

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc56ap60l3befby

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		1.5.29	On-chip voltage regulator (VREG)	. 26
2	Pack	age pin	outs and signal descriptions	27
	2.1	Packag	je pinouts	27
	2.2	Pin des	scriptions	29
		2.2.1	Power supply and reference voltage pins	. 29
		2.2.2	System pins	. 31
		2.2.3	Pin muxing	. 33
3	Elect	trical ch	aracteristics	48
	3.1	Introdu	ction	48
	3.2	Parame	eter classification	48
	3.3	Absolu	te maximum ratings	49
	3.4	Recom	mended operating conditions	51
	3.5	Therma	al characteristics	55
		3.5.1	General notes for specifications at maximum junction temperature	. 56
	3.6	Electro	magnetic interference (EMI) characteristics	58
	3.7	Electro	static discharge (ESD) characteristics	58
	3.8	Power	management electrical characteristics	58
		3.8.1	Voltage regulator electrical characteristics	. 58
		3.8.2	Voltage monitor electrical characteristics	. 60
	3.9	Power	Up/Down sequencing	61
	3.10	NVUSF	RO register	63
		3.10.1	NVUSRO[PAD3V5V] field description	. 63
	3.11	DC ele	ctrical characteristics	64
		3.11.1	DC electrical characteristics (5 V)	. 64
		3.11.2	DC electrical characteristics (3.3 V)	. 67
		3.11.3	I/O pad current specification	. 71
	3.12	Main o	scillator electrical characteristics	72
	3.13	FMPLL	electrical characteristics	73
	3.14	16 MHz	z RC oscillator electrical characteristics	74
	3.15	Analog	-to-Digital converter (ADC) electrical characteristics	74
		3.15.1	Input impedance and ADC accuracy	. 75
		3.15.2	ADC conversion characteristics	. 80
	3.16	Flash n	nemory electrical characteristics	81

The crossbar provides the following features:

- 6 master ports:
 - 2 e200z0 core complex Instruction ports
 - 2 e200z0 core complex Load/Store Data ports
 - eDMA
 - FlexRay
- 6 slave ports:
 - 2 Flash memory (code flash and data flash)
 - 2 SRAM (48 KB + 32 KB)
 - 2 PBRIDGE
- 32-bit internal address, 32-bit internal data paths
- Fixed Priority Arbitration based on Port Master
- Temporary dynamic priority elevation of masters

1.5.3 Enhanced direct memory access (eDMA)

The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized to minimize the overall block size.

The eDMA module provides the following features:

- 16 channels support independent 8, 16 or 32-bit single value or block transfers
- Supports variable sized queues and circular queues
- Source and destination address registers are independently configured to postincrement or remain constant
- Each transfer is initiated by a peripheral, CPU, or eDMA channel request
- Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block transfer
- DMA transfers possible between system memories, DSPIs, ADC, eTimer and CTU
- Programmable DMA Channel Multiplexer for assignment of any DMA source to any available DMA channel with up to 30 potential request sources
- eDMA abort operation through software

1.5.4 On-chip flash memory with ECC

The SPC56xP54x/SPC56xP60x provides up to 1024 KB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used for instruction and/or data storage. The flash memory module interfaces the system bus to a dedicated flash memory array controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains a four-entry, 4x128-bit prefetch buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory array accesses are registered and are forwarded to the system bus on the following cycle, incurring 2 wait states.

- Programmable transmit-first scheme: lowest ID or lowest buffer number
- Time stamp based on 16-bit free-running timer
- Global network time, synchronized by a specific message
- Maskable interrupts
- Independent of the transmission medium (an external transceiver is assumed)
- High immunity to EMI
- Short latency time due to an arbitration scheme for high-priority messages
- Transmit features
 - Supports configuration of multiple mailboxes to form message queues of scalable depth
 - Arbitration scheme according to message ID or message buffer number
 - Internal arbitration to guarantee no inner or outer priority inversion
 - Transmit abort procedure and notification
- Receive features
 - Individual programmable filters for each mailbox
 - 8 mailboxes configurable as a six-entry receive FIFO
 - 8 programmable acceptance filters for receive FIFO
 - Programmable clock source
 - System clock
 - Direct oscillator clock to avoid PLL jitter

1.5.19 Safety port (FlexCAN)

The SPC56xP54x/SPC56xP60x MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features:

- Identical to the FlexCAN module
- Bit rate as fast as 7.5 Mb at 60 MHz CPU clock using direct connection between CAN modules (no physical transceiver required)
- 32 Message buffers of 0 to 8 bytes data length
- Can be used as a third independent CAN module

1.5.20 FlexRay

The FlexRay module provides the following features:

- Full implementation of FlexRay Protocol Specification 2.1
- 64 configurable message buffers can be handled
- Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate
- Message buffers configurable as Tx, Rx or RxFIFO
- Message buffer size configurable
- Message filtering for all message buffers based on FrameID, cycle count and message ID
- Programmable acceptance filters for RxFIFO message buffers

1.5.24 Analog-to-digital converter (ADC)

The ADC module provides the following features:

Analog part:

- 1 on-chip analog-to-digital converter
- 10-bit AD resolution
- 1 sample and hold unit per ADC
- Conversion time, including sampling time, less than 1 µs (at full precision)
- Typical sampling time is 150 ns min. (at full precision)
- Differential non-linearity error (DNL) ±1 LSB
- Integral non-linearity error (INL) ±1.5 LSB
- Total unadjusted error (TUE) <3 LSB
- Single-ended input signal range from 0 to 3.3 V / 5.0 V
- ADC and its reference can be supplied with a voltage independent from V_{DDIO}
- ADC supply can be equal or higher than V_{DDIO}
- ADC supply and the ADC reference are not independent from each other (they are internally bonded to the same pad)
- Sample times of 2 (default), 8, 64, or 128 ADC clock cycles

Digital part:

- 27 input channels (26 + 1 internally connected)
- 4 analog watchdogs to compare ADC results against predefined levels (low, high, range) before results are stored
- 2 operating modes: Normal mode and CTU control mode
- Normal mode features
 - Register-based interface with the CPU: control register, status register, 1 result register per channel
 - ADC state machine managing 3 request flows: regular command, hardware injected command, and software injected command
 - Selectable priority between software and hardware injected commands
 - DMA compatible interface
- CTU control mode features
 - Triggered mode only
 - 4 independent result queues (2 × 16 entries, 2 × 4 entries)
 - Result alignment circuitry (left justified; right justified)
 - 32-bit read mode allows to have channel ID on one of the 16-bit part
 - DMA compatible interfaces

1.5.25 Cross triggering unit (CTU)

The Cross Triggering Unit (CTU) allows automatic generation of ADC conversion requests on user selected conditions with minimized CPU load for dynamic configuration.

It implements the following features:

- Double buffered trigger generation unit with up to eight independent triggers generated from external triggers
- Trigger generation unit configurable in sequential mode or in triggered mode
- Each Trigger can be appropriately delayed to compensate the delay of external low pass filter
- Double buffered global trigger unit allowing eTimer synchronization and/or ADC command generation
- Double buffered ADC command list pointers to minimize ADC-trigger unit update
- Double buffered ADC conversion command list with up to 24 ADC commands
- Each trigger has the capability to generate consecutive commands
- ADC conversion command allows to control ADC channel from each ADC, single or synchronous sampling, independent result queue selection

1.5.26 Cyclic redundancy check (CRC)

- 3 contexts for the concurrent CRC computation
- Separate CRC engine for each context
- Zero-wait states during the CRC computation (pipeline scheme)
- 3 hard-wired polynomials (CRC-8 VDA CAN, CRC-32 Ethernet and CRC-16-CCITT)
- Support for byte/half-word/word width of the input data stream
- Support for expected and actual CRC comparison

1.5.27 Nexus development interface (NDI)

The NDI block provides real-time development support capabilities for the SPC56xP54x/SPC56xP60x Power Architecture based MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support is supplied for MCUs without requiring external address and data pins for internal visibility. The NDI block is an integration of several individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces to the host processor and internal buses to provide development support as per the IEEE-ISTO 5001-2003 Class 2+ standard. The development support provided includes access to the MCU's internal memory map and access to the processor's internal registers during run time.

The Nexus Interface provides the following features:

- Configured via the IEEE 1149.1
- All Nexus port pins operate at V_{DDIO} (no dedicated power supply)
- Nexus 2+ features supported
 - Static debug
 - Watchpoint messaging
 - Ownership trace messaging
 - Program trace messaging
 - Real time read/write of any internally memory mapped resources through JTAG pins
 - Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of information

- Watchpoint triggering, watchpoint triggers program tracing
- DDR
- Auxiliary Output Port
 - 4 MDO (Message Data Out) pins
 - MCKO (Message Clock Out) pin
 - 2 MSEO (Message Start/End Out) pins
 - EVTO (Event Out) pin
- Auxiliary Input Port
 - EVTI (Event In) pin^(a)

1.5.28 IEEE 1149.1 (JTAG) controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard.

The JTAG controller provides the following features:

- IEEE Test Access Port (TAP) interface with four pins (TDI, TMS, TCK, TDO)
- Selectable modes of operation include JTAGC/debug or normal system operation.
- A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:
 - BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD
- A 5-bit instruction register that supports the additional following public instructions:
 - ACCESS_AUX_TAP_NPC, ACCESS_AUX_TAP_CORE0, ACCESS_AUX_TAP_CORE1, ACCESS_AUX_TAP_NASPS_0, ACCESS_AUX_TAP_NASPS_1
- Three test data registers: a bypass register, a boundary scan register, and a device identification register.
- A TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry.

1.5.29 On-chip voltage regulator (VREG)

The on-chip voltage regulator module provides the following features:

- Uses external NPN transistor
- Regulates external 3.3 V to 5.0 V down to 1.2 V for the core logic
- Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V

a. At least one TCK clock is necessary for the EVTI signal to be recognized by the MCU.

Symbol		Parameter	Conditions	Min	Max ⁽¹⁾	Unit	
		2 2 V voltago regulator	—	3.0	3.6		
$V_{DD_HV_REG}$	SR	supply voltage	Relative to V _{DD_HV_IOx}	V _{DD_HV_IOx} -0.1	V _{DD_HV_IOx} + 0.1	V	
		2.2.V/ADC supply and high	—	3.0	5.5		
V _{DD_HV_AD}	SR	reference voltage	Relative to V _{DD_HV_REG}	$V_{DD_HV_REG} - 0.1$	5.5	V	
V _{SS_HV_AD}	SR	ADC ground and low reference voltage	_	0	0	V	
V _{DD_LV_REGCOR} ^{(3),(4)}	SR	Internal supply voltage	—	—	—	V	
V _{SS_LV_REGCOR} ⁽³⁾	SR	Internal reference voltage	—	0	0	V	
V _{DD_LV_CORx} ^{(3),(4)} SR		Internal supply voltage	—	—	—	V	
V _{SS_LV_CORx} ⁽³⁾	SR	Internal reference voltage	—	0	0	V	
T _A	SR	Ambient temperature under bias	_	-40	125	°C	

 Table 11. Recommended operating conditions (3.3 V) (continued)

1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.

2. The difference between each couple of voltage supplies must be less than 100 mV, $|V_{DD_HV_IOy} - V_{DD_HV_IOx}| < 100 mV$.

 To be connected to emitter of external NPN. Low voltage supplies are not under user control—these are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (V_{SS_LV_xxx}) must be shorted to high voltage grounds (V_{SS_HV_xxx}) and the low voltage supply pins (V_{DD_LV_xxx}) must be connected to the external ballast emitter.

4. The low voltage supplies (V_{DD_LV_xxx}) are not all independent. V_{DD_LV_COR1} and V_{DD_LV_COR2} are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, V_{SS_LV_COR1} and V_{SS_LV_COR2} are internally shorted. V_{DD_LV_REGCOR} and V_{DD_LV_REGCORx} are physically shorted internally, as are V_{SS_LV_REGCOR} and V_{SS_LV_CORx}.

Figure 7 shows the constraints of the different power supplies.

Figure 8. Independent ADC supply

3.5 Thermal characteristics

Table 12. Thermal characteristics for 144-pin LQFP

Symbol		Parameter	Conditions	Typical value	Unit
D	D	Thermal resistance junction-to-ambient,	Single layer board—1s	53.4	°C/W
$\kappa_{\theta JA}$	D	natural convection ⁽¹⁾	Four layer board—2s2p	43.9	°C/W
$R_{\theta JB}$	D	Thermal resistance junction-to-board ⁽²⁾	Four layer board—2s2p	29.6	°C/W
R _{0JCtop}	D	Thermal resistance junction-to-case (top) ⁽³⁾	Single layer board—1s	9.3	°C/W
Ψ_{JB}	D	Junction-to-board, natural convection ⁽⁴⁾	Operating conditions	29.8	°C/W
Ψ _{JC}	D	Junction-to-case, natural convection ⁽⁵⁾	Operating conditions	1.3	°C/W

1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package.

2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.

3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

5. Thermal characterization parameter indicating the temperature difference between the case and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC.

3.11 DC electrical characteristics

3.11.1 DC electrical characteristics (5 V)

Table 20 gives the DC electrical characteristics at 5 V ($4.5 \text{ V} < \text{V}_{\text{DD}_{\text{HV}_{\text{IOX}}}} < 5.5 \text{ V}$, NVUSRO[PAD3V5V]=0) as described in *Figure 13*.

Figure 13. I/O input DC electrical characteristics definition

Table 20. DC electrical chara	acteristics (5.0 V,	NVUSRO[PAD3	V5V]=0)

Symbol		Parameter	Conditions	Min	Мах	Unit
V _{IL}	D	Minimum low level input voltage	—	-0.1 ⁽¹⁾	—	V
V _{IL}	Ρ	Maximum level input voltage	—	—	0.35 V _{DD_HV_IOx}	V
V _{IH}	Ρ	Minimum high level input voltage	—	0.65 V _{DD_HV_IOx}	—	V
V _{IH}	D	Maximum high level input voltage	_	_	$V_{DD_HV_IOx} + 0.1^{(1)}$	V
V _{HYS}	Т	Schmitt trigger hysteresis		0.1 V _{DD_HV_IOx}		V
V _{OL_S}	Ρ	Slow, low level output voltage	I _{OL} = 3 mA	_	0.1 V _{DD_HV_IOx}	V
V _{OH_S}	Ρ	Slow, high level output voltage	I _{OH} = –3 mA	0.8V _{DD_HV_IOx}		V
V _{OL_M}	Ρ	Medium, low level output voltage	I _{OL} = 3 mA	_	0.1 V _{DD_HV_IOx}	V
V _{OH_M}	Ρ	Medium, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}		V
V _{OL_F}	Ρ	Fast, low level output voltage	I _{OL} = 3 mA	_	0.1 V _{DD_HV_IOx}	V
V _{OH_F}	Ρ	Fast, high level output voltage	I _{OH} = –3 mA	0.8 V _{DD_HV_IOx}	_	V
V _{OL_SYM}	Ρ	Symmetric, low level output voltage	I _{OL} = 3 mA	—	0.1 V _{DD_HV_IOx}	۷
V _{OH_SYM}	Ρ	Symmetric, high level output voltage	I _{OH} = -3 mA	0.8 V _{DD_HV_IOx}	_	V

Symbo	I	Parameter	ter Conditions Mir		Мах	Unit
	Р	Equivalant null down current	$V_{IN} = V_{IL}$	10	—	
'PD	Г		$V_{IN} = V_{IH}$	—	130	μΑ
I _{IL}	Ρ	Input leakage current (all bidirectional ports)	$T_{A} = -40$ to 125 °C	—	1	μA
I _{IL}	Ρ	Input leakage current (all ADC input-only ports)	$T_A = -40$ to 125 °C	—	0.5	μA
C _{IN}	D	Input capacitance	—	—	10	pF
	П		$V_{IN} = V_{IL}$	-130	—	
PU			$V_{IN} = V_{IH}$	—	-10	μΛ
	Р	RESET, equivalent pull-down	$V_{IN} = V_{IL}$	10	—	
I _{PD} D		current	V _{IN} = V _{IH}	—	130	μΑ

Table 22. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)⁽¹⁾ (continued)

1. These specifications are design targets and subject to change per device characterization.

2. "SR" parameter values must not exceed the absolute maximum ratings shown in Table 9.

Electrical	
Cildra)
acteri	
SIIC	2

DocID18340 Rev 6

70/105

			Table 24. Peripherals	supply current (5 V and 3.3 V) ⁽¹⁾)		
Symbol		Parameter	Conditions		Value		
		Farameter		onutions	Тур	Мах	Unit
I _{DD_HV} (can)	т	CAN (FlexCAN) supply current on VDD_HV_REG	500 Kbyte/s	Total (static + dynamic) consumption: – FlexCAN in loop-back mode – XTAL@ 8 MHz used as CAN engine clock source – Message sending period is 580 μs	21.6 * f _{periph}	28.1* f _{periph}	
I _{DD_HV(SCI)}	т	SCI (LINFlex) supply current on VDD_HV_REG	Total (static + dynamic) cons – LIN mode – Baudrate: 115.2 Kbyte/s	sumption:	10.8 * f _{periph}	14.1 * f _{periph}	μA
I _{DD_HV(SPI)}	т	SPI (DSPI) supply current on VDD_HV_REG	Ballast dynamic consumptic communication): – Baudrate: 2 Mbit/s – Transmission every 8 µs – Frame: 16 bits	on (continuous	4.8 * f _{periph}	6.3 * f _{periph}	
I _{DD_HV(ADC)}	т	ADC supply current on VDD_HV_REG	VDD = 5.5 V	Ballast dynamic consumption (continuous conversion)	120 * f _{periph}	156 * f _{periph}	
IDD_HV_ADC(ADC)	т	ADC supply current on VDD_HV_ADC	VDD = 5.5 V	VDD = 5.5 V Analog dynamic consumption (continuous conversion)		0.007 * f _{periph} + 3.4	mA
I _{DD_HV} (eTimer)	т	eTimer supply current on VDD_HV_REG	PWM signals generation on all 1 channel @10kHz	Dynamic consumption does not change varying the frequency	1.8	2.4	mA
I _{DD_HV(FlexRay)}	т	FlexRay supply current on VDD_HV_REG	Static consumption		4.2 * f _{periph}	5.5 * f _{periph}	μA

1. Operating conditions: $f_{periph} = 8 \text{ MHz}$ to 64 MHz

3.11.3 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 25*.

Package	Supply segment									
	1	2	3	4	5	6	7			
LQFP144	pin8 – pin20	pin23 – pin38	pin39 – pin55	pin58 – pin68	pin73 – pin89	pin92 – pin125	pin128 – pin5			
LQFP100	pin15 – pin26	pin27 – pin38	pin41 – pin46	pin51 – pin61	pin64 – pin86	pin89 – pin10	_			

Table 26. I/O consumption

Symbol		0	Deremeter	Condit	:ene(1)	Value			l lmit							
		C	Parameter	Condit	Min	Тур	Max	Unit								
	<u> </u>		Dynamic I/O current	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	20	m۵								
'SWTSLW`			configuration	6L – 23 þr	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		16	III.A							
(2)	CC	_	П	П	_	6	П	П	Dynamic I/O current	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	29	mΔ		
SWTMED			configuration	6L - 20 pi	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		17								
Low==o=(2)	(2) 00 D	<u> </u>	<u> </u>	CC	<u> </u>	CC	П	Dynamic I/O current	$C_{1} = 25 \text{nE}$	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_		110	mΔ		
SWIFST			configuration	0L - 20 pi	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	50								
											C _L = 25 pF, 2 MHz				2.3	
											C _L = 25 pF, 4 MHz	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0			3.2	
Investor	<u> </u>							Root medium square	C _L = 100 pF, 2 MHz		_		6.6	mA		
'RMSSLW			configuration	C _L = 25 pF, 2 MHz		_		1.6								
										C _L = 25 pF, 4 MHz	[−] V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	2.3		
				C _L = 100 pF, 2 MHz		_	—	4.7	1							
				C _L = 25 pF, 13 MHz		_	_	6.6								
			Poot medium square	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	13.4								
	cc	П	I/O current for	C _L = 100 pF, 13 MHz		_	_	18.3	mA							
IRMSMED			MEDIUM	C _L = 25 pF, 13 MHz			—	5								
			Gernigulation	C _L = 25 pF, 40 MHz	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	8.5								
								C _L = 100 pF, 13 MHz		_		11				

The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C_S and C_{P2} substantially two switched capacitances, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with $C_S + C_{P2}$ equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc \times (C_S + C_{P2}))$), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on $C_S + C_{P2}$) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \times \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R_{SW} and R_{AD}) can be neglected with respect to external resistances.

Figure 16. Input equivalent circuit (precise channels)

3.15.2 ADC conversion characteristics

Table 32. AD	conversion	characteristics
--------------	------------	-----------------

Symbol		Deveneeter	Conditions(1)		Unit		
		Parameter	Conditions	Min	Тур	Мах	Unit
V _{INAN}	SR	Analog input voltage ⁽²⁾	_	$\begin{array}{c} V_{SS_HV_AD} \\ -0.3 \end{array}$	_	V _{SS_HV_AD} + 0.3	V
f _{CK}	SR	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_clk ⁽³⁾ frequency)	_	3 ⁽⁴⁾	_	60	MHz
f _s	SR	Sampling frequency	—	—		1.53	MHz
t		Sample time ⁽⁵⁾	f _{ADC} = 20 MHz, INPSAMP = 3	125	_	_	ns
'ADC_S			f _{ADC} = 9 MHz, INPSAMP = 255	_		28.2	μs
t _{ADC_C}	Р	Conversion time ⁽⁶⁾	$f_{ADC} = 20 \text{ MHz}^{(7)},$ INPCMP = 1	0.650	_	_	μs
C _S ⁽⁸⁾	D	ADC input sampling capacitance	_	_	_	2.5	pF
C _{P1} ⁽⁸⁾	D	ADC input pin capacitance 1	—			3	pF
C _{P2} ⁽⁸⁾	D	ADC input pin capacitance 2	—			1	pF
C _{P3} ⁽⁸⁾	D	ADC input pin capacitance 3	—		_	1	pF
D (8)		Internal resistance of analog	V _{DD_HV_AD} = 5 V ±10%	_		0.6	kΩ
K _{SW1}	U	source	V _{DD_HV_AD} = 3.3 V ±10%	—	_	3	kΩ
D (8)		Internal resistance of analog	V _{DD_HV_AD} = 5 V ±10%	—	_	2.15	kΩ
rsw2`´		source	V _{DD_HV_AD} = 3.3 V ±10%	—	—	3.6	kΩ
R _{AD} ⁽⁸⁾	D	Internal resistance of analog source	_	—	_	2	kΩ
I _{INJ}	т	Input current injection	Current injection on one ADC input, different from the converted one. Remains within TUE spec.	-5	_	5	mA
INL	Ρ	Integral Non Linearity	No overload	_	±1.5		LSB
DNL	Р	Differential Non Linearity	No overload	-1.0	_	1.0	LSB
OFS	Т	Offset error	_		±1		LSB
GNE	Т	Gain error		—	±1	_	LSB
TUE	Р	Total unadjusted error without current injection	16 precision channels	-2.5	_	2.5	LSB

Electrical characteristics

- 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
- 4. Actual hardware programming times. This does not include software overhead.
- 5. Typical bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).
- 6. Time between erase suspend resume and next erase suspend.

Symbol		Doromotor	Conditions	Val	Unit	
		Farameter	Conditions	Min	Тур	Unit
P/E	с	Number of program/erase cycles per block for 16 KB blocks over the operating temperature range (T_J)	_	100000	100000	cycles
P/E	С	Number of program/erase cycles per block for 32 KB blocks over the operating temperature range (T_J)	_	10000	100000	cycles
P/E	С	Number of program/erase cycles per block for 64 KB blocks over the operating temperature range (T_J)	_	10000	100000	cycles
P/E	С	Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (T_J)	_	1000	100000	cycles
			Blocks with 0 – 1000 P/E cycles	20	—	years
Retention	С	Minimum data retention at 85 °C average ambient temperature ⁽¹⁾	Blocks with 10000 P/E cycles	10		years
			Blocks with 100000 P/E cycles	5	_	years

Table 34. Flash memory module life

1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

Table 35. Flash read access timing

Symbol	С	Parameter	Conditions ⁽¹⁾	Max	Unit
Emax	C	Maximum working frequency for Code Flash	2 wait states 66		MH7
FIIIdX	C	at given number of WS in worst conditions	0 wait states	22	
Fmax	С	Maximum working frequency for Data Flash at given number of WS in worst conditions	8 wait states	66	MHz

1. VDD = $3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, TA = -40 to 125 °C, unless otherwise specified.

Figure 24. JTAG boundary scan timing

3.18.3 **Nexus timing**

Table 39. Nexus debug port timing⁽¹⁾

No	Symb	al	6	Parameter		Value		Unit
NO.	Symbo	01	C	Farameter	Min	Тур	Мах	Unit
1	t _{MCYC}	CC	D	MCKO cycle time	32	_	—	ns
2	t _{MDOV}	сс	D	MCKO edge to MDO data valid	_ 0.1 × t _{MCYC}	_	0.25 × t _{MCYC}	ns
3	t _{MSEOV}	сс	D	MCKO edge to MSEO data valid	_ 0.1 × t _{MCYC}	_	0.25 × t _{MCYC}	ns
4	t _{EVTOV}	сс	D	MCKO edge to EVTO data valid	_ 0.1 × t _{MCYC}	_	0.25 × t _{MCYC}	ns
5	t _{TCYC}	CC	D	TCK cycle time	64 ⁽²⁾	—	—	ns

3.18.4 External interrupt timing (IRQ pin)

Table 40	External	interrupt	timing ⁽¹⁾
----------	----------	-----------	-----------------------

No.	Symb	ool	С	Parameter	Conditions	Min	Max	Unit
1	t _{IPWL}	СС	D	IRQ pulse width low	—	4	—	t _{CYC}
2	t _{IPWH}	СС	D	IRQ pulse width high	_	4	—	t _{CYC}
3	t _{ICYC}	СС	D	IRQ edge to edge time ⁽²⁾	_	4 + N ⁽³⁾	—	t _{CYC}

1. IRQ timing specified at f_{SYS} = 64 MHz and $V_{DD_HV_IOx}$ = 3.0 V to 5.5 V, T_A = T_L to T_H , and CL = 200pF with SRC = 0b00.

2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.

3. N= ISR time to clear the flag.

		5 (,															
	No.	Symbol		С	Parameter	Conditions	Min	Max	Unit								
						Master (MTFE = 0)	-2	—									
	12											П	Data hald time for outputs	Slave	6	—	ne
		Ma	Master (MTFE = 1, CPHA = 0)	6	—	115											
			1	Master (MTFE = 1, CPHA = 1)	-2	—											

Table 41. DSPI timing⁽¹⁾ (continued)

1. All timing are provided with 50pF capacitance on output, 1ns transition time on input signal

Figure 29. DSPI classic SPI timing — master, CPHA = 0

Date	Revision	Substantive changes
15-May-2012	3	Removed "Enhanced Full-featured" version. In the cover page, added "(1 × Master/Slave, 1 × Master Only)" at the end of the bullet "2 LINFlex modules (LIN 2.1)" Table 2: SPC56xP54x/SPC56xP60x device comparison, updated the value of "LINFLEX module" to "2 (1 × Master/Slave, 1 × Master only)" Section 1.5.4: On-chip flash memory with ECC replaced two occurrences of "3 wait states" to "2 wait states" replaced 60 MHz to 64 MHz Section 1.5.21: Serial communication interface module (LINFlex), updated first bullet to "Supports LIN Master mode (on both modules), LIN Slave mode (on one module) and UART mode" Section 1.5.24: Analog-to-digital converter (ADC), removed bullet concerning the analog watchdogs from Normal mode features. Table 5: Supply pins, removed V _{REG_BYPASS} row. Table 6: System pins: added Y _{REG_BYPASS} row added a footnote about RESET Table 9: Absolute maximum ratings: changed typical value of TV _{DD} to 0.25 and added a footnote added V _{INAN} entry Updated Section 3.8.1: Voltage regulator electrical characteristics Updated Table 14: EMI testing specifications Table 18: Low voltage monitor electrical characteristics, changed maximum value of V _{MLVDDOK_H} to 1.15 Table 20: DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0), added IPU and IPD rows for RESET pin. Table 21: Supply current (5.0 V, NVUSRO[PAD3V5V]=0): added maximum values of I _{DD_LV_CORE} for: RUN, HALT, and STOP mode updated values and parameter classification of I _{DD_FLASH} Table 22: DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1); added maximum values of I _{DD_LV_CORE} for: RUN, HALT, and STOP mode updated values and parameter classification of I _{DD_FLASH} Added Table 26: I/O consumption Table 31: 16 MHz RC oscillator electrical characteristics, changed minimum and maximum values of A _{RCMVAR} respectively to -6 and 6. Renamed Figure 16: Input equivalent circuit (precise channels) (was "Input equivalent circuit") Added Figure 17: Input impedance and ADC accuracy, updated Equation 4 and Eq

Table 44.	Document	revision	history	(continued)
				. ,

Date	Revision	Substantive changes
21-Nov-2012	4	In the cover page, replaced "64 MHz, dual issue, 32-bit CPU core complex" with "64 MHz, single issue, 32-bit CPU core complex" <i>Table 9: Absolute maximum ratings</i> , updated TV _{DD} entry <i>Table 22: DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)</i> : Updated conditions value of V _{OL_F} to 11 mA Updated conditions value of V _{OL_F} to -11 mA <i>Table 24: Peripherals supply current (5 V and 3.3 V)</i> : Replaced all occurrences of I _{DD_BV} in this table with I _{DD_HV} Replaced all occurrences of VDD_BV in this table with VDD_HV_REG. <i>Figure 40: Ordering information scheme</i> , fixed typo in the footnote.
18-Sep-2013	5	Updated Disclaimer.
15-Jun-2016	6	 Added "AEC-Q10x qualified" in <i>Features</i> section. In <i>Table 2: SPC56xP54x/SPC56xP60x device comparison</i> added footnote "LinFlex_1 is Master Only." related to row "LINFlex modules" Updated <i>Table 3: SPC56xP54x/SPC56xP60x device configuration difference</i> <i>Figure 2: LQFP176 pinout (top view)</i>: Changed PB[4] to TDO Changed PB[5] to TDI Changed pins 71,72 to NC Changed pins 87,88 to NC In <i>Section 1.5.27: Nexus development interface (NDI)</i>, added note "At least one TCK clock is necessary for the EVTI signal to be recognized by the MCU." for EVTI pin. In <i>Table 7: Pin muxing</i>: Replaced "PCR register" with "PCR No." Updated "CS3" with "CS3_4" function related to A[2] port pin In column "I/O direction", added "O" for "DSPI_1" peripheral In "Functions" column related to D[12] port pin, changed DS7_1 to CS7_1

Table 44. Document revision history (continued)

