

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	80
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	64K × 8
RAM Size	80K × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 26x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p60l5ceaay

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Triangle wave modulation
- Programmable modulation depth (±0.25% to ±4% deviation from center frequency)
 Programmable modulation frequency dependent on reference frequency
- Self-clocked mode (SCM) operation

1.5.9 Main oscillator

The main oscillator provides these features:

- Input frequency range 4 MHz to 40 MHz
- Crystal input mode or Oscillator input mode
- PLL reference

1.5.10 Internal RC oscillator

This device has an RC ladder phase-shift oscillator. The architecture uses constant current charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap reference voltage.

The RC Oscillator provides these features:

- Nominal frequency 16 MHz
- ±6% variation over voltage and temperature after process trim
- Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the PLL
- RC oscillator is used as the default system clock during startup

1.5.11 Periodic interrupt timer (PIT)

The PIT module implements these features:

- Up to four general purpose interrupt timers
- 32-bit counter resolution
- Clocked by system clock frequency
- Each channel can be used as trigger for a DMA request

1.5.12 System timer module (STM)

The STM module implements these features:

- 32-bit up counter with 8-bit prescaler
- Four 32-bit compare channels
- Independent interrupt source for each channel
- Counter can be stopped in debug mode

The STM module is replicated for each processor.

1.5.13 Software watchdog timer (SWT)

The SWT has the following features:

- Fault tolerant output
- Safe internal RC oscillator as reference clock
- Windowed watchdog
- Program flow control monitor with 16-bit pseudorandom key generation

The SWT module is replicated for each processor.

1.5.14 Fault collection and control unit (FCCU)

The FCCU provides an independent fault reporting mechanism even if the CPU is exhibiting unstable behaviors. The FCCU module has the following features:

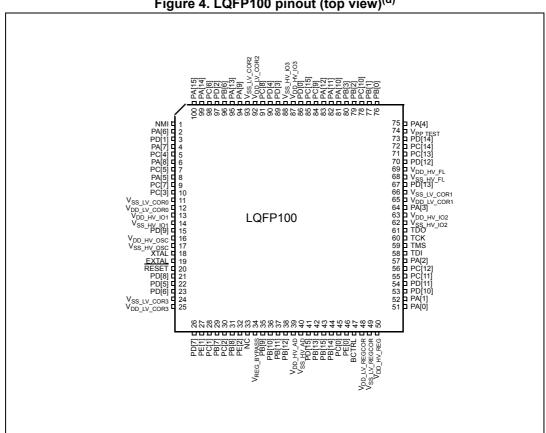
- Redundant collection of hardware checker results
- Redundant collection of error information and latch of faults from critical modules on the device
- Collection of self-test results
- Configurable and graded fault control
 - Internal reactions (no internal reaction, IRQ)
 - External reaction (failure is reported to the external/surrounding system via configurable output pins)

1.5.15 System integration unit (SIUL)

The SPC56xP54x/SPC56xP60x SIUL controls MCU pad configuration, external interrupts, general purpose I/O (GPIO) pin configuration, and internal peripheral multiplexing.

The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU.

The SIUL provides the following features:


- Centralized general purpose input output (GPIO) control of input/output pins and analog input-only pads (package dependent)
- All GPIO pins can be independently configured to support pull-up, pull down, or no pull
- Reading and writing to GPIO supported both as individual pins and 16-bit wide ports
- All peripheral pins (except ADC channels) can be alternatively configured as both general purpose input or output pins
- ADC channels support alternative configuration as general purpose inputs
- Direct readback of the pin value is supported on all pins through the SIU
- Configurable digital input filter that can be applied to some general purpose input pins for noise elimination
 - Up to 4 internal functions can be multiplexed onto one pin

1.5.16 Boot and censorship

Different booting modes are available in the SPC56xP54x/SPC56xP60x:

- From internal flash memory
- Via a serial link

Figure 4. LQFP100 pinout (top view)^(d)

2.2 **Pin descriptions**

The following sections provide signal descriptions and related information about the functionality and configuration of the SPC56xP54x/SPC56xP60x devices.

2.2.1 Power supply and reference voltage pins

Table 5 lists the power supply and reference voltage for the SPC56xP54x/SPC56xP60x devices.

Supply			Pin	
Symbol	Description			LQFP 176 ⁽¹⁾
	VREG control and power supply pins			
BCTRL	Voltage regulator external NPN Ballast base control pin	47	69	81

Table 5.	Supply	pins
----------	--------	------

d. Availability of port pin alternate functions depends on product selection.

- 2. LQFP176 available only as development package.
- 3. In this pin there is an internal pull; refer to JTAGC chapter in the device reference manual for pull direction.
- 4. Its configuration can be set up by the PCR[108] register inside the SIU module. See SIUL chapter in the device reference manual.

2.2.3 Pin muxing

Table 7 defines the pin list and muxing for the SPC56xP54x/SPC56xP60x devices relative to Full-featured version.

Each row of *Table 7* shows all the possible ways of configuring each pin, via "alternate functions". The default function assigned to each pin after reset is the ALTO function.

Pins marked as external interrupt capable can also be used to resume from STOP and HALT mode.

SPC56xP54x/SPC56xP60x devices provide four main I/O pad types depending on the associated functions:

- *Slow pads* are the most common, providing a compromise between transition time and low electromagnetic emission.
- Medium pads provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission.
- *Fast pads* provide maximum speed. They are used for improved NEXUS debugging capability.
- Symmetric pads are designed to meet FlexRay requirements.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

Port	Port PCR pin No.	Alternate		Peripheral	I/O	Pad s	peed ⁽⁶⁾		Pin		
		function ^{(2),} (3)	cuon <i>"</i> Functions (4) airection		SRC = 0	SRC = 1	LQFP 100	LQFP 144	LQFP 176 ⁽⁷⁾		
				Po	ort A						
		ALT0	GPIO[0]	SIUL	I/O						
		ALT1	ETC[0]	eTimer_0	I/O						
A[0]	PCR[0]	ALT2	SCK_2	DSPI_2	I/O	Slow	Medium	51	73	89	
		ALT3	F[0]	FCCU	0						
		—	EIRQ[0]	SIUL	I						
		ALT0	GPIO[1]	SIUL	I/O						
		ALT1	ETC[1]	eTimer_0	I/O						
A[1]	PCR[1]	ALT2	SOUT_2	DSPI_2	0	Slow	Medium	52	74	90	
		ALT3	F[1]	FCCU	0						
		—	EIRQ[1]	SIUL	I						

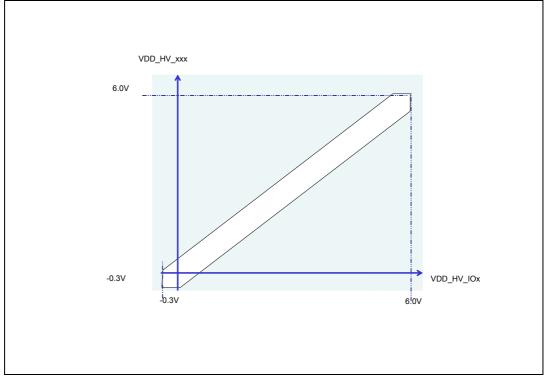
Table 7. Pin muxing⁽¹⁾

		Alternate		e 7. Pin mux	I/O	,	peed ⁽⁶⁾		Pin	
Port pin	PCR No.	function ^{(2),} (3)	Functions	Peripheral (4)	direction (5)	SRC = 0	SRC = 1	LQFP 100	LQFP 144	LQFP 176 ⁽⁷⁾
	Port B									
B[0]	PCR[16]	ALT0 ALT1 ALT2 ALT3 —	GPIO[16] TXD ETC[2] DEBUG[0] EIRQ[15]	SIUL FlexCAN_0 eTimer_1 SSCM SIUL	I/O O I/O I	Slow	Medium	76	109	133
B[1]	PCR[17]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[17] CS7_1 ETC[3] DEBUG[1] RXD EIRQ[16]	SIUL DSPI_1 eTimer_1 SSCM FlexCAN_0 SIUL	I/O O I/O I I	Slow	Medium	77	110	134
B[2]	PCR[18]	ALT0 ALT1 ALT2 ALT3 —	GPIO[18] TXD SOUT_4 DEBUG[2] EIRQ[17]	SIUL LINFlex_0 DSPI_4 SSCM SIUL	1/0 0 1/0 -	Slow	Medium	79	114	138
B[3]	PCR[19]	ALT0 ALT1 ALT2 ALT3 —	GPIO[19] — SCK_4 DEBUG[3] RXD	SIUL — DSPI_4 SSCM LINFlex_0	₩ ₩ ₩ ₩ ₩	Slow	Medium	80	116	140
B[6]	PCR[22]	ALT0 ALT1 ALT2 ALT3 —	GPIO[22] clk_out CS2_2 clk_out_div2 56 EIRQ[18]	SIUL MC_CGL DSPI_2 MC_CGL SIUL	₩ 0 0 1	Slow	Medium	96	138	162
B[7]	PCR[23]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[23] — — AN[0] RXD	SIUL — — ADC_0 LINFlex_0	Input Only	—	_	29	43	51
B[8]	PCR[24]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[24] — — — AN[1] ETC[5]	SIUL — — ADC_0 eTimer_0	Input Only	_	_	31	47	55

Table 7. Pin muxing⁽¹⁾ (continued)

			- ·			
Symbol		Parameter	Conditions	Min	Max ⁽²⁾	Unit
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
I _{VDD_LV}	SR	Low voltage static current sink through V_{DD_LV}	_	_	155	mA
T _{STG}	SR	Storage temperature	—	-55	150	°C
TJ	SR	Junction temperature under bias	—	-40	150	°C

Table 9. Absolute maximum ratings⁽¹⁾ (continued)


 Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

2. Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.

- 3. The difference between each couple of voltage supplies must be less than 300 mV, $|V_{DD_HV_IOy} V_{DD_HV_IOx}| < 300$ mV.
- 4. Guaranteed by device validation.
- 5. Minimum value of TV_{DD} must be guaranteed until V_{DD HV REG} reaches 2.6 V (maximum value of V_{PORH}).

Figure 5 shows the constraints of the different power supplies.

Figure 5. Power supplies constraints

The SPC56xP54x/SPC56xP60x supply architecture provides an ADC supply that is managed independently of standard V_{DD_HV} supply. *Figure 6* shows the constraints of the ADC power supply.

3.6 Electromagnetic interference (EMI) characteristics

					1	
Parameter	Symbol	Conditions	f _{OSC} /f _{BUS}	Frequency	Level (Max)	Unit
		V _{DD} = 5 V;	8 MHz crystal	150 kHz–150 MHz	18	dBμV
		T _A = 25 °C	64 MHz bus No PLL frequency	150–1000 MHz	12	υσμν
	Radiated	nissions, RBW 9 kHz, Step	modulation	IEC Level	М	_
V _{RE_TEM}	emissions,		8 MHz crystal	150 kHz–150 MHz	18	dBμV
	electric field 30 MHz–1 GHz RBW 120 kHz, Step Size 80 kHz	64 MHz bus	150–1000 MHz	12	υσμν	
		RBW 120 kHz,	±2% PLL frequency modulation	IEC Level	М	_

Table 14. EMI testing specifications

3.7 Electrostatic discharge (ESD) characteristics

Symbol		Parameter	Conditions	Value	Unit
V _{ESD(HBM)}	SR	Electrostatic discharge (Human Body Model)	—	2000	V
N/	SR FIA	Electrostatic discharge (Charged Device Model)		750 (corners)	V
V _{ESD} (CDM)	SK	Electrostatic discharge (Charged Device Model)	_	500 (other)	v

Table 15. ESD ratings⁽¹⁾⁽²⁾

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.8 **Power management electrical characteristics**

3.8.1 Voltage regulator electrical characteristics

The internal voltage regulator requires an external NPN ballast to be connected as shown in *Figure 9. Table 16* contains all approved NPN ballast components. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the V_{DD_HV_REG}, BCTRL and V_{DD_LV_CORx} pins to less than L_{Reg}, see *Table 17*.

Note: The voltage regulator output cannot be used to drive external circuits. Output pins are used only for decoupling capacitances.

 $V_{DD_LV_COR}$ must be generated using internal regulator and external NPN transistor. It is not possible to provide $V_{DD_LV_COR}$ through external regulator.

For the SPC56xP54x/SPC56xP60x microcontroller, capacitors, with total values not below C_{DEC1} , should be placed between $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ close to external ballast transistor emitter. 4 capacitors, with total values not below C_{DEC2} , should be placed close to microcontroller pins between each $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ supply pairs and the

 $V_{DD_LV_REGCOR}/V_{SS_LV_REGCOR}$ pair. Additionally, capacitors with total values not below C_{DEC3} , should be placed between the $V_{DD_HV_REG}/V_{SS_HV_REG}$ pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature.

All reported information are valid for voltage and temperature ranges described in recommended operating condition, *Table 10* and *Table 11*.

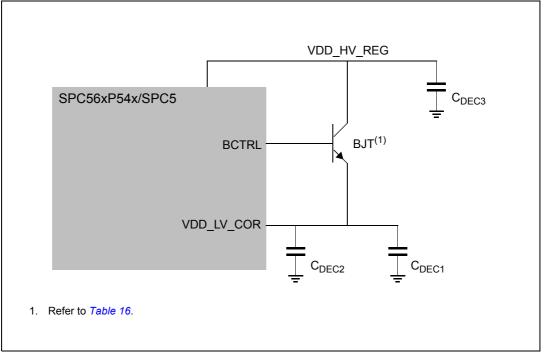


Figure 9. Voltage regulator configuration

Part	Manufacturer	Approved derivatives ⁽¹⁾	
	ON Semi	BCP68	
BCP68	NXP	BCP68-25	
	Infineon	BCP68-25	
BCX68	Infineon	BCX68-10;BCX68-16;BCX68-25	
BC868	NXP	BC868	
BC817	Infineon	BC817-16;BC817-25;BC817SU;	
BCOT	NXP	BC817-16;BC817-25	
	ST	BCP56-16	
BCP56	Infineon	BCP56-10;BCP56-16	
BCF30	ON Semi	BCP56-10	
	NXP	BCP56-10;BCP56-16	

Table 16. Approved NPN ballast components

1. For automotive applications please check with the appropriate transistor vendor for automotive grade certification.

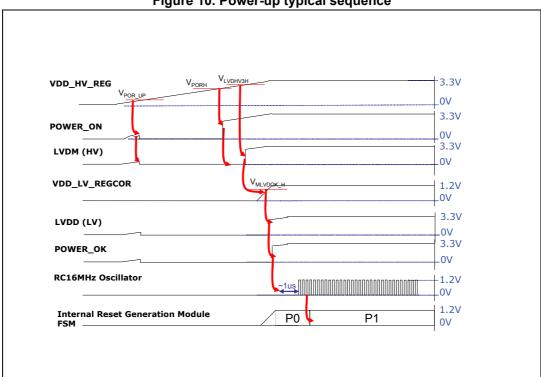
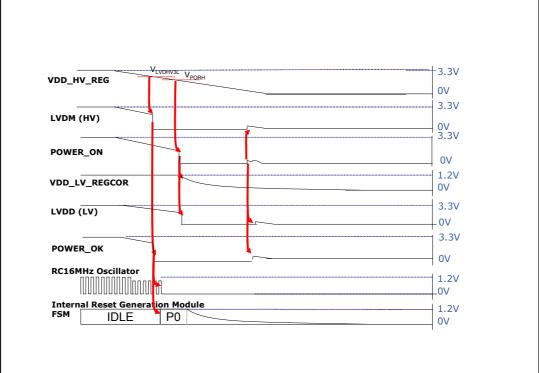
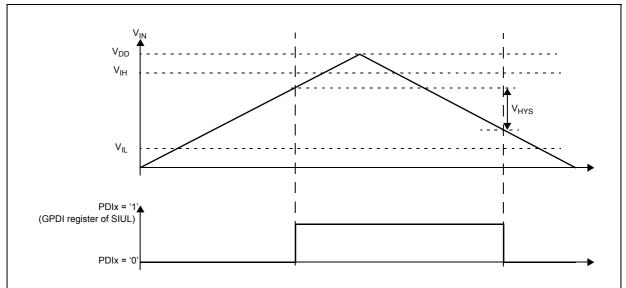



Figure 10. Power-up typical sequence



3.11 DC electrical characteristics

3.11.1 DC electrical characteristics (5 V)

Table 20 gives the DC electrical characteristics at 5 V ($4.5 \text{ V} < \text{V}_{\text{DD}_{\text{HV}_{\text{IOX}}}} < 5.5 \text{ V}$, NVUSRO[PAD3V5V]=0) as described in *Figure 13*.

Figure 13. I/O input DC electrical characteristics definition

Table 20. DC electrical chara	acteristics (5.0 V,	NVUSRO[PAD3	V5V]=0)

Symbol	I	Parameter	Conditions	Min	Мах	Unit
V _{IL}	D	Minimum low level input voltage	—	-0.1 ⁽¹⁾	—	V
V _{IL}	Ρ	Maximum level input voltage	—	—	0.35 V _{DD_HV_IOx}	V
V _{IH}	Ρ	Minimum high level input voltage	—	0.65 V _{DD_HV_IOx}	—	V
V _{IH}	D	Maximum high level input voltage	—	_	$V_{DD_HV_IOx} + 0.1^{(1)}$	V
V _{HYS}	Т	Schmitt trigger hysteresis	—	0.1 V _{DD_HV_IOx}	—	V
V _{OL_S}	Ρ	Slow, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V
V _{OH_S}	Ρ	Slow, high level output voltage	I _{OH} = –3 mA	0.8V _{DD_HV_IOx}	—	V
V _{OL_M}	Ρ	Medium, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	V
V _{OH_M}	Ρ	Medium, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	—	V
V _{OL_F}	Ρ	Fast, low level output voltage	I _{OL} = 3 mA	_	0.1 V _{DD_HV_IOx}	V
V _{OH_F}	Ρ	Fast, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	_	V
V _{OL_SYM}	Ρ	Symmetric, low level output voltage	I _{OL} = 3 mA	_	0.1 V _{DD_HV_IOx}	V
V _{OH_SYM}	Ρ	Symmetric, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	_	V

Symbol		Parameter	Conditions	Min	Мах	Unit
1	Р	P Equivalent pull-up current	$V_{IN} = V_{IL}$	-130	_	
I _{PU}	1	Equivalent puil-up current	$V_{IN} = V_{IH}$	_	-10	μA
	Р	Equivalent pull-down current	$V_{IN} = V_{IL}$	10	_	
I _{PD}	Г	Equivalent puil-down current	$V_{IN} = V_{IH}$		130	μA
Ι _{ΙL}	Ρ	Input leakage current (all bidirectional ports)	T _A =40 to 125 °C	-1	1	μA
IIL	Ρ	Input leakage current (all ADC input-only ports)	T _A = -40 to 125 °C	-0.5	0.5	μA
C _{IN}	D	Input capacitance	—	_	10	pF
1	D		V _{IN} = V _{IL}	-130	_	
I _{PU}		RESET, equivalent pull-up current	$V_{IN} = V_{IH}$	—	-10	μA
1	D	RESET, equivalent pull-down	V _{IN} = V _{IL}	10	_	
I _{PD}		current	V _{IN} = V _{IH}	_	130	μA

Table 20. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) (continued)

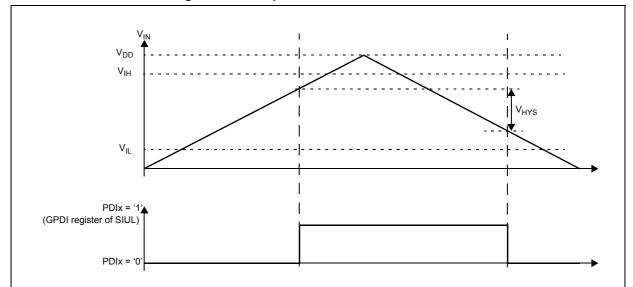
1. "SR" parameter values must not exceed the absolute maximum ratings shown in *Table 9*.

Symbol			Dovomotov	Conditions		Value		Unit				
Symbol	Cymbol		Parameter	Conditions		Тур	Max	Unit				
			RUN — Maximum Mode ⁽¹⁾	V _{DD_LV_CORE} externally forced at 1.3 V ADC Freq = 32 MHz PLL Freq = 64 MHz	64 MHz	90	120					
					16 MHz	21	37					
	Т		RUN - Platform consumption, single core ⁽²⁾		40 MHz	35	55					
			5	VDD_LV_CORE	64 MHz	48	72					
						24	41					
IDD_LV_CORE			RUN - Platform consumption, dual core ⁽³⁾		40 MHz	42	64	-				
					64 MHz	58	85					
	Ρ	Supply	RUN — Maximum Mode ⁽⁴⁾	V _{DD_LV_CORE} externally forced at 1.3 V	64 MHz	85	113	mA				
		current	HALT Mode ⁽⁵⁾	V _{DD_LV_CORE} externally forced at 1.3 V	_	5.5	15					
								STOP Mode ⁽⁶⁾	V _{DD_LV_CORE} externally forced at 1.3 V	_	4.5	13
	т					Flash memory supply current during read	V _{DD_HV_FL} at 5.0 V	_		14		
I _{DD_FLASH}			Flash memory supply current during erase operation on 1 flash memory module	V _{DD_HV_FL} at 5.0 V	_	_	42					
I _{DD_ADC}	т		ADC supply current — Maximum Mode	V _{DD_HV_AD} at 5.0 V ADC Freq = 16 MHz	_	3	4					
I _{DD_OSC}	Т		OSC supply current	V _{DD_OSC} at 5.0 V	8 MHz	2.6	3.2					

 Maximum mode configuration: Code fetched from Flash executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded.

 RAM, Code and Data Flash powered, code fetched from Flash executed by single core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM.

- RAM, Code and Data Flash powered, code fetched from Flash executed by dual core, all peripherals gated; IRC16MHz on, PLL64MHz OFF (except for code running at 64 MHz). Code is performing continuous data transfer from Flash to RAM.
- Maximum mode configuration: Code fetched from RAM executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded.


5. HALT mode configuration, only for the "P" classification: Code Flash memory in low power mode, data Flash memory in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled.

 STOP mode configuration, only for the "P" classification: Code and data Flash memories in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled.

3.11.2 DC electrical characteristics (3.3 V)

Table 22 gives the DC electrical characteristics at 3.3 V ($3.0 \text{ V} < \text{V}_{\text{DD}_{\text{HV}_{\text{IOx}}}} < 3.6 \text{ V}$, NVUSRO[PAD3V5V]=1) as described in *Figure 14*.

Figure 14. I/O input DC electrical characteristics definition

Symbo	I	Parameter	Conditions	Min	Мах	Unit
V _{IL}	D	Minimum low level input voltage	—	-0.1 ⁽²⁾	_	V
V _{IL}	Ρ	Maximum low level input voltage	—	—	0.35 V _{DD_HV_IOx}	V
V _{IH}	Ρ	Minimum high level input voltage	—	0.65 V _{DD_HV_IOx}	—	V
V _{IH}	D	Maximum high level input voltage	—	—	$V_{DD_HV_IOx} + 0.1^{(2)}$	V
V _{HYS}	Т	Schmitt trigger hysteresis	—	0.1 V _{DD_HV_IOx}	—	V
V _{OL_S}	Ρ	Slow, low level output voltage	I _{OL} = 1.5 mA	—	0.5	V
V _{OH_S}	Ρ	Slow, high level output voltage	I _{OH} = -1.5 mA	$V_{DD_HV_IOx} - 0.8$	—	V
V _{OL_M}	Ρ	Medium, low level output voltage	I _{OL} = 2 mA	—	0.5	V
V _{OH_M}	Ρ	Medium, high level output voltage	I _{OH} = -2 mA	$V_{DD_HV_IOx} - 0.8$	—	V
V _{OL_F}	Ρ	Fast, high level output voltage	I _{OL} = 11 mA	—	0.5	V
V _{OH_F}	Ρ	Fast, high level output voltage	I _{OH} = –11 mA	$V_{DD_HV_IOx} - 0.8$	—	V
V _{OL_SYM}	Ρ	Symmetric, high level output voltage	I _{OL} = 1.5 mA	_	0.5	V
V _{OH_SYM}	Ρ	Symmetric, high level output voltage	I _{OH} = –1.5 mA	V _{DD_HV_IOx} - 0.8	_	V
1	D	Equivalant pull un current	V _{IN} = V _{IL}	-130	—	
I _{PU}	Р	P Equivalent pull-up current	V _{IN} = V _{IH}	—	-10	μA

3.11.3 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 25*.

Package	Supply segment									
	1	2	3	4	5	6	7			
LQFP144	pin8 – pin20	pin23 – pin38	pin39 – pin55	pin58 – pin68	pin73 – pin89	pin92 – pin125	pin128 – pin5			
LQFP100	pin15 – pin26	pin27 – pin38	pin41 – pin46	pin51 – pin61	pin64 – pin86	pin89 – pin10	—			

Table 25	I/O supply	segment
----------	------------	---------

Table 26. I/O consumption

Symbol		с	Parameter	Conditions ⁽¹⁾					Unit												
Gymbol			i arameter	Contractors		Min	Тур	Мах													
I _{SWTSLW} ⁽²⁾	CC	П	Dynamic I/O current for SLOW	C ₁ = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	20	mA												
SWISLW	00	נ	configuration	0 <u> </u>	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			16	110 (
I _{SWTMED} ⁽²⁾	CC	П	Dynamic I/O current for MEDIUM	C ₁ = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	29	mA												
SWIMED	, CC	D	configuration	0L - 20 pi	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			17	110 (
I _{SWTFST} ⁽²⁾	сс	П	Dynamic I/O current for FAST	C ₁ = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	110	mA												
SWIFST			D	U				D	D		D	D	D	D	configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	50	
		D	D	D	D	D	D	D	D	D		C _L = 25 pF, 2 MHz			_	2.3					
											D	D	D		C _L = 25 pF, 4 MHz	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	3.2		
I _{RMSSLW}	<u> </u>													D	Root medium square I/O current for SLOW	C _L = 100 pF, 2 MHz		_	_	6.6	mA
'RMSSLW	00															U	configuration	C _L = 25 pF, 2 MHz		_	—
				V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—		2.3	1													
				C _L = 100 pF, 2 MHz		_	_	4.7	1												
				C _L = 25 pF, 13 MHz		_		6.6													
			Root medium square	C _L = 25 pF, 40 MHz	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	13.4													
1	сс			I/O current for	C _L = 100 pF, 13 MHz		_	—	18.3	mA											
RMSMED			MEDIUM configuration	C _L = 25 pF, 13 MHz		_	_	5													
			garation	C _L = 25 pF, 40 MHz	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	8.5													
				C _L = 100 pF, 13 MHz			—	11													

 C_S with respect to the ideal source V_A ; the time constant $R_F C_F$ of the filter is very high with respect to the sampling time (T_S). The filter is typically designed to act as anti-aliasing.

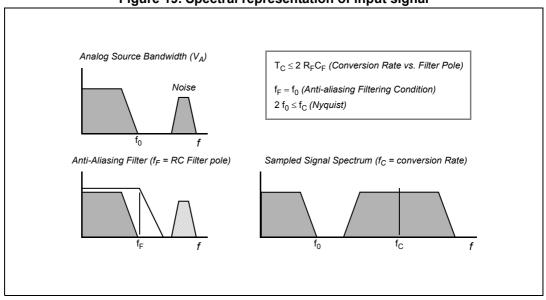


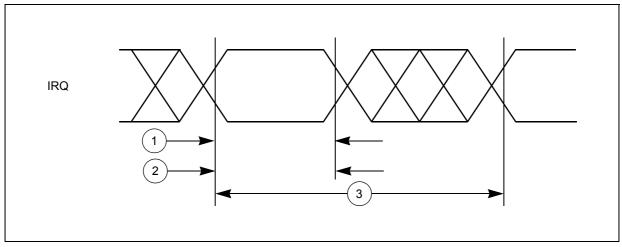
Figure 19. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time T_S , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive *Equation 11* between the ideal and real sampled voltage on C_S :

Equation 11

$$\frac{V_A}{V_{A2}} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$


From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Equation 12

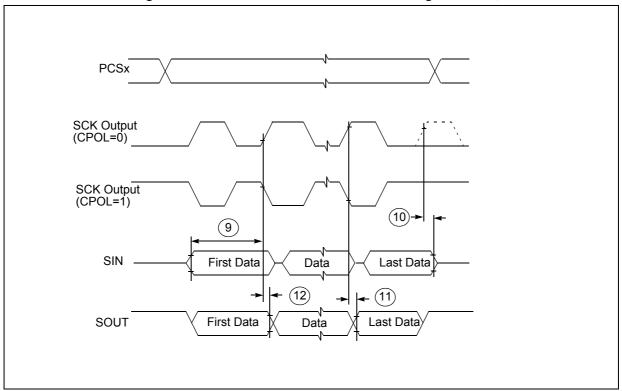
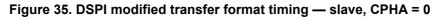
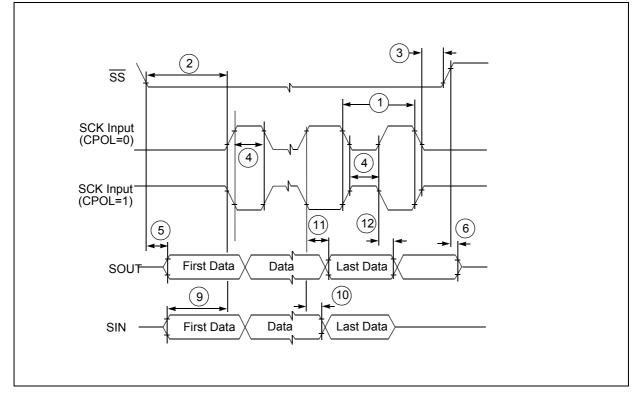
$$C_F > 2048 \times C_S$$

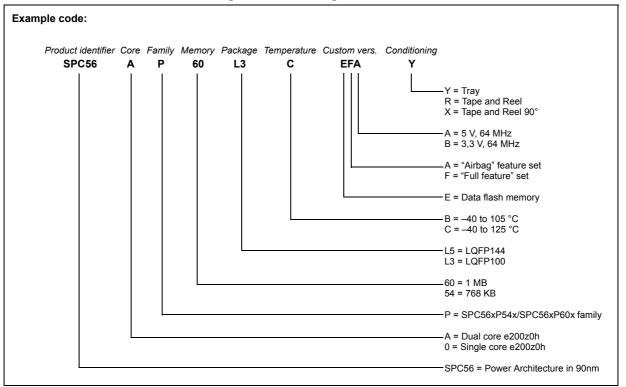
57

3.18.5 DSPI timing

No.	Symbol		Symbol		Symbol		Symbol		С	Parameter	Conditions	Min	Max	Unit
4		+ 000			Master (MTFE = 0)	60	_							
1	1 t _{SCK} CC D		D	DSPI cycle time	Slave (MTFE = 0)	60	_	ns						
2	t _{CSC}	СС	D	PCS to SCK delay		16	_	ns						
3	t _{ASC}	СС	D	After SCK delay	—	26		ns						
4	t _{SDC}	СС	D	SCK duty cycle	—	0.4 × t _{SCK}	$0.6 \times t_{SCK}$	ns						
5	t _A	СС	D	Slave access time	SS active to SOUT valid	—	30	ns						
6	t _{DIS}	сс	D	Slave SOUT disable time	SS inactive to SOUT High-Z or invalid	_	16	ns						
7	t _{PCSC}	СС	D	PCSx to PCSS time	—	13	_	ns						
8	t _{PASC}	СС	D	PCSS to PCSx time	_	13	_	ns						
	9 t _{SUI} CC	66						Master (MTFE = 0)	35	_				
0				<u> </u>	cc	<u> </u>	П	Data setup time for inputs	Slave	4		ns		
9		00			Master (MTFE = 1, CPHA = 0)	35	_	115						
						Master (MTFE = 1, CPHA = 1)	35	-						
					Master (MTFE = 0)	-5								
10	÷	сс		Data hold time for inputs	Slave	4	-							
10	10 t _{HI} C	00			Master (MTFE = 1, CPHA = 0)	11		ns						
					Master (MTFE = 1, CPHA = 1)	-5								
	11 t _{SUO} (Master (MTFE = 0)	—	12							
11		<u> </u>	П	Data valid (after SCK edge)	Slave		36	ns						
					Master (MTFE = 1, CPHA = 0)	—	12	115						
					Master (MTFE = 1, CPHA = 1)	_	12							

Table 41. DSPI timing⁽¹⁾


Figure 34. DSPI modified transfer format timing — master, CPHA = 1

5 Ordering information

Figure 40. Ordering information scheme^(h)

h. Not all configurations are available on the market. Please contact your ST sales representative to get the list of orderable commercial part number.

6 Revision history

Table 44 summarizes revisions to this document.

Date	Revision	Substantive changes
21-Dec-2010	1	Initial release
18-Oct-2011	2	In the Feature list: Revised the first bullet. Changed "Up to 82 GPIO" to "Up to 80 GPIO" Changed "and 82 GPIO" to "and 49 GPIO" Changed "FlexRay module" to "1 FlexRay™ module". Added Section 1.5: Feature details Table 4: SPC56xP54x/SPC56xP60x series block summary, added FlexRay entry. In the "LQFP176 pinout (top view)" figure: – Pin 104 now is TDI, was PB[5] – Pin 107 now is TDO, was PB[4] – Pin 71 now is NC, was OKOUT – Pin 72 now is NC, was OKOUT B – Pin 87 now is NC, was OKOUT B – Pin 87 now is NC, was OKOUT B – Pin 87 now is NC, was IPP_LIVI_B_VDDIO Table 7: Pin muxing: PB[6] was clk_out_div5, is now clk_out_div256 Removed PB[4] and PB[5] rows In the A[3] row, changed ABS[2] to ABS[1] Section 3.11: DC electrical characteristics, added "Peripherals supply current (5 V and 3.3 V)" table Table 13: Thermal characteristics for 144-pin LQFP and Table 13: Thermal characteristics for 144-pin LQFP and Table 30: PLLMRFM electrical specifications (V _{DDPLL} = 1.08 V to 1.32 V, V _{SS} = V _{SSPLL} = 0 V, TA = TL to TH), changed the max value of f _{SVS} from 120 to 64 Table 33: Program and erase specifications: Removed all TBC changed the max value of T _{BKPRG} (Data Flash) from 3.0 to 500 µs Added t _{ESRT} row Table 17: Voltage regulator electrical characteristics, updated V _{DD_LV} REGCOR values Updated Table 18: Low voltage monitor electrical characteristics Updated Table 21: Supply current (5.0 V, NVUSRO[PAD3V5V]=0) and Table 23: Supply current (3.3 V, NVUSRO[PAD3V5V]=1) Removed orderable parts tables.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

