

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (4K × 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/attiny404-ssfr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Base Address	Name	Description
0x0F00	SYSCFG	System Configuration
0x1000	NVMCTRL	Nonvolatile Memory Controller
0x1100	SIGROW	Signature Row
0x1280	FUSES	Device-specific fuses
0x1300	USERROW	User Row

7.2 Interrupt Vector Mapping

Each of the interrupt vectors is connected to one peripheral instance, as shown in the table below. A peripheral can have one or more interrupt sources, see the *Interrupt* section in the *Functional* description of the respective peripheral for more details on the available interrupt sources.

When the interrupt condition occurs, an Interrupt Flag (namelF) is set in the Interrupt Flags register of the peripheral (*peripheral*.INTFLAGS).

An interrupt is enabled or disabled by writing to the corresponding Interrupt Enable bit (namelE) in the peripheral's Interrupt Control register (*peripheral*.INTCTRL).

The naming of the registers may vary slightly in some peripherals.

An interrupt request is generated when the corresponding interrupt is enabled and the interrupt flag is set. The interrupt request remains active until the interrupt flag is cleared. See the peripheral's INTFLAGS register for details on how to clear interrupt flags.

Interrupts must be enabled globally for interrupt requests to be generated.

Vector Number	Peripheral Source	Definition
0	RESET	RESET
1	CRCSCAN_NMI	NMI - Non-Maskable Interrupt from CRC
2	BOD_VLM	VLM - Voltage Level Monitor
3	PORTA_PORT	PORTA - Port A
4	PORTB_PORT	PORTB - Port B
6	RTC_CNT	RTC - Real-Time Counter
7	RTC_PIT	PIT - Periodic Interrupt Timer (in RTC peripheral)
8	TCA0_LUNF/TCA0_OVF	TCA0 - Timer Counter Type A, LUNF/OVF
9	TCA0_HUNF	TCA0, HUNF
10	TCA0_LCMP0/TCA0_CMP0	TCA0, LCMP0/CMP0
11	TCA0_LCMP1/TCA0_CMP1	TCA0, LCMP1/CMP1
12	TCA0_CMP2/TCA0_LCMP2	TCA0, LCMP2/CMP2
13	TCB0_INT	TCB0 - Timer Counter Type B

Table 7-2. Interrupt Vector Mapping

10.5.6 16/20 MHz Oscillator Calibration A

Name:	OSC20MCALIBA
Offset:	0x11
Reset:	Based on FREQSEL in FUSE.OSCCFG
Property:	Configuration Change Protection

Bit	7	6	5	4	3	2	1	0
					CAL20	0M[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			x	x	x	x	x	x

Bits 5:0 - CAL20M[5:0] Calibration

These bits change the frequency around the current center frequency of the OSC20M for fine-tuning.

At Reset, the factory calibrated values are loaded based on the FREQSEL bits in FUSE.OSCCFG.

15.3.3	Control C							
	Name: Offset: Reset: Property:	CTRLC 0x02 0x00 -						
В	it 7	6	5	4	3	2	1	0
								TCA00
Acces	s		·	•				R/W
Rese	et							0

Bit 0 – TCA00 TCA0 Waveform output 0

Write this bit to '1' to select alternative output pin for TCA0 waveform output 0.

In Split mode, this bit controls output from low byte compare channel 0.

16.5.5 Output Value

Name:	OUT
Offset:	0x04
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
[OUT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – OUT[7:0] Output Value

This bit field defines the data output value for the individual pins n of the port. If OUT[n] is written to '1', pin n is driven high.

If OUT[n] is written to '0', pin n is driven low.

In order to have any effect, the pin direction must be configured as output.

16.7.1 Data Direction

Name:	DIR
Offset:	0x00
Reset:	0x00
Property:	-

Writing to the Virtual PORT registers has the same effect as writing to the regular registers, but allows for memory-specific instructions, such as bit-manipulation instructions, which are not valid for the extended I/O memory space where the regular PORT registers reside.

Bit	7	6	5	4	3	2	1	0
				DIR	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – DIR[7:0] Data Direction

This bit field selects the data direction for the individual pins in the port.

17.5.3 VLM Control A

	Name: Offset: Reset: Property:	VLMCTRLA 0x08 0x00 -						
Bit	7	6	5	4	3	2	1	0
							VLML	/L[1:0]
Access							R/W	R/W
Reset							0	0

Bits 1:0 - VLMLVL[1:0] VLM Level

These bits select the VLM threshold relative to the BOD threshold (LVL in BOD.CTRLB).

Value	Description
0x0	VLM threshold 5% above BOD threshold
0x1	VLM threshold 15% above BOD threshold
0x2	VLM threshold 25% above BOD threshold
other	Reserved

19.2.1 Block Diagram

Figure 19-1. WDT Block Diagram

19.2.2 Signal Description

Not applicable.

19.2.3 System Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

Table 19-1. WDT System Dependencies

Dependency	Applicable	Peripheral
Clocks	Yes	CLKCTRL
I/O Lines and Connections	No	-
Interrupts	No	-
Events	No	-
Debug	Yes	UPDI

Related Links

Clocks

Debug Operation

19.2.3.1 Clocks

A 1 KHz Oscillator Clock (CLK_WDT_OSC) is sourced from the internal Ultra Low-Power Oscillator, OSCULP32K. Due to the ultra low-power design, the oscillator is not very accurate, and so the exact time-out period may vary from device to device. This variation must be kept in mind when designing software that uses the WDT to ensure that the time-out periods used are valid for all devices.

The Counter Clock CLK_WDT_OSC is asynchronous to the system clock. Due to this asynchronicity, writing to the WDT Control register will require synchronization between the clock domains.

Related Links

Electrical Characteristics

ATtiny204/404 Watchdog Timer (WDT)

Value	Name	Description
0x4	64CLK	0.064s
0x5	128CLK	0.128s
0x6	256CLK	0.256s
0x7	512CLK	0.512s
0x8	1KCLK	1.0s
0x9	2KCLK	2.0s
0xA	4KCLK	4.1s
0xB	8KCLK	8.2s
other	-	Reserved

20.5.14 Counter Register - Normal Mode

Name:	CNT
Offset:	0x20
Reset:	0x00
Property:	-

The TCAn.CNTL and TCAn.CNTH register pair represents the 16-bit value, TCAn.CNT. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0x01.

Bit	15	14	13	12	11	10	9	8					
Γ		CNT[15:8]											
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	0	0	0	0	0	0	0	0					
Bit	7	6	5	4	3	2	1	0					
	CNT[7:0]												
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	0	0	0	0	0	0	0	0					

CPU and UPDI write access has priority over internal updates of the register.

Bits 15:8 - CNT[15:8] Counter High Byte

These bits hold the MSB of the 16-bit counter register.

Bits 7:0 - CNT[7:0] Counter Low Byte

These bits hold the LSB of the 16-bit counter register.

20.5.18 Compare n Buffer Register

 Name:
 CMPnBUF

 Offset:
 0x38 + n*0x02 [n=0..2]

 Reset:
 0x00

 Property:

This register serves as the buffer for the associated compare registers (TCAn.CMPn). Accessing any of these registers using the CPU or UPDI will affect the corresponding CMPnBV status bit.

The TCAn.CMPnBUFL and TCAn.CMPnBUFH register pair represents the 16-bit value, TCAn.CMPnBUF. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0x01.

Bit	15	14	13	12	11	10	9	8				
		CMPBUF[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
				CMPB	UF[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

Bits 15:8 – CMPBUF[15:8] Compare High Byte These bits hold the MSB of the 16-bit compare buffer register.

Bits 7:0 - CMPBUF[7:0] Compare Low Byte

These bits hold the LSB of the 16-bit compare buffer register.

21.5.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
		RUNSTDBY		SYNCUPD CLKSEL[1:0]		ENABLE		
Access		R/W		R/W		R/W	R/W	R/W
Reset		0		0		0 0		0

Bit 6 – RUNSTDBY Run in Standby

Writing a '1' to this bit will enable the peripheral to run in Standby Sleep mode. Not applicable when CLKSEL is set to 0x2 (CLK_TCA).

Bit 4 – SYNCUPD Synchronize Update

When this bit is written to '1', the TCB will restart whenever the TCA0 counter is restarted.

Bits 2:1 – CLKSEL[1:0] Clock Select

Writing these bits selects the clock source for this peripheral.

Value	Description
0x0	CLK_PER
0x1	CLK_PER/2
0x2	Use CLK_TCA from TCA0
0x3	Reserved

Bit 0 – ENABLE Enable

Writing this bit to '1' enables the Timer/Counter type B peripheral.

Bit 0 – DATA[8] Receiver Data Register

When USART receiver is set to LINAUTO mode, this bit indicates if the received data is within the response space of a LIN frame. If the received data is the protected identifier field, this bit will be read as '0'. Otherwise, the bit will be read as '1'. For Receiver mode other than LINAUTO mode, DATA[8] holds the ninth data bit in the received character when operating with serial frames with nine data bits.

A high-to-low transition on the SCL line will force the line low for all masters on the bus, and they will start timing their low clock period. The timing length of the low clock period can vary among the masters. When a master (DEVICE1 in this case) has completed its low period, it releases the SCL line. However, the SCL line will not go high until all masters have released it. Consequently, the SCL line will be held low by the device with the longest low period (DEVICE2). Devices with shorter low periods must insert a wait state until the clock is released. All masters start their high period when the SCL line is released by all devices and has gone high. The device, which first completes its high period (DEVICE1), forces the clock line low, and the procedure is then repeated. The result is that the device with the shortest clock period determines the high period, while the low period of the clock is determined by the device with the longest clock period.

25.3.3 TWI Bus State Logic

The bus state logic continuously monitors the activity on the TWI bus lines when the master is enabled. It continues to operate in all Sleep modes, including power-down.

The bus state logic includes Start and Stop condition detectors, collision detection, inactive bus time-out detection, and a bit counter. These are used to determine the bus state. The software can get the current bus state by reading the Bus State bits in the master STATUS register. The bus state can be unknown, idle, busy, or owner, and is determined according to the state diagram shown in Figure 25-12. The values of the Bus State bits according to state, are shown in binary in the figure below.

dedicated status flags for indicating ACK/NACK received, bus error, arbitration lost, clock hold, and bus state.

When an interrupt flag is set, the SCL line is forced low. This will give the master time to respond or handle any data, and will in most cases require software interaction. Figure 25-13 shows the TWI master operation. The diamond-shaped symbols (SW) indicate where software interaction is required. Clearing the interrupt flags releases the SCL line.

The number of interrupts generated is kept to a minimum by an automatic handling of most conditions.

Clock Generation

The BAUD must be set to a value that results in a TWI bus clock frequency (f_{SCL}) equal or less than 100 kHz/400 kHz/1 MHz, dependent on the mode used by the application (Standard mode Sm/Fast mode Fm/ Fast mode plus Fm+).

The low (T_{LOW}) and high (T_{HIGH}) times are determined by the Baud Rate register (BAUD), while the rise (T_{RISE}) and fall (T_{FALL}) times are determined by the bus topology. Because of the wired-AND logic of the bus, T_{FALL} will be considered as part of T_{LOW}. Likewise, T_{RISE} will be in a state between T_{LOW} and T_{HIGH} until a high state has been detected.

25.3.7 Sleep Mode Operation

The bus state logic and slave continue to operate in all Sleep modes, including Power-Down Sleep mode. If a slave device is in Sleep mode and a Start condition is detected, clock stretching is active during the wake-up period until the system clock is available. The master will stop operation in all Sleep modes.

25.3.8 Synchronization

Not applicable.

25.3.9 Configuration Change Protection Not applicable.

30.4 Register Summary - UPDI

Offset	Name	Bit Pos.								
0x00	STATUSA	7:0		UPDIR	EV[3:0]					
0x01	STATUSB	7:0							PESIG[2:0]	
0x02	CTRLA	7:0	IBDLY		PARD	DTD	RSD		GTVAL[2:0]	
0x03	CTRLB	7:0				NACKDIS	CCDETDIS	UPDIDIS		
0x04										
	Reserved									
0x06										
0x07	ASI_KEY_STATUS	7:0			UROWWRITE	NVMPROG	CHIPERASE			
0x08	ASI_RESET_REQ	7:0				RSTRI	EQ[7:0]			
0x09	ASI_CTRLA	7:0							UPDICLI	KSEL[1:0]
0.00		7:0							UROWWRITE	
UXUA	ASI_STS_CTRLA	7.0							_FINAL	ULKREQ
0x0B	ASI_SYS_STATUS	7:0			RSTSYS	INSLEEP	NVMPROG	UROWPROG		LOCKSTATUS
0x0C	ASI_CRC_STATUS	7:0						CI	RC_STATUS[2	:0]

30.5 Register Description

These registers are readable only through the UPDI with special instructions and are NOT readable through the CPU.

Registers at offset addresses 0x0-0x3 are the UPDI Physical configuration registers.

Registers at offset addresses 0x4-0xC are the ASI level registers.

30.5.4 Control B

Name:	CTRLB
Offset:	0x03
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
				NACKDIS	CCDETDIS	UPDIDIS		
Access				R	R	R		
Reset				0	0	0		

Bit 4 – NACKDIS Disable NACK Response

Writing this bit to '1' disables the NACK signature sent by the UPDI if a System Reset is issued during an ongoing LD(S) and ST(S) operation.

Bit 3 – CCDETDIS Collision and Contention Detection Disable If this bit is written to '1', contention detection is disabled.

Bit 2 - UPDIDIS UPDI Disable

Writing a '1' to this bit disables the UPDI PHY interface. The clock request from the UPDI is lowered, and the UPDI is reset. All UPDI PHY configurations and KEYs will be reset when the UPDI is disabled.

ATtiny204/404 Electrical Characteristics

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
t _{HD;STA}	Hold time	f _{SCL} ≤100 kHz	4.0	-	-	μs
	(repeated) Start condition	f _{SCL} ≤400 kHz	0.6	-	-	
		f _{SCL} ≤1 MHz	0.26	-	-	
t _{LOW}	Low period of SCL	f _{SCL} ≤100 kHz	4.7	-	-	μs
	Clock	f _{SCL} ≤400 kHz	1.3	-	-	
		f _{SCL} ≤1 MHz	0.5	-	-	
t _{HIGH}	High period of SCL	f _{SCL} ≤100 kHz	4.0	-	-	μs
	Clock	f _{SCL} ≤400 kHz	0.6	-	-	
		f _{SCL} ≤1 MHz	0.26	-	-	
t _{SU;STA}	Setup time for a	f _{SCL} ≤100 kHz	4.7	-	-	μs
	repeated Start condition	f _{SCL} ≤400 kHz	0.6	-	-	
		f _{SCL} ≤1 MHz	0.26	-	-	
t _{HD;DAT}	Data hold time	f _{SCL} ≤100 kHz	0	-	3.45	μs
		f _{SCL} ≤400 kHz	0	-	0.9	
		f _{SCL} ≤1 MHz	0	-	0.45	
t _{SU;DAT}	Data setup time	f _{SCL} ≤100 kHz	250	-	-	ns
		f _{SCL} ≤400 kHz	100	-	-	
		f _{SCL} ≤1 MHz	50	-	-	
t _{SU;STO}	Setup time for Stop	f _{SCL} ≤100 kHz	4	-	-	μs
	condition	f _{SCL} ≤400 kHz	0.6	-	-	
		f _{SCL} ≤1 MHz	0.26	-	-	
t _{BUF}	Bus free time	f _{SCL} ≤100 kHz	4.7	-	-	μs
	between a Stop and Start condition	f _{SCL} ≤400 kHz	1.3	-	-	
		f _{SCL} ≤1 MHz	0.5	-	-	

31.14 VREF

Table 31-19. Internal Voltage Reference Characteristics

Symbol	Description	Min.	Тур.	Max.	Unit
t _{start}	Start-up time	-	25	-	μs
V _{DDINT055V}	Power supply voltage range for INT055V	1.8	-	5.5	V
V _{DDINT11V}	Power supply voltage range for INT11V	1.8	-	5.5	
V _{DDINT15V}	Power supply voltage range for INT15V	1.9	-	5.5	

Figure 32-27. I/O Pin Output Voltage vs. Source Current (T=25°C)

ATtiny204/404 Typical Characteristics

Figure 32-55. Propagation Delay vs. V_{CM} Falling Positive Input, V_{OD} = 25 mV (T=25°C)

Figure 32-56. Propagation Delay vs. V_{CM} Rising Positive Input, V_{OD} = 30 mV (T=25°C)

