	4.5	5.5	
V _{DD_HV_FL}	L SR memory supply voltage Relative	Relative to V _{DD_HV_IOx}	V _{DD_HV_IOx} -0.1	V _{DD_HV_IOx} + 0.1	V	
V _{SS_HV_FL}	SR	Code and data flash memory ground	_	0	0	V
		5.0.V. crystal oscillator	—	4.5	5.5	
V _{DD_HV_OSC}	SR	5.0 V crystal oscillator amplifier supply voltage	Relative to V _{DD_HV_IOx}	V _{DD_HV_IOx} -0.1	V _{DD_HV_IOx} + 0.1	V
V _{SS_HV_OSC}	SR	5.0 V crystal oscillator amplifier reference voltage		0	0	V

e. Device design targets the removal of this conditions. To be confirmed by design during device validation.

Symbol		Parameter	Conditions Min		Max ⁽¹⁾	Unit	
		2 2 V voltago regulator	—	3.0	3.6		
$V_{DD_HV_REG}$	SR 3.3 V voltage regulator supply voltage		Relative to V _{DD_HV_IOx}	V _{DD_HV_IOx} - 0.1	V _{DD_HV_IOx} + 0.1	V	
		3.3 V ADC supply and high	—	3.0	5.5		
V _{DD_HV_AD}	SR	reference voltage	Relative to V _{DD_HV_REG}	$V_{DD_{HV_{REG}}} - 0.1$	5.5	V	
V _{SS_HV_AD}	SR	ADC ground and low reference voltage	_	0	0	V	
V _{DD_LV_REGCOR} ^{(3),(4)}	SR	Internal supply voltage	—	—	—	V	
V _{SS_LV_REGCOR} ⁽³⁾	SR	Internal reference voltage	—	0	0	V	
V _{DD_LV_CORx} ^{(3),(4)}	SR	Internal supply voltage	—	—	—	V	
V _{SS_LV_CORx} ⁽³⁾	SR	Internal reference voltage	—	0	0	V	
T _A	SR	Ambient temperature under bias	_	-40	125	°C	

 Table 11. Recommended operating conditions (3.3 V) (continued)

1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.


2. The difference between each couple of voltage supplies must be less than 100 mV, $|V_{DD_HV_IOy} - V_{DD_HV_IOx}| < 100 mV$.

 To be connected to emitter of external NPN. Low voltage supplies are not under user control—these are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (V_{SS_LV_xxx}) must be shorted to high voltage grounds (V_{SS_HV_xxx}) and the low voltage supply pins (V_{DD_LV_xxx}) must be connected to the external ballast emitter.

4. The low voltage supplies (V_{DD_LV_xxx}) are not all independent. V_{DD_LV_COR1} and V_{DD_LV_COR2} are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, V_{SS_LV_COR1} and V_{SS_LV_COR2} are internally shorted. V_{DD_LV_REGCOR} and V_{DD_LV_REGCORx} are physically shorted internally, as are V_{SS_LV_REGCOR} and V_{SS_LV_CORx}.

Figure 7 shows the constraints of the different power supplies.

Figure 8. Independent ADC supply

3.5 Thermal characteristics

Table 12. Thermal characteristics for 144-pin LQFP

Symbol		Parameter	Conditions	Typical value	Unit
Р	D	Thermal resistance junction-to-ambient, natural convection ⁽¹⁾	Single layer board—1s	53.4	°C/W
$R_{ heta JA}$	D	natural convection ⁽¹⁾	Four layer board—2s2p	43.9	°C/W
$R_{\theta JB}$	D	Thermal resistance junction-to-board ⁽²⁾	Four layer board—2s2p	29.6	°C/W
$R_{\theta JCtop}$	D	Thermal resistance junction-to-case $(top)^{(3)}$	Single layer board—1s	9.3	°C/W
Ψ_{JB}	D	Junction-to-board, natural convection ⁽⁴⁾	Operating conditions	29.8	°C/W
Ψ_{JC}	D	Junction-to-case, natural convection ⁽⁵⁾	Operating conditions	1.3	°C/W

1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package.

2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.

3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

5. Thermal characterization parameter indicating the temperature difference between the case and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC.

Symbol		Parameter	Conditions	Typical value	Unit		
P	D	Thermal resistance junction-to-ambient, natural convection ⁽¹⁾	Single layer board—1s	47.3	°C/W		
IN⊕JA	$R_{\theta JA}$ D natural convection ⁽¹⁾		Four layer board—2s2p	35.6	°C/W		
$R_{ hetaJB}$	D	Thermal resistance junction-to-board ⁽²⁾	Four layer board—2s2p	19.1	°C/W		
R _{0JCtop}	D	Thermal resistance junction-to-case (top) ⁽³⁾	Single layer board—1s	9.1	°C/W		
Ψ_{JB}	D	Junction-to-board, natural convection ⁽⁴⁾	Operating conditions	19.1	°C/W		
Ψ_{JC}	D	Junction-to-case, natural convection ⁽⁵⁾	Operating conditions	1.1	°C/W		

Table 13. Thermal characteristics for 100-pin LQFP

1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package.

2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.

3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

5. Thermal characterization parameter indicating the temperature difference between the case and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC.

3.5.1 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from *Equation 1*:

Equation 1 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

 T_A = ambient temperature for the package (^oC)

 $R_{\theta JA}$ = junction to ambient thermal resistance (^oC/W)

 P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

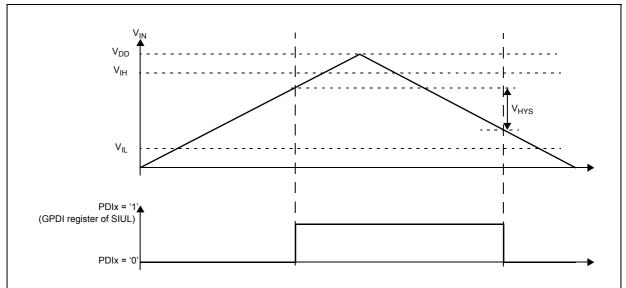
When a heat sink is used, the thermal resistance is expressed in *Equation 2* as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

Equation 2 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

 $R_{\theta,JA}$ = junction to ambient thermal resistance (°C/W)

 $R_{\theta,IC}$ = junction to case thermal resistance (°C/W)


 $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

3.11 DC electrical characteristics

3.11.1 DC electrical characteristics (5 V)

Table 20 gives the DC electrical characteristics at 5 V ($4.5 \text{ V} < \text{V}_{\text{DD}_{\text{HV}_{\text{IOX}}}} < 5.5 \text{ V}$, NVUSRO[PAD3V5V]=0) as described in *Figure 13*.

Figure 13. I/O input DC electrical characteristics definition

Table 20. DC electrical chara	acteristics (5.0 V,	NVUSRO[PAD3	V5V]=0)

Symbol		Parameter	Conditions	Min	Мах	Unit
V _{IL}	D	Minimum low level input voltage	—	-0.1 ⁽¹⁾	—	V
V _{IL}	Ρ	Maximum level input voltage	—	—	0.35 V _{DD_HV_IOx}	V
V _{IH}	Ρ	Minimum high level input voltage	—	0.65 V _{DD_HV_IOx}	—	V
V _{IH}	D	Maximum high level input voltage	_	—	$V_{\text{DD}_\text{HV}_\text{IOx}} + 0.1^{(1)}$	V
V _{HYS}	Т	Schmitt trigger hysteresis	—	0.1 V _{DD_HV_IOx}	—	V
V _{OL_S}	Ρ	Slow, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V
V _{OH_S}	Ρ	Slow, high level output voltage	I _{OH} = –3 mA	0.8V _{DD_HV_IOx}	—	V
V _{OL_M}	Ρ	Medium, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V
V _{OH_M}	Ρ	Medium, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	—	V
V _{OL_F}	Ρ	Fast, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V
V _{OH_F}	Ρ	Fast, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	—	V
V _{OL_SYM}	Ρ	Symmetric, low level output voltage	I _{OL} = 3 mA	_	0.1 V _{DD_HV_IOx}	V
V _{OH_SYM}	Ρ	Symmetric, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	_	V

Symbo	I	Parameter	Conditions	Min	Мах	Unit
1	Р	Equivalent pull-up current	$V_{IN} = V_{IL}$	-130	_	
I _{PU}	1	Equivalent puil-up current	$V_{IN} = V_{IH}$	_	-10	μA
	Р	Equivalent pull-down current	$V_{IN} = V_{IL}$	10	—	
I _{PD}	Г	Equivalent puil-down current	$V_{IN} = V_{IH}$		130	μA
Ι _{ΙL}	Ρ	Input leakage current (all bidirectional ports)	T _A =40 to 125 °C	-1	1	μA
IIL	Ρ	Input leakage current (all ADC input-only ports)	T _A = -40 to 125 °C	-0.5	0.5	μA
C _{IN}	D	Input capacitance	—	_	10	pF
1	D	RESET, equivalent pull-up current	V _{IN} = V _{IL}	-130	_	
I _{PU}			$V_{IN} = V_{IH}$	—	-10	μA
1			V _{IN} = V _{IL}	10		
I _{PD} D	1)		V _{IN} = V _{IH}	_	130	μA

Table 20. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) (continued)

1. "SR" parameter values must not exceed the absolute maximum ratings shown in *Table 9*.

Symbol		Parameter		Conditions		Value		Unit			
			Parameter	Conditions		Тур	Мах	Unit			
			RUN — Maximum Mode ⁽¹⁾	V _{DD_LV_CORE} externally forced at 1.3 V ADC Freq = 32 MHz PLL Freq = 64 MHz	64 MHz	90	120				
					16 MHz	21	37				
	Т		RUN - Platform consumption, single core ⁽²⁾		40 MHz	35	55				
			5	VDD_LV_CORE	64 MHz	48	72				
			externally forced to 1.3V	16 MHz	24	41					
IDD_LV_CORE			RUN - Platform consumption, dual core ⁽³⁾		40 MHz	42	64				
				64 MHz	58	85					
	Ρ	Supply	RUN — Maximum Mode ⁽⁴⁾	V _{DD_LV_CORE} externally forced at 1.3 V	64 MHz	85	113	mA			
		current	HALT Mode ⁽⁵⁾	V _{DD_LV_CORE} externally forced at 1.3 V	_	5.5	15				
					STOP Mode ⁽⁶⁾	V _{DD_LV_CORE} externally forced at 1.3 V	_	4.5	13		
	т	т				Flash memory supply current during read	V _{DD_HV_FL} at 5.0 V	_		14	
I _{DD_FLASH}			Flash memory supply current		V _{DD_HV_FL} at 5.0 V	_	_	42			
I _{DD_ADC}	т		ADC supply current — Maximum Mode	V _{DD_HV_AD} at 5.0 V ADC Freq = 16 MHz	_	3	4				
I _{DD_OSC}	Т		OSC supply current	V _{DD_OSC} at 5.0 V	8 MHz	2.6	3.2				

 Maximum mode configuration: Code fetched from Flash executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded.

 RAM, Code and Data Flash powered, code fetched from Flash executed by single core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM.

- RAM, Code and Data Flash powered, code fetched from Flash executed by dual core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM.
- Maximum mode configuration: Code fetched from RAM executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded.

5. HALT mode configuration, only for the "P" classification: Code Flash memory in low power mode, data Flash memory in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled.

 STOP mode configuration, only for the "P" classification: Code and data Flash memories in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled.

Symbo	I	Parameter	Conditions	Min	Мах	Unit
	Р	Equivalent pull-down current	V _{IN} = V _{IL}	10	—	
I _{PD}	F		$V_{IN} = V_{IH}$	—	130	μA
I _{IL}	Р	Input leakage current (all bidirectional ports)	$T_A = -40$ to 125 °C	_	1	μA
I _{IL}	Р	Input leakage current (all ADC input-only ports)	$T_A = -40$ to 125 °C	_	0.5	μA
C _{IN}	D	Input capacitance	—	_	10	pF
1	D	RESET, equivalent pull-up current	$V_{IN} = V_{IL}$	–130	—	μA
I _{PU}			$V_{IN} = V_{IH}$	_	-10	μΛ
1	D	RESET, equivalent pull-down current	$V_{IN} = V_{IL}$	10	_	μA
IPD			V _{IN} = V _{IH}		130	μΑ

Table 22. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)⁽¹⁾ (continued)

1. These specifications are design targets and subject to change per device characterization.

2. "SR" parameter values must not exceed the absolute maximum ratings shown in Table 9.

Symbol		C Parameter		Conditions ⁽¹⁾			Unit				
		C	Farameter	Conditions			Тур	Мах	onn		
				C _L = 25 pF, 40 MHz		_	_	22			
				C _L = 25 pF, 64 MHz	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0			33			
1	сс	D		Root medium square	C _L = 100 pF, 40 MHz				56	mA	
IRMSFST	00				-		C _L = 25 pF, 40 MHz		_	_	14
				C _L = 25 pF, 64 MHz	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	20			
						C _L = 100 pF, 40 MHz		_	_	35	
1	~ -		Sum of all the static	V _{DD} = 5.0 V ± 10%, P/	AD3V5V = 0	_	_	70			
AVGSEG	SR	D I/O current within a supply segment	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	_	65	mA			

Table 26. I/O consumption (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified.

2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

3.12 Main oscillator electrical characteristics

The SPC56xP54x/SPC56xP60x provides an oscillator/resonator driver.

Symbol		Parameter	Min	Max	Unit
Cynhod				тал	onit
f _{OSC}	SR	Oscillator frequency	4	40	MHz
9 _m	Ρ	Transconductance	6.5	25	mA/V
V _{OSC}	Т	Oscillation amplitude on EXTAL pin	1	_	V
toscsu	Т	Start-up time ^{(1),(2)}	8	_	ms

Table 27. Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0)

1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time.

2. Value captured when amplitude reaches 90% of EXTAL.

Symbol		Parameter	Min	Мах	Unit
f _{OSC}	SR	Oscillator frequency	4	40	MHz
9 _m	Ρ	Transconductance	4	20	mA/V
V _{OSC}	Т	Oscillation amplitude on EXTAL pin	1	_	V
t _{oscsu}	Т	Start-up time ^{(1),(2)}	8		ms

1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time.

2. Value captured when amplitude reaches 90% of EXTAL.

In particular two different transient periods can be distinguished:

• A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

Equation 5

$$\tau_{1} = (R_{SW} + R_{AD}) \times \frac{C_{P} \times C_{S}}{C_{P} + C_{S}}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_S is always much longer than the internal time constant:

Equation 6

$$\tau_1 < (R_{SW} + R_{AD}) \times C_S \ll T_S$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to *Equation* 7:

Equation 7

$$V_{A1} \times (C_S + C_{P1} + C_{P2}) = V_A \times (C_{P1} + C_{P2})$$

• A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

Equation 8

$$\tau_2 \! < \! R_L \! \times (C_S \! + C_{P1} \! + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_S , a constraint on R_L sizing is obtained:

Equation 9

$$8.5 \times \tau_2 = 8.5 \times R_L \times (C_S + C_{P1} + C_{P2}) < T_S$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1}, C_{P2} and C_S, then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1}. *Equation 10* must be respected (charge balance assuming now C_S already charged at V_{A1}):

Equation 10

$$V_{A2} \times (C_S + C_{P1} + C_{P2} + C_F) = V_A \times C_F + V_{A1} \times (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on

DocID18340 Rev 6

3.15.2 ADC conversion characteristics

Symbol		Devemeter	Conditions ⁽¹⁾		Unit		
Symbo	וכ	Parameter	Conditions	Min	Тур	Мах	Unit
V _{INAN}	SR	Analog input voltage ⁽²⁾	_	$\begin{array}{c} V_{SS_HV_AD} \\ -0.3 \end{array}$	_	V _{SS_HV_AD} + 0.3	V
f _{CK}	SR	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_clk ⁽³⁾ frequency)	_	3 ⁽⁴⁾	_	60	MHz
f _s	SR	Sampling frequency	_	_	_	1.53	MHz
+	D	Sample time ⁽⁵⁾	f _{ADC} = 20 MHz, INPSAMP = 3	125	_	_	ns
t _{ADC_S}			f _{ADC} = 9 MHz, INPSAMP = 255	—	_	28.2	μs
t _{ADC_C}	Ρ	Conversion time ⁽⁶⁾	$f_{ADC} = 20 \text{ MHz}^{(7)},$ INPCMP = 1	0.650	_		μs
C _S ⁽⁸⁾	D	ADC input sampling capacitance	_	—	_	2.5	pF
C _{P1} ⁽⁸⁾	D	ADC input pin capacitance 1	_	—	_	3	pF
C _{P2} ⁽⁸⁾	D	ADC input pin capacitance 2	_	—	_	1	pF
C _{P3} ⁽⁸⁾	D	ADC input pin capacitance 3	_	—	—	1	pF
R _{SW1} ⁽⁸⁾	D	Internal resistance of analog	$V_{DD_HV_AD} = 5 V \pm 10\%$	—	_	0.6	kΩ
INSW1	D	source	V _{DD_HV_AD} = 3.3 V ±10%		_	3	kΩ
R _{SW2} ⁽⁸⁾	D	Internal resistance of analog	$V_{DD_HV_AD}$ = 5 V ±10%		_	2.15	kΩ
TSW2	D	source	V _{DD_HV_AD} = 3.3 V ±10%		_	3.6	kΩ
R _{AD} ⁽⁸⁾	D	Internal resistance of analog source	_	_	_	2	kΩ
I _{INJ}	т	Input current injection	Current injection on one ADC input, different from the converted one. Remains within TUE spec.	-5	_	5	mA
INL	Ρ	Integral Non Linearity	No overload	—	±1.5	-	LSB
DNL	Ρ	Differential Non Linearity	No overload	-1.0	_	1.0	LSB
OFS	Т	Offset error	—		±1	_	LSB
GNE	Т	Gain error	—	_	±1		LSB
TUE	Ρ	Total unadjusted error without current injection	16 precision channels	-2.5		2.5	LSB

Symbol		~	Deveneter	Conditions ⁽¹⁾		Value)	11		
Symbo	DI	С	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	—	0.65V _{DD}	—	V _{DD} +0.4	V		
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	—	-0.4	_	0.35V _{DD}	V		
V _{HYS}	сс	С	Input hysteresis CMOS (Schmitt Trigger)	—	0.1V _{DD}	_	_	V		
				Push Pull, I_{OL} = 2mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_		0.1V _{DD}			
V _{OL}	сс	СР	P Output low level	Push Pull, I_{OL} = 1mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	—	_	0.1V _{DD}	V		
					Push Pull, I_{OL} = 1mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5		
				C _L = 25pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	10			
				C _L = 50pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	20			
т	сс	D	D	Output transition time		C _L = 100pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	40	
T _{tr}					C _L = 25pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	12	ns	
						C _L = 50pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	25	
				C _L = 100pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		40			
W _{FRST}	SR	Ρ	RESET input filtered pulse		—		40	ns		
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	_	500	_	_	ns		
T _{POR}	сс	D	maximum delay before internal reset is released after all VDD_HV reach nominal supply	Monotonic VDD_HV supply ramp		_	1	ms		
				V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10	—	150			
I _{WPU}	сс	Ρ	Weak pull-up current absolute value	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	10	_	150	μA		
				V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽⁴⁾	10	—	250			

Table 37. RESET electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 $^{\circ}C$ to $T_{A\mbox{ MAX}},$ unless otherwise specified.

2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of device reference manual).

3. C_L includes device and package capacitance (C_{PKG} < 5 pF).

 The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Date	Revision	Substantive changes
21-Nov-2012	4	 In the cover page, replaced "64 MHz, dual issue, 32-bit CPU core complex" with "64 MHz, single issue, 32-bit CPU core complex" <i>Table 9: Absolute maximum ratings</i>, updated TV_{DD} entry <i>Table 22: DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)</i>: Updated conditions value of V_{OL_F} to 11 mA Updated conditions value of V_{OH_F} to -11 mA <i>Table 24: Peripherals supply current (5 V and 3.3 V)</i>: Replaced all occurrences of I_{DD_BV} in this table with I_{DD_HV} Replaced all occurrences of VDD_BV in this table with VDD_HV_REG. <i>Figure 40: Ordering information scheme</i>, fixed typo in the footnote.
18-Sep-2013	5	Updated Disclaimer.
15-Jun-2016	6	 Added "AEC-Q10x qualified" in <i>Features</i> section. In <i>Table 2: SPC56xP54x/SPC56xP60x device comparison</i> added footnote "LinFlex_1 is Master Only." related to row "LINFlex modules" Updated <i>Table 3: SPC56xP54x/SPC56xP60x device configuration difference</i> <i>Figure 2: LQFP176 pinout (top view)</i>: Changed PB[4] to TDO Changed PB[5] to TDI Changed pins 71,72 to NC Changed pins 87,88 to NC In <i>Section 1.5.27: Nexus development interface (NDI)</i>, added note "At least one TCK clock is necessary for the EVTI signal to be recognized by the MCU." for EVTI pin. In <i>Table 7: Pin muxing</i>: Replaced "PCR register" with "PCR No." Updated "CS3" with "CS3_4" function related to A[2] port pin In column "I/O direction", added "O" for "DSPI_1" peripheral In "Functions" column related to D[12] port pin, changed DS7_1 to CS7_1

Table 44. Document revision history (continued)

